
Notes by Regina Gerbeaux

JSX
INTRO TO JSX
• React is a modular language (you can write many smaller files and reuse them as needed)

• JSX looks a bit like HTML and JS had a baby. You see variables with HTML elements.

• We define JSX as a syntax extension for JS (meaning browsers can’t read it because it’s not
valid JavaScript) — we compile the information (meaning we translate it to JS using a JSX
compiler) so that browsers can read it.

JSX ELEMENTS
• JSX elements can go anywhere that JS expressions can go (so JSX elements can be saved

in a variable, passed to a function, stored in an object or array, etc. — basically, it is treated
as JavaScript)

• Here is an example of a JSX element as a variable:

• And here’s an example of JSX in an object:

JSX ATTRIBUTES
• JSX can also have attributes like HTML. This is the syntax for attributes:

• Here’s an example of a JSX element with attributes:

• You can also have multiple attributes per JSX element.

const h1 = <h1>Hello world</h1>;

const navBar = <nav>I’m a nav bar</nav>;

const myTeam = {
 center: Benzo Walli,
 powerForward: Rasha Loa,
 smallForward: Tayshaun Dasmoto,
 shootingGuard: Colmar Cumberbatch,
 pointGuard: Femi Billion
};

my-attribute-name=“my-attribute-value”

Welcome to
Codecademy;

const title=<h1 id=“title”>Introduction to
React.js: Part I</h1>;

Notice the ID attribute

Notice the href attribute

http://codecademy.com
http://codecademy.com

Notes by Regina Gerbeaux

NESTED JSX
• You can also nest JSX elements into other JSX elements (just like HTML):

• Here’s another example of a nested JSX element being saved as a variable:

• For nested elements, you can only have ONE outermost element.

• Usually, if you have an error and it has to do with JSX outer elements, you can simply wrap
your code in <div></div> elements. For shorthand, you can also wrap them in <> </>
elements (this is the shorthand expression.)

RENDERING JSX
• To render something means to make it appear onscreen.

• To render a JSX expression, you use the code:

 <h1>
 Click me!
 </h1>

const theExample = (

 <h1>
 Click me!
 </h1>

);

const paragraphs = (
 <div id=“i-am-the-outermost-
element”>
 <p>I am a paragraph.</p>
 <p>I, too, am a paragraph.</
p>
 </div>
);

This code will work. <div> is
the ONE outermost element.

const paragraphs = (
 <p>I am a paragraph.</p>
 <p>I, too, am a paragraph.</p>
);

This code will NOT work. Notice
how there are TWO <p> elements
stored as the outermost elements in
the variable (bolded for emphasis.)

import React from 'react';
import ReactDOM from ‘react-dom';

ReactDOM.render(<h1>Hello world</h1>,
document.getElementById(‘app’));

This is the 1st argument
passed to .render(). It
should evaluate to a JSX
expression, and is rendered
to the screen.

This 2nd argument tells the computer
where to render the 1st argument and
acts as a container for the first argument.

.render() takes a JSX
expression, creates a
corresponding tree of the
DOM nodes, and adds
that tree to the DOM

ReactDOM is the
name of the JS library.

https://www.example.com
https://www.example.com
https://www.example.com
https://www.example.com

Notes by Regina Gerbeaux

PASSING A VARIABLE TO REACTDOM.RENDER()
• In the last example, we see in the green box that the first argument passed into .render()

should evaluate to a JSX expression.

• This can mean it is a JSX expression itself (as seen above in the example), but…

• It can also be a variable that evaluates to a JSX expression, such as:

THE VIRTUAL DOM

• ReactDOM.render() only updates DOM elements that have changed. For example:

• Why is this important? Well, typically, a JavaScript DOM will update every single thing and

rewrite the whole thing to make a change. Let’s say for example you have a list of items, and
you check off one thing. JS DOM will rewrite the whole thing just to check off that one thing.
What if you have a list of 100 items??? This is so inefficient and takes up a lot of time.

• React’s solution to this problem is to create a virtual DOM.

• A virtual DOM is a representation of the DOM, meaning it looks just like a real DOM

object, but doesn’t have the power to change what’s on the screen.

• As a result, this makes a virtual DOM much faster because nothing gets drawn onscreen.

• From the virtual DOM, React will compare the virtual DOM with the virtual DOM snapshot
taken right before the update and diffs through the new version.

• Diffing is going through two copies and searching for changes.

• It figures out exactly which DOM objects have changed!

• From there, it reports ONLY the changed objects on the real DOM and updates ONLY the
necessary parts of DOM. This makes it incredibly more fast and efficient!

More reading: https://www.codecademy.com/articles/react-virtual-dom 

const toDoList = (

 Learn React
 Become a Developer

);

ReactDOM.render(
 toDoList,
 document.getElementById(‘app’)
);

React’s DOM is told to render the variable
toDoList, which contains JSX expressions.

Again, this is where the variable will render. It
will render in the HTML with the ID of “app”.

const hello = <h1>Hello world</h1>;

ReactDOM.render(hello,
document.getElementById(‘app’));

ReactDOM.render(hello,
document.getElementById(‘app’));

This will render “Hello world” to the screen.

This will do nothing.

https://www.codecademy.com/articles/react-virtual-dom

Notes by Regina Gerbeaux

Advanced JSX:
Differences Between JSX and HTML Syntax
CLASS VS CLASSNAME
• In HTML, we use class as an attribute name. However, you must use className instead in

JSX.

• This is because JS has some words that are “reserved” for JS use. When we use className
in JSX, it renders as “class” attributes (gets translated to “class”.)

SELF-CLOSING TAGS
• In HTML, you have the option of self-closing tags, e.g.: ,
, and <input />

• In HTML, if you don’t use the slash at the end of the tag, it will still work. However, in JSX,

you must include the slash. If you forget it, it will raise an error.

Advanced JSX
ADDING JS TO JSX
• You can add regular JS inside a JSX expression, written inside of a JS file as such:

• Once you use the curly braces to designate regular JS within your JSX expression, you can
treat that space as a regular JS environment. That means you can also access JS variables
inside a JSX expression, even if they were declared outside. For example:

• Here’s another example:

<h1 class=“big”>Hey</h1> <h1 className=“big”>Hey</h1>

Class attribute in HTML Class attribute in JSX

ReactDOM.render(
 <h1>{2 + 3}</h1>,
 document.getElementById(‘app’)
);

Adding your code to { } will tell JSX
to run the inside as regular JS! The
output of this expression will be 5.

//Declare a variable in JS:
const name = ‘Gerdo’;

//JSX expression here, with JS
variable inside the JSX
const greeting = <p>Hello, {name}!
</p>;

Note: regular JS is in blue, and JSX
is in pink. Notice the regular JS
injected into JSX. Box is blue
because it’s all in JS.

//Declare a variable in JS:
const theBestString = ‘tralalalala I’m da best’;

ReactDOM.render(
 <h1>{theBestString}</h1>,
 document.getElementById(‘app’)
);

Notes by Regina Gerbeaux

VARIABLE ATTRIBUTES IN JSX
• You can also use variables to set attributes in JSX.

• Note: if you’re setting lots of attributes, give each one its own line to make the code more
readable.

• Object properties are also often used to set attributes.

EVENT LISTENERS IN JSX
• Working in React means we’ll be working with Event Listeners a lot. (As a reminder, event

listeners are functions that run when something happens, such as when someone clicks,
presses a key, scrolls, mouses over stuff, etc. For review, go look at the notes on Event
Handlers.)

• You can create an event listener by giving JSX elements a special attribute, such as:

const pics = {
 panda: “http://photoofpanda.com",
 owl: “http://photoofowl.com",
 owlCat: “http://thatdoesntexist.com"
};

const panda = (
 <img
 src={pics.panda}
 alt=“Lazy Panda” />
);

const owl = (
 <img
 src={pics.owl}
 alt=“Unimpressed Owl” />
);

const owlCat = (
 <img
 src={owlCat}
 alt=“No such thing!” />
);

const size = “200px”;

const panda = (
 <img
 src=“images/panda.jpg”
 alt=“panda”
 height={size}
 width={size}
 />
);

Notice how we pull the variable
{size} into the JSX variable.

We have the object pics
with key-value pairs.

Next, in JSX, we pull the
object property and
insert it as an attribute. Notice the self-closing

tag at
the end.

http://photoofpanda.com
http://photoofowl.com
http://thatdoesntexist.com
http://photoofpanda.com
http://photoofowl.com
http://thatdoesntexist.com

Notes by Regina Gerbeaux

• In HTML, we lowercase all event listeners (such as onclick). In JSX, we camelCase event
listener names (such as onClick).

IF STATEMENTS
• We write “if else” statements outside of JSX, as regular JS. They work if we write them on

the outside and avoid injecting in between JSX tags. See below for an example on how this
looks:

TERNARY OPERATOR IN JSX
• We write ternary operators in React the same was in JS. Ternary shows up a lot in React,

so get used to it.

• As a reminder, ternary operators work as x ? y : z, meaning:

• When your code is evaluated, x is either true or false.

• If true, y is returned.

• If false, z is returned.

• It’s best to use ternary operators if there are multiple potential outcomes

• Here’s a nice little example:

let message;

if (user.age >= drinkingAge) {
 message = (
 <h1>
 Hey, check out this alcoholic beverage!
 </h1>
);
} else {
 message = (
 <h1>
 Hey, check out these earrings I got!
 </h1>
);
}

ReactDOM.render(
 message,
 document.getElementById(‘app’)
);

Declare variable message

if and else statements declared as regular JS

Outcome is JSX expression

const headline = (
 <h1>
 { age >= drinkingAge ? ‘Buy Drink’ : ‘Do Teen Stuff’ }
 </h1>
);

Variable ‘headline’ defined JS written as ternary operator

is ‘age >= drinkingAge’ true? if true, ‘Buy Drink’. if false, ‘Do
Teen Stuff’.

Notes by Regina Gerbeaux

JSX CONDITIONALS: &&
• Just like JS, && works best in conditionals that will sometimes do an action, but other times

do nothing at all.

• It’s best to use && if there’s only one condition that has to be met.

.MAP IN JSX
• We see .map() pop up a lot in React as well. As a reminder, .map creates a new array

populated with results of calling a provided function on every element in the calling array.
For example:

KEYS FOR LISTS
• Sometimes, your lists in JSX need keys.

• A key is a JSX attribute. The value is something unique, like an id attribute.

• The purpose of a key is for React to keep track of lists. Not all lists need keys, but it needs

one if:

• List-items have memory from one render to the next (e.g.: if we have a to-do list and it

has to remember what was checked off), or

• List order might be shuffled (e.g.: search results)

const tasty = (

 Applesauce
 { !baby && Pizza }
 { age > 15 && Brussel Sprouts }
 { age > 20 && Oysters }
 { age > 25 && Grappa }

);

These will only execute if the
statement is truthy.
Otherwise, they will not run.

const strings = [‘Home’, ‘Shop’, ‘About Me’];

const listItems = strings.map(string =>
 {string}
);

{listItems}

We pass strings
into .map for listItems

This turns the array from strings into a list item

Then, we create an unordered list with listItems

const people = ['Rowe', 'Prevost', 'Gare'];

const peopleLis = people.map((person, i) =>
 <li key={"person_" + i}>{person}
)

ReactDOM.render(
 {peopleLis},
 document.getElementById('app')
);

Notice we add two parameters
to the map function: person
and i. This is because we need
each key to be unique. Look at
the next line for the key.

Here is an array assigned
to the variable people

Notice we have a key and have assigned it some JS. By
assigning the key to be “person_” + i, we guarantee
every key will be unique! (e.g.: key=“person_1”)

Notes by Regina Gerbeaux

REACT.CREATEELEMENT(S
• We can write React code without using JSX if we want to! For example, these are the same

pieces of code:

• When JSX is compiled, it basically turns every JSX element (what you see on the left) into
what you see on the right. Think of it like this:

• We can use straight-up React.createElement() when we don’t want to set up
compilation (the green box above!)

• The format for how React.createElement() works is:

const h1 =
React.createElement(
 “h1”,
 null,
 “Hello”
);

const h1=<h1>Hello</h1>;

Written in JSX Written without JSX using
React.createElement

All your brilliant
JSX code because you
are very awesome

The magic
that happens
when you
compile

All your JSX
“translated” into

React.createElement()

React.createElement(
 type,
 [properties],
 [...children]
)

