SECOND EDITION

/lll MANNING

http://www.it-ebooks.info/

MongoDB in Action

http://www.it-ebooks.info/

http://www.it-ebooks.info/

MongoDB in Action

Second Edition

KYLE BANKER
PETER BAKKUM
SHAUN VERCH
DOUGLAS GARRETT
TiM HAWKINS

MANNING
SHELTER ISLAND

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editors: Susan Conant, Jeff Bleiel
20 Baldwin Road Technical development editors: Brian Hanafee, Jiirgen Hoffman,
PO Box 761 Wouter Thielen
Shelter Island, NY 11964 Copyeditors: Liz Welch, Jodie Allen

Proofreader: Melody Dolab

Technical proofreader: Doug Warren
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291609
Printed in the United States of America
12345678910 -EBM - 21 20 19 18 17 16

www.manning.com
http://www.it-ebooks.info/

This book is dedicated to peace and human dignity
and to all those who work for these ideals

http://www.it-ebooks.info/

http://www.it-ebooks.info/

brief contents

PART 1

PART 2

PART 3

GETTING STARTED . ..cceeeeueennnnnnnnnnnnsssssssssaaananaaasanaaaceanes 1
1 = A database for the modern web 3
2 = MongoDB through the JavaScript shell 29
3 wm Writing programs using MongoDB 52
APPLICATION DEVELOPMENT IN MONGODB................. 71
4 m Documentoriented data 73
5 wm Constructing queries 98
6 m Aggregation 120
7 w Updates, atomic operations, and deletes 157
MONGODB MASTERY. ...ccceeeeeeeennannaeeeeeeeeannnnnnnnncnncsssnns 195
8 = Indexing and query optimization 197
9 m Textsearch 244
10 w WiredTiger and pluggable storage 273
11 = Replication 296
12 m Scaling your system with sharding 333
13 = Deployment and administration 376

http://www.it-ebooks.info/

http://www.it-ebooks.info/

contents

preface xvii

acknowledgments xix

about this book xxi

about the cover illustration xxiv

PART 1 GETTING STARTED. ..ececececcccccesssccccssscsccssssscccsssesl

A database for the modern web 3
1.1 Built for the internet 5
1.2 MongoDB’s key features 6

Document data model 6 = Ad hoc queries 10
Indexes 10 = Replication 11 = Speed and durability 12
Scaling 14

1.3 MongoDB’s core server and tools 15

Core server 16 ® JavaScript shell 16 = Database drivers 17
Command-line tools 18

1.4 Why MongoDB? 18

MongoDB versus other databases 19 = Use cases and
production deployments 22

1.5 Tips and limitations 24
1.6 History of MongoDB 25

http://www.it-ebooks.info/

CONTENTS

1.7 Additional resources 27
1.8 Summary 28

MongoDB through the JavaScript shell 29
2.1 Diving into the MongoDB shell 30

Starting the shell 30 = Databases, collections, and documents 31
Inserts and queries 32 = Updating documents 34
Deleting data 38 = Other shell features 38

2.2 Creating and querying with indexes 39

Creating a large collection 39 = Indexing and explain() 41
2.3 Basic administration 46

Getting database information 46 = How commands work 48
2.4 Getting help 49
2.5 Summary 51

Writing programs using MongoDB 52
3.1 MongoDB through the Rubylens 53

Installing and connecting 53 = Inserting documents in Ruby 55
Queries and cursors 56 = Updates and deletes 57
Database commands 58

3.2 How the drivers work 59
Object ID generation 59

3.3 Building a simple application 61
Setting up 61 = Gathering data 62 = Viewing the archive 65

3.4 Summary 69

Document-oriented data 73
4.1 Principles of schema design 74
4.2 Designing an e-commerce data model 75
Schema basics 76 = Users and orders 80 = Reviews 83
4.3 Nuts and bolts: On databases, collections,

and documents 84
Databases 84 = Collections 87 » Documents and insertion 92

4.4 Summary 96

http://www.it-ebooks.info/

CONTENTS

Constructing queries 98

5.1 E-commerce queries 99

Products, categories, and reviews 99 = Users and orders 101
5.2 MongoDB’s query language 103

Query criteria and selectors 103 = Query options 117

5.3 Summary 119

Aggregation 120

6.1 Aggregation framework overview 121
6.2 E-commerce aggregation example 123
Products, categories, and reviews 125
User and order 132
6.3 Aggregation pipeline operators 135
Bproject 136 = $group 136 = $match, $sori,
Bskip, $limit 138 = $unwind 139 = Fout 139
6.4 Reshaping documents 140

String functions 141 = Arithmetic functions 142
Date functions 142 = Logical functions 143
Set Operators 144 = Miscellaneous functions 145

6.5 Understanding aggregation pipeline performance 146

Aggregation pipeline options 147 = The aggregation framework’s
explain() function 147 = allowDiskUse option 151
Aggregation cursor option 151

6.6 Other aggregation capabilities 152
.count() and .distinct() 153 = map-reduce 153
6.7 Summary 156

Updates, atomic operations, and deletes 157

7.1 A brief tour of document updates 158

Modfy by replacement 159 = Modify by operator 159
Both methods compared 160 = Deciding: replacement
vs. operators 160

7.2 E-commerce updates 162
Products and categories 162 = Reviews 167 = Orders 168
7.3 Atomic document processing 171

Order state transitions 172 = Inventory management 174

http://www.it-ebooks.info/

CONTENTS

7.4 Nuts and bolts: MongoDB updates and deletes 179

Update types and options 179 = Update operators 181
The findAndModify command 188 = Deletes 189
Concurrency, atomicity, and isolation 190
Update performance notes 191

7.5 Reviewing update operators 192

7.6 Summary 193

Indexing and query optimization 197
8.1 Indexing theory 198
A thought experiment 198 = Core indexing concepts 201
B-trees 205
8.2 Indexing in practice 207
Index types 207 = Index administration 211

8.3 Query optimization 216

Identifying slow queries 217 = Examining slow queries 221
Query patterns 241

8.4 Summary 243

Text search 244

9.1 Text searches—not just pattern matching 245
Text searches vs. pattern matching 246 = Text searches vs.
web page searches 247 = MongoDB text search vs. dedicated
lext search engines 250

9.2 Manning book catalog data download 253

9.3 Defining text search indexes 255
Text index size 255 = Assigning an index name and indexing
all text fields in a collection 256

9.4 Basic text search 257
More complex searches 259 = Text search scores 261
Sorting results by text search score 262

9.5 Aggregation framework text search 263
Where’s MongoDB in Action, Second Edition? 265

http://www.it-ebooks.info/

CONTENTS

9.6 Textsearch languages 267

Specifying language in the index 267 = Specifying the language in
the document 269 = Specifying the language in a search 269
Available languages 271

9.7 Summary 272

WiredTiger and pluggable storage 273

10.1 Pluggable Storage Engine API 273
Why use different storages engines? 274

10.2 WiredTiger 275

Switching to WiredTiger 276 = Migrating your database
to WiredTiger 277

10.3 Comparison with MMAPvl 278
Configuration files 279 = Insertion script and
benchmark script 281 = Insertion benchmark results 283
Read performance scripts 285 = Read performance results 286
Benchmark conclusion 288

10.4 Other examples of pluggable storage engines 289

10.5 Advanced topics 290

How does a pluggable storage engine work? 290
Data structure 292 = Locking 294

10.6 Summary 295

Replication 296

11.1 Replication overview 297

Why replication matters 297 = Replication use cases
and limitations 298

11.2 Replicasets 300

Setup 300 = How replication works 307
Administration 314

11.3 Drivers and replication 324

Connections and failover 324 = Wrile concern 327
Read scaling 328 = Tagging 330

11.4 Summary 332

http://www.it-ebooks.info/

Xiv CONTENTS

Scaling your system with sharding 333
12.1 Sharding overview 334
What is sharding? 334 = When should you shard? 335

12.2 Understanding components of a sharded cluster 336

Shards: storage of application data 337 = Mongos rouler: router
of operations 338 = Config servers: storage of metadata 338

12.3 Distributing data in a sharded cluster 339

Ways data can be distributed in a sharded cluster 340
Distributing databases to shards 341 = Sharding within
collections 341

12.4 Building a sample shard cluster 343

Starting the mongod and mongos servers 343 » Configuring
the cluster 346 = Sharding collections 347 = Writing to a
sharded cluster 349

12.5 Querying and indexing a shard cluster 355

Query routing 355 = Indexing in a sharded cluster 356
The explain() tool in a sharded cluster 357 = Aggregation in
a sharded cluster 359

12.6 Choosing a shard key 359

Imbalanced writes (hotspots) 360 = Unsplittable chunks (coarse
granularity) 362 = Poor targeting (shard key not present

in queries) 362 ® Ideal shard keys 363 = Inherent design
trade-offs (email application) 364

12.7 Sharding in production 365
Provisioning 366 = Deployment 369 = Maintenance 370

12.8 Summary 375

Deployment and administration 376
13.1 Hardware and provisioning 377
Cluster topology 377 = Deployment environment 378
Provisioning 385
13.2 Monitoring and diagnostics 386

Logging 387 = MongoDB diagnostic commands 387
MongoDB diagnostic tools 388 = MongoDB Monitoring
Service 390 = External monitoring applications 390

13.3 Backups 391

mongodump and mongorestore 391 = Dala file—based
backups 392 = MMS backups 393

http://www.it-ebooks.info/

13.4

13.5

13.6

13.7
13.8

appendix A
appendix B
appendix C

CONTENTS

Security 394

Secure environments 394 = Network encryption 395
Authentication 397 = Replica set authentication 401
Sharding authentication 402 = Enterprise security features 402

Administrative tasks 402
Data imports and exports 402 = Compaction and repair 403
Upgrading 405

Performance troubleshooting 405

Working set 406 = Performance cliff 407
Query interactions 407 = Seek professional assistance 408

Deployment checklist 408
Summary 410

Installation 411
Design patterns 421
Binary data and GridFS 433

index 441

XV

http://www.it-ebooks.info/

http://www.it-ebooks.info/

preface

Databases are the workhorses of the information age. Like Atlas, they go largely unno-
ticed in supporting the digital world we’ve come to inhabit. It’s easy to forget that our
digital interactions, from commenting and tweeting to searching and sorting, are in
essence interactions with a database. Because of this fundamental yet hidden func-
tion, I always experience a certain sense of awe when thinking about databases, not
unlike the awe one might feel when walking across a suspension bridge normally
reserved for automobiles.

The database has taken many forms. The indexes of books and the card catalogs
that once stood in libraries are both databases of a sort, as are the ad hoc structured
text files of the Perl programmers of yore. Perhaps most recognizable now as data-
bases proper are the sophisticated, fortune-making relational databases that underlie
much of the world’s software. These relational databases, with their idealized third-
normal forms and expressive SQL interfaces, still command the respect of the old
guard, and appropriately so.

But as a working web application developer a few years back, I was eager to sample
the emerging alternatives to the reigning relational database. When I discovered
MongoDB, the resonance was immediate. I liked the idea of using a JSON-like struc-
ture to represent data. J[SON is simple, intuitive, and human-friendly. That MongoDB
also based its query language on JSON lent a high degree of comfort and harmony to
the usage of this new database. The interface came first. Compelling features like easy
replication and sharding made the package all the more intriguing. And by the time

xvii

http://www.it-ebooks.info/

xviii

PREFACE

I'd built a few applications on MongoDB and beheld the ease of development it
imparted, I'd become a convert.

Through an unlikely turn of events, I started working for 10gen, the company
spearheading the development of this open source database. For two years, I’ve had
the opportunity to improve various client drivers and work with numerous customers
on their MongoDB deployments. The experience gained through this process has, I
hope, been distilled faithfully into the book you’re reading now.

As a piece of software and a work in progress, MongoDB is still far from perfection.
But it’s also successfully supporting thousands of applications atop database clusters
small and large, and it’s maturing daily. It’s been known to bring out wonder, even
happiness, in many a developer. My hope is that it can do the same for you.

This is the second edition of MongoDB in Action and I hope that you enjoy read-
ing the book!

KYLE BANKER

http://www.it-ebooks.info/

acknowledgments

Thanks are due to folks at Manning for helping make this book a reality. Michael
Stephens helped conceive the first edition of this book, and my development editors
for this second edition, Susan Conant, Jeff Bleiel, and Maureen Spencer, pushed the
book to completion while being helpful along the way. My thanks go to them.

Book writing is a time-consuming enterprise. I feel I wouldn’t have found the time
to finish this book had it not been for the generosity of Eliot Horowitz and Dwight
Merriman. Eliot and Dwight, through their initiative and ingenuity, created MongoDB,
and they trusted me to document the project. My thanks to them.

Many of the ideas in this book owe their origins to conversations I had with col-
leagues at 10gen. In this regard, special thanks are due to Mike Dirolf, Scott Hernandez,
Alvin Richards, and Mathias Stearn. I’'m especially indebted to Kristina Chowdorow,
Richard Kreuter, and Aaron Staple for providing expert reviews of entire chapters for
the first edition.

The following reviewers read the manuscript of the first edition at various stages
during its development: Kevin Jackson, Hardy Ferentschik, David Sinclair, Chris
Chandler, John Nunemaker, Robert Hanson, Alberto Lerner, Rick Wagner, Ryan Cox,
Andy Brudtkuhl, Daniel Bretoi, Greg Donald, Sean Reilly, Curtis Miller, Sanchet
Dighe, Philip Hallstrom, and Andy Dingley. And I am also indebted to all the review-
ers who read the second edition, including Agustin Treceno, Basheeruddin Ahmed,
Gavin Whyte, George Girton, Gregor Zurowski, Hardy Ferentschik, Hernan Garcia,
Jeet Marwah, Johan Mattisson, Jonathan Thoms, Julia Varigina, Jurgen Hoffmann,
Mike Frey, Phlippie Smith, Scott Lyons, and Steve Johnson. Special thanks go to Wouter
Thielen for his work on chapter 10, technical editor Mihalis Tsoukalos, who devoted

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

many hours to whipping the second edition into shape, and to Doug Warren for his
thorough technical review of the second edition shortly before it went to press.

My amazing wife, Dominika, offered her patience and support, through the writing
of both editions of this book, and to my wonderful son, Oliver, just for being awesome.

KYLE BANKER

http://www.it-ebooks.info/

about this book

This book is for application developers and DBAs wanting to learn MongoDB from the
ground up. If you’re new to MongoDB, you’ll find in this book a tutorial that moves at
a comfortable pace. If you’re already a user, the more detailed reference sections in
the book will come in handy and should fill any gaps in your knowledge. In terms of
depth, the material should be suitable for all but the most advanced users. Although
the book is about the latest MongoDB version, which at the time of writing is 3.0.x, it
also covers the previous stable MongoDB version that is 2.6.

The code examples are written in JavaScript, the language of the MongoDB shell,
and Ruby, a popular scripting language. Every effort has been made to provide simple
but useful examples, and only the plainest features of the JavaScript and Ruby lan-
guages are used. The main goal is to present the MongoDB API in the most accessible
way possible. If you have experience with other programming languages, you should
find the examples easy to follow.

One more note about languages. If you’re wondering, “Why couldn’t this book use
language X?” you can take heart. The officially supported MongoDB drivers feature
consistent and analogous APIs. This means that once you learn the basic API for one
driver, you can pick up the others fairly easily.

How to use this book

This book is part tutorial, part reference. If you’re brand-new to MongoDB, then read-
ing through the book in order makes a lot of sense. There are numerous code exam-
ples that you can run on your own to help solidify the concepts. At minimum, you’ll

http://www.it-ebooks.info/

xxii

ABOUT THIS BOOK

need to install MongoDB and optionally the Ruby driver. Instructions for these instal-
lations can be found in appendix A.

If you’ve already used MongoDB, then you may be more interested in particular
topics. Chapters 8 to 13 and all of the appendixes stand on their own and can safely be
read in any order. Additionally, chapters 4 to 7 contain the so-called “nuts and bolts”
sections, which focus on fundamentals. These also can be read outside the flow of the
surrounding text.

Roadmap

This book is divided into three parts.

Part 1 is an end-to-end introduction to MongoDB. Chapter 1 gives an overview of
MongoDB’s history, features, and use cases. Chapter 2 teaches the database’s core con-
cepts through a tutorial on the MongoDB command shell. Chapter 3 walks through
the design of a simple application that uses MongoDB on the back end.

Part 2 is an elaboration on the MongoDB API presented in part 1. With a specific
focus on application development, the four chapters in part 2 progressively describe a
schema and its operations for an e-commerce app. Chapter 4 delves into documents,
the smallest unit of data in MongoDB, and puts forth a basic e-commerce schema
design. Chapters 5, 6, and 7 then teach you how to work with this schema by covering
queries and updates. To augment the presentation, each of the chapters in part 2 con-
tains a detailed breakdown of its subject matter.

Part 3 focuses on MongoDB mastery. Chapter 8 is a thorough study of indexing
and query optimization. The subject of Chapter 9 is text searching inside MongoDB.
Chapter 10, which is totally new in this edition, is about the WiredTiger storage engine
and pluggable storage, which are unique features of MongoDB v3. Chapter 11 concen-
trates on replication, with strategies for deploying MongoDB for high availability and
read scaling. Chapter 12 describes sharding, MongoDB’s path to horizontal scalability.
And chapter 13 provides a series of best practices for deploying, administering, and
troubleshooting MongoDB installations.

The book ends with three appendixes. Appendix A covers installation of MongoDB
and Ruby (for the driver examples) on Linux, Mac OS X, and Windows. Appendix B
presents a series of schema and application design patterns, and it also includes a list
of anti-patterns. Appendix C shows how to work with binary data in MongoDB and
how to use GridFS, a spec implemented by all the drivers, to store especially large files
in the database.

Code conventions and downloads

All source code in the listings and in the text is presented in a fixed-width font,
which separates it from ordinary text.

Code annotations accompany some of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow in the text.

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii

As an open source project, 10gen keeps MongoDB’s bug tracker open to the com-
munity at large. At several points in the book, particularly in the footnotes, you’ll see
references to bug reports and planned improvements. For example, the ticket for
adding full-text search to the database is SERVER-380. To view the status of any such
ticket, point your browser to http://jira.mongodb.org, and enter the ticket ID in the
search box.

You can download the book’s source code, with some sample data, from the book’s
site at http://mongodb-book.com as well as from the publisher’s website at http://
manning.com/MongoDBinAction.

Software requirements

To get the most out of this book, you’ll need to have MongoDB installed on your sys-
tem. Instructions for installing MongoDB can be found in appendix A and also on the
official MongoDB website (http://mongodb.org).

If you want to run the Ruby driver examples, you’ll also need to install Ruby. Again,
consult appendix A for instructions on this.

Author Online

The purchase of MongoDB in Action, Second Edition includes free access to a private
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and other users. To access
and subscribe to the forum, point your browser to www.manning.com/MongoDBin-
Action. This page provides information on how to get on the forum once you are reg-
istered, what kind of help is available, and the rules of conduct in the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking him some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://jira.mongodb.org
http://manning.com/MongoDBinAction
http://manning.com/MongoDBinAction
http://mongodb.org
www.manning.com/MongoDBinAction
www.manning.com/MongoDBinAction
http://mongodb-book.com
http://mongodb-book.com
http://www.it-ebooks.info/

about the cover illustration

The figure on the cover of MongoDB in Action is captioned “Le Bourginion,” or a res-
ident of the Burgundy region in northeastern France. The illustration is taken from a
nineteenth-century collection of works by many artists, edited by Louis Curmer and
published in Paris in 1841. The title of the collection is Les Francais peints par eux-
mémes, which translates as The French People Painted by Themselves. Each illustration is
finely drawn and colored by hand, and the rich variety of drawings in the collection
reminds us vividly of how culturally apart the world’s regions, towns, villages, and
neighborhoods were just 200 years ago. Isolated from each other, people spoke differ-
ent dialects and languages. In the streets or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.

XXiv

http://www.it-ebooks.info/

Part 1

Getting started

Part 1 of this book provides a broad, practical introduction to MongoDB. It
also introduces the JavaScript shell and the Ruby driver, both of which are used
in examples throughout the book.

We’ve written this book with developers in mind, but it should be useful even
if you're a casual user of MongoDB. Some programming experience will prove
helpful in understanding the examples, though we focus most on MongoDB
itself. If you’ve worked with relational databases in the past, great! We compare
these to MongoDB often.

MongoDB version 3.0.x is the most recent MongoDB version at the time of
writing, but most of the discussion applies to previous versions of MongoDB
(and presumably later versions). We usually mention it when a particular feature
wasn’t available in previous versions.

You’ll use JavaScript for most examples because MongoDB’s JavaScript shell
makes it easy for you to experiment with these queries. Ruby is a popular lan-
guage among MongoDB users, and our examples show how the use of Ruby in
real-world applications can take advantage of MongoDB. Rest assured, even if
you’re not a Ruby developer you can access MongoDB in much the same way as
in other languages.

In chapter 1, you’ll look at MongoDB’s history, design goals, and application
use cases. You’ll also see what makes MongoDB unique as you compare it with
other databases emerging in the “NoSQL” space.

In chapter 2, you’ll become conversant in the language of MongoDB’s shell.
You’ll learn the basics of MongoDB’s query language, and you’ll practice by

http://www.it-ebooks.info/

PART 1 Getting started

creating, querying, updating, and deleting documents. The chapter also features some
advanced shell tricks and MongoDB commands.

Chapter 3 introduces the MongoDB drivers and MongoDB’s data format, BSON.
Here you’ll learn how to talk to the database through the Ruby programming lan-
guage, and you’ll build a simple application in Ruby demonstrating MongoDB’s flexi-
bility and query power.

To get the most out of this book, follow along and try out the examples. If you don’t
have MongoDB installed yet, appendix A can help you get it running on your machine.

http://www.it-ebooks.info/

A database
Jor the modern web

This chapter covers

® MongoDB'’s history, design goals, and key
features

m A brief introduction to the shell and drivers
m Use cases and limitations
®m Recent changes in MongoDB

If you’ve built web applications in recent years, you’ve probably used a relational
database as the primary data store. If you're familiar with SQL, you might appreci-
ate the usefulness of a well-normalized! data model, the necessity of transactions,
and the assurances provided by a durable storage engine. Simply put, the relational
database is mature and well-known. When developers start advocating alternative
datastores, questions about the viability and utility of these new technologies
arise. Are these new datastores replacements for relational database systems?
Who'’s using them in production, and why? What trade-offs are involved in moving

! When we mention normalization we’re usually talking about reducing redundancy when you store data.
For example, in a SQL database you can split parts of your data, such as users and orders, into their own
tables to reduce redundant storage of usernames.

http://www.it-ebooks.info/

CHAPTER 1 A database for the modern web

to a nonrelational database? The answers to those questions rest on the answer to this
one: why are developers interested in MongoDB?

MongoDB is a database management system designed to rapidly develop web appli-
cations and internet infrastructure. The data model and persistence strategies are
built for high read-and-write throughput and the ability to scale easily with automatic
failover. Whether an application requires just one database node or dozens of them,
MongoDB can provide surprisingly good performance. If you’ve experienced difficul-
ties scaling relational databases, this may be great news. But not everyone needs to
operate at scale. Maybe all you’ve ever needed is a single database server. Why would
you use MongoDB?

Perhaps the biggest reason developers use MongoDB isn’t because of its scaling
strategy, but because of its intuitive data model. MongoDB stores its information in
documents rather than rows. What’s a document? Here’s an example:

{
_id: 10,
username: 'peter',
email: 'pbbakkume@gmail.com'

This is a pretty simple document; it’s storing a few fields of information about a user
(he sounds cool). What'’s the advantage of this model? Consider the case where you’d
like to store multiple emails for each user. In the relational world, you might create a
separate table of email addresses and the users to which they’re associated. MongoDB
gives you another way to store these:

{
_id: 10,
username: 'peter',
email: [
'pbbakkum@gmail .com',
'pbb7cevirginia.edu’

And just like that, you’ve created an array of email addresses and solved your problem.
As a developer, you’'ll find it extremely useful to be able to store a structured docu-
ment like this in your database without worrying about fitting a schema or adding
more tables when your data changes.

MongoDB’s document format is based on JSON, a popular scheme for storing arbi-
trary data structures. JSON is an acronym for JavaScript Object Notation. As you just saw,
JSON structures consist of keys and values, and they can nest arbitrarily deep. They’re
analogous to the dictionaries and hash maps of other programming languages.

A document-based data model can represent rich, hierarchical data structures. It’s
often possible to do without the multitable joins common to relational databases.
For example, suppose you’re modeling products for an e-commerce site. With a fully

http://www.it-ebooks.info/

11

Built for the internet 5

normalized relational data model, the information for any one product might be
divided among dozens of tables. If you want to get a product representation from the
database shell, you’ll need to write a SQL query full of joins.

With a document model, by contrast, most of a product’s information can be rep-
resented within a single document. When you open the MongoDB JavaScript shell,
you can easily get a comprehensible representation of your product with all its infor-
mation hierarchically organized in a JSON-like structure. You can also query for it and
manipulate it. MongoDB’s query capabilities are designed specifically for manipulat-
ing structured documents, so users switching from relational databases experience a
similar level of query power. In addition, most developers now work with object-oriented
languages, and they want a data store that better maps to objects. With MongoDB, an
object defined in the programming language can often be persisted as is, removing
some of the complexity of object mappers. If you’re experienced with relational data-
bases, it can be helpful to approach MongoDB from the perspective of transitioning
your existing skills into this new database.

If the distinction between a tabular and object representation of data is new to you,
you probably have a lot of questions. Rest assured that by the end of this chapter you’ll
have a thorough overview of MongoDB’s features and design goals. You’ll learn the
history of MongoDB and take a tour of the database’s main features. Next, you'll
explore some alternative database solutions in the NoSQL? category and see how
MongoDB fits in. Finally, you’ll learn where MongoDB works best and where an alter-
native datastore might be preferable given some of MongoDB’s limitations.

MongoDB has been criticized on several fronts, sometimes fairly and sometimes
unfairly. Our view is that it’s a tool in the developer’s toolbox, like any other database,
and you should know its limitations and strengths. Some workloads demand relational
joins and different memory management than MongoDB provides. On the other
hand, the document-based model fits particularly well with some workloads, and the
lack of a schema means that MongoDB can be one of the best tools for quickly devel-
oping and iterating on an application. Our goal is to give you the information you
need to decide if MongoDB is right for you and explain how to use it effectively.

Built for the internet

The history of MongoDB is brief but worth recounting, for it was born out of a much
more ambitious project. In mid-2007, a startup in New York City called 10gen began
work on a platform-as-a-service (PaaS), composed of an application server and a data-
base, that would host web applications and scale them as needed. Like Google’s App
Engine, 10gen’s platform was designed to handle the scaling and management of
hardware and software infrastructure automatically, freeing developers to focus solely
on their application code. 10gen ultimately discovered that most developers didn’t
feel comfortable giving up so much control over their technology stacks, but users did

2 The umbrella term NoSQL was coined in 2009 to lump together the many nonrelational databases gaining
in popularity at the time, one of their commonalities being that they use a query language other than SQL.

http://www.it-ebooks.info/

1.2

1.2.1

CHAPTER 1 A database for the modern web

want 10gen’s new database technology. This led 10gen to concentrate its efforts solely
on the database that became MongoDB.

10gen has since changed its name to MongoDB, Inc. and continues to sponsor the
database’s development as an open source project. The code is publicly available and
free to modify and use, subject to the terms of its license, and the community at large
is encouraged to file bug reports and submit patches. Still, most of MongoDB’s core
developers are either founders or employees of MongoDB, Inc., and the project’s
roadmap continues to be determined by the needs of its user community and the
overarching goal of creating a database that combines the best features of relational
databases and distributed key-value stores. Thus, MongoDB, Inc.’s business model isn’t
unlike that of other well-known open source companies: support the development of
an open source product and provide subscription services to end users.

The most important thing to remember from its history is that MongoDB was
intended to be an extremely simple, yet flexible, part of a web-application stack. These
kinds of use cases have driven the choices made in MongoDB’s development and help
explain its features.

MongoDB’s key features

A database is defined in large part by its data model. In this section, you’ll look at the
document data model, and then you’ll see the features of MongoDB that allow you to
operate effectively on that model. This section also explores operations, focusing on
MongoDB’s flavor of replication and its strategy for scaling horizontally.

Document data model

MongoDB’s data model is document-oriented. If you're not familiar with documents
in the context of databases, the concept can be most easily demonstrated by an exam-
ple. A JSON document needs double quotes everywhere except for numeric values.
The following listing shows the JavaScript version of a [SON document where double
quotes aren’t necessary.

Listing 1.1 A document representing an entry on a social news site

{
_id: ObjectID('4bd9e8el7cefd644108961bb'), 47 id ﬁeld,
title: 'Adventures in Databases', =
url: 'http://example.com/databases.txt',
author: 'msmith',
vote count: 20,

primary key

tags: ['databases', 'mongodb', 'indexing'], Tagssuwed
image: { , as array of
url: 'http://example.com/db.jpg', strings
caption: 'A database.',
type: 'jpg',

Attribute pointing to

size: 75381,
another document

data: 'Binary'

http://www.it-ebooks.info/

MongoDB’s key features 7

comments: [Comments stored

{ as array of

user: 'bjones', . comment objects
text: 'Interesting article.'

b
{

user: 'sverch',
text: 'Color me skeptical!'’

This listing shows a JSON document representing an article on a social news site (think
Reddit or Twitter). As you can see, a document is essentially a set of property names and
their values. The values can be simple data types, such as strings, numbers, and dates. But
these values can also be arrays and even other JSON documents @. These latter constructs
permit documents to represent a variety of rich data structures. You’ll see that the sample
document has a property, tags @), which stores the article’s tags in an array. But even
more interesting is the comments property @, which is an array of comment documents.

Internally, MongoDB stores documents in a format called Binary JSON, or BSON. BSON
has a similar structure but is intended for storing many documents. When you query
MongoDB and get results back, these will be translated into an easy-to-read data structure.
The MongoDB shell uses JavaScript and gets documents in JSON, which is what we’ll use
for most of our examples. We’ll discuss the BSON format extensively in later chapters.

Where relational databases have tables, MongoDB has collections. In other words,
MySQL (a popular relational database) keeps its data in tables of rows, while MongoDB
keepsits data in collections of documents, which you can think of as a group of documents.
Collections are an important concept in MongoDB. The data in a collection is stored to
disk, and most queries require you to specify which collection you’d like to target.

Let’s take a moment to compare MongoDB collections to a standard relational
database representation of the same data. Figure 1.1 shows a likely relational analog.
Because tables are essentially flat, representing the various one-to-many relationships in
your post document requires multiple tables. You start with a posts table containing the
core information for each post. Then you create three other tables, each of which
includes a field, post_id, referencing the original post. The technique of separating an
object’s data into multiple tables like this is known as normalization. A normalized data
set, among other things, ensures that each unit of data is represented in one place only.

But strict normalization isn’t without its costs. Notably, some assembly is required.
To display the post you just referenced, you’ll need to perform a join between the post
and comments tables. Ultimately, the question of whether strict normalization is
required depends on the kind of data you’re modeling, and chapter 4 will have much
more to say about the topic. What’s important to note here is that a document-oriented
data model naturally represents data in an aggregate form, allowing you to work with
an object holistically: all the data representing a post, from comments to tags, can be
fitted into a single database object.

http://www.it-ebooks.info/

CHAPTER 1 A database for the modern web

posts
id int (11)
author id int (11)
title varchar (255)
url text *
vote count smallint (5)
post_tags
id int(11)
post id int (11)
tag_id int (11)
3
comments
id int (11)
—O<] post_id int (11)
user_id int (11)
text text
T
images tags
id int (11) id int (11)
post_id int (11) text varchar (255)
caption int (11)
type varchar (255)
size mediumint (8)
location varchar (255)

Figure 1.1 A basic relational data model for entries on a social news site. The line
terminator that looks like a cross represents a one-to-one relationship, so there’s only
one row from the images table associated with a row from the posts table. The line
terminator that branches apart represents a one-to-many relationship, so there can be
many rows in the comments table associated with a row from the posts table.

You’ve probably noticed that in addition to providing a richness of structure, docu-
ments needn’t conform to a prespecified schema. With a relational database, you
store rows in a table. Each table has a strictly defined schema specifying which col-
umns and types are permitted. If any row in a table needs an extra field, you have to
alter the table explicitly. MongoDB groups documents into collections, containers that
don’t impose any sort of schema. In theory, each document in a collection can have a
completely different structure; in practice, a collection’s document will be relatively
uniform. For instance, every document in the posts collection will have fields for the
title, tags, comments, and so forth.

SCHEMA-LESS MODEL ADVANTAGES
This lack of imposed schema confers some advantages. First, your application code,
and not the database, enforces the data’s structure. This can speed up initial applica-
tion development when the schema is changing frequently.

Second, and more significantly, a schema-less model allows you to represent data
with truly variable properties. For example, imagine you’re building an e-commerce

http://www.it-ebooks.info/

MongoDB’s key features

catalog_product_entity

entity_id

entity type id
attribute set id
type_id

int (11)
int (5)
int (5)

varchar (32)

sku ivarchar (64)
catalog_product_entity datetime
value_id int (11)
entity type id smallint (5)
attribute id smallint (5)
store_id smallint (5)
entity id int (10)
value datetime
catalog product entity decimal
value id int (11)
entity type id smallint (5)
attribute id smallint (5)
0 store id smallint (5)
entity id int (10)
value decimal (12, 4)
catalog_product_entity int
value_ id int (11)
entity type id smallint (5)
attribute id smallint (5)
—©°S store_id smallint (5)
entity id int (10)
value int (11)
catalog product entity text
value_id int (11)
entity type id smallint (5)
attribute id smallint (5)
95 store id smallint (5)
entity id int (10)
value text
catalog_product_entity varchar
value id int (11)
entity type id smallint (5)
attribute id smallint (5)
: store id smallint (5)
entity id int (10)
value varchar (255)

Figure 1.2 A portion of the
schema for an e-commerce
application. These tables
facilitate dynamic attribute
creation for products.

product catalog. There’s no way of knowing in advance what attributes a product will
have, so the application will need to account for that variability. The traditional way of
handling this in a fixed-schema database is to use the entity-attribute-value pattern,?
shown in figure 1.2.

% For more information see http://en.wikipedia.org/wiki/Entity-attribute-value_model.

http://en.wikipedia.org/wiki/Entity-attribute-value_model
http://www.it-ebooks.info/

10

1.2.2

1.2.3

CHAPTER 1 A database for the modern web

What you’re seeing is one section of the data model for an e-commerce frame-
work. Note the series of tables that are all essentially the same, except for a single attri-
bute, value, that varies only by data type. This structure allows an administrator to
define additional product types and their attributes, but the result is significant com-
plexity. Think about firing up the MySQL shell to examine or update a product mod-
eled in this way; the SQL joins required to assemble the product would be enormously
complex. Modeled as a document, no join is required, and new attributes can be
added dynamically. Not all relational models are this complex, but the point is that
when you’re developing a MongoDB application you don’t need to worry as much
about what data fields you’ll need in the future.

Ad hoc queries

To say that a system supports ad hoc queries is to say that it isn’t necessary to define in
advance what sorts of queries the system will accept. Relational databases have this
property; they’ll faithfully execute any wellformed SQL query with any number of
conditions. Ad hoc queries are easy to take for granted if the only databases you’ve
ever used have been relational. But not all databases support dynamic queries. For
instance, key-value stores are queryable on one axis only: the value’s key. Like many
other systems, key-value stores sacrifice rich query power in exchange for a simple
scalability model. One of MongoDB’s design goals is to preserve most of the query
power that’s been so fundamental to the relational database world.

To see how MongoDB’s query language works, let’s take a simple example involv-
ing posts and comments. Suppose you want to find all posts tagged with the term poli-
tics having more than 10 votes. A SQL query would look like this:

SELECT * FROM posts
INNER JOIN posts tags ON posts.id = posts_tags.post id
INNER JOIN tags ON posts_tags.tag id == tags.id
WHERE tags.text = 'politics' AND posts.vote count > 10;

The equivalent query in MongoDB is specified using a document as a matcher. The
special sgt key indicates the greater-than condition:

db.posts.find({'tags': 'politics', 'vote count': {'$gt': 10}});

Note that the two queries assume a different data model. The SQL query relies on a
strictly normalized model, where posts and tags are stored in distinct tables, whereas
the MongoDB query assumes that tags are stored within each post document. But both
queries demonstrate an ability to query on arbitrary combinations of attributes, which
is the essence of ad hoc query ability.

Indexes

A critical element of ad hoc queries is that they search for values that you don’t
know when you create the database. As you add more and more documents to your

http://www.it-ebooks.info/

124

MongoDB’s key features 11

database, searching for a value becomes increasingly expensive; it’s a needle in an
ever-expanding haystack. Thus, you need a way to efficiently search through your data.
The solution to this is an index.

The best way to understand database indexes is by analogy: many books have
indexes matching keywords to page numbers. Suppose you have a cookbook and want
to find all recipes calling for pears (maybe you have a lot of pears and don’t want them
to go bad). The time-consuming approach would be to page through every recipe,
checking each ingredient list for pears. Most people would prefer to check the book’s
index for the pears entry, which would give a list of all the recipes containing pears.
Database indexes are data structures that provide this same service.

Indexes in MongoDB are implemented as a B-tree data structure. B-tree indexes,
also used in many relational databases, are optimized for a variety of queries, includ-
ing range scans and queries with sort clauses. But WiredTiger has support for log-
structured merge-trees (LSM) that’s expected to be available in the MongoDB 3.2 pro-
duction release.

Most databases give each document or row a primary key, a unique identifier for
that datum. The primary key is generally indexed automatically so that each datum
can be efficiently accessed using its unique key, and MongoDB is no different. But not
every database allows you to also index the data inside that row or document. These
are called secondary indexes. Many NoSQL databases, such as HBase, are considered key-
value stores because they don’t allow any secondary indexes. This is a significant feature
in MongoDB; by permitting multiple secondary indexes MongoDB allows users to opti-
mize for a wide variety of queries.

With MongoDB, you can create up to 64 indexes per collection. The kinds of
indexes supported include all the ones you’d find in an RDMBS; ascending, descend-
* are supported.
Because MongoDB and most RDBMSs use the same data structure for their indexes,

ing, unique, compound-key, hashed, text, and even geospatial indexes

advice for managing indexes in both of these systems is similar. You’ll begin looking at
indexes in the next chapter, and because an understanding of indexing is so crucial to
efficiently operating a database, chapter 8 is devoted to the topic.

Replication

MongoDB provides database replication via a topology known as a replica set. Replica
sets distribute data across two or more machines for redundancy and automate
failover in the event of server and network outages. Additionally, replication is used
to scale database reads. If you have a read-intensive application, as is commonly the
case on the web, it’s possible to spread database reads across machines in the replica
set cluster.

* Geospatial indexes allow you to efficiently query for latitude and longitude points; they’re discussed later in
this book.

http://www.it-ebooks.info/

12

1.25

CHAPTER 1 A database for the modern web

Replica sets consist of many MongoDB servers, usu-
ally with each server on a separate physical machine;
we’ll call these nodes. At any given time, one node
serves as the replica set primary node and one or more
nodes serve as secondaries. Like the master-slave repli-
cation that you may be familiar with from other data-
bases, a replica set’s primary node can accept both
reads and writes, but the secondary nodes are read-
only. What makes replica sets unique is their support
for automated failover: if the primary node fails, the
cluster will pick a secondary node and automatically
promote it to primary. When the former primary
comes back online, it'll do so as a secondary. An illus-
tration of this process is provided in figure 1.3.

Replication is one of MongoDB’s most useful fea-
tures and we’ll cover it in depth later in the book.

Speed and durability

To understand MongoDB’s approach to durability, it
pays to consider a few ideas first. In the realm of
database systems there exists an inverse relationship
between write speed and durability. Write speed can be
understood as the volume of inserts, updates, and
deletes that a database can process in a given time
frame. Durability refers to level of assurance that these
write operations have been made permanent.

For instance, suppose you write 100 records of 50
KB each to a database and then immediately cut the
power on the server. Will those records be recoverable
when you bring the machine back online? The answer
depends on your database system, its configuration,
and the hardware hosting it. Most databases enable
good durability by default, so you're safe if this hap-
pens. For some applications, like storing log lines, it

1. Aworking replica set

Secondary

Secondary

Primary

2. Original primary node fails and
a secondary is promoted to primary.

Secondary Primary

3. Original primary comes
back online as a secondary.

Secondary Primary

Secondary

Figure 1.3 Automated failover
with a replica set

might make more sense to have faster writes, even if you risk data loss. The problem is

that writing to a magnetic hard drive is orders of magnitude slower than writing to
RAM. Certain databases, such as Memcached, write exclusively to RAM, which makes
them extremely fast but completely volatile. On the other hand, few databases write
exclusively to disk because the low performance of such an operation is unacceptable.

Therefore, database designers often need to make compromises to provide the best

balance of speed and durability.

http://www.it-ebooks.info/

MongoDB’s key features 13

Transaction logging

One compromise between speed and durability can be seen in MySQL’s InnoDB.
InnoDB is a transactional storage engine, which by definition must guarantee durabil-
ity. It accomplishes this by writing its updates in two places: once to a transaction
log and again to an in-memory buffer pool. The transaction log is synced to disk imme-
diately, whereas the buffer pool is only eventually synced by a background thread. The
reason for this dual write is because generally speaking, random |/0 is much slower
than sequential |/0. Because writes to the main data files constitute random 1/0, it’s
faster to write these changes to RAM first, allowing the sync to disk to happen later.
But some sort of write to disk is necessary to guarantee durability and it’s important
that the write be sequential, and thus fast; this is what the transaction log provides.
In the event of an unclean shutdown, InnoDB can replay its transaction log and
update the main data files accordingly. This provides an acceptable level of perfor-
mance while guaranteeing a high level of durability.

In MongoDB’s case, users control the speed and durability trade-off by choosing write
semantics and deciding whether to enable journaling. Journaling is enabled by
default since MongoDB v2.0. In the drivers released after November 2012 MongoDB
safely guarantees that a write has been written to RAM before returning to the user,
though this characteristic is configurable. You can configure MongoDB to fire-and-forget,
sending off a write to the server without waiting for an acknowledgment. You can also
configure MongoDB to guarantee that a write has gone to multiple replicas before
considering it committed. For high-volume, low-value data (like clickstreams and
logs), fire-and-forget-style writes can be ideal. For important data, a safe mode setting
is necessary. It’s important to know that in MongoDB versions older than 2.0, the
unsafe fire-and-forget strategy was set as the default, because when 10gen started the
development of MongoDB, it was focusing solely on that data tier and it was believed
that the application tier would handle such errors. But as MongoDB was used for more
and more use cases and not solely for the web tier, it was deemed that it was too unsafe
for any data you didn’t want to lose.

Since MongoDB v2.0, journaling is enabled by default. With journaling, every write
is flushed to the journal file every 100 ms. If the server is ever shut down uncleanly
(say, in a power outage), the journal will be used to ensure that MongoDB’s data files
are restored to a consistent state when you restart the server. This is the safest way to
run MongoDB.

It’s possible to run the server without journaling as a way of increasing perfor-
mance for some write loads. The downside is that the data files may be corrupted after
an unclean shutdown. As a consequence, anyone planning to disable journaling should
run with replication, preferably to a second datacenter, to increase the likelihood that
a pristine copy of the data will still exist even if there’s a failure.

MongoDB was designed to give you options in the speed-durability tradeoff, but we
highly recommend safe settings for essential data. The topics of replication and dura-
bility are vast; you’ll see a detailed exploration of them in chapter 11.

http://www.it-ebooks.info/

14

1.2.6

CHAPTER 1 A database for the modern web

Scaling

The easiest way to scale most databases is to upgrade the hardware. If your application
is running on a single node, it’s usually possible to add some combination of faster
disks, more memory, and a beefier CPU to ease any database bottlenecks. The tech-
nique of augmenting a single node’s hardware for scale is known as vertical scaling, or
scaling up. Vertical scaling has the advantages of being simple, reliable, and cost-effective
up to a certain point, but eventually you reach a point where it’s no longer feasible to
move to a better machine.

It then makes sense to consider scaling horizontally, or scaling out (see figure 1.4).
Instead of beefing up a single node, scaling horizontally means distributing the data-
base across multiple machines. A horizontally scaled architecture can run on many
smaller, less expensive machines, often reducing your hosting costs. What’s more, the
distribution of data across machines mitigates the consequences of failure. Machines
will unavoidably fail from time to time. If you've scaled vertically and the machine
fails, then you need to deal with the failure of a machine on which most of your system
depends. This may not be an issue if a copy of the data exists on a replicated slave, but
it’s still the case that only a single server need fail to bring down the entire system.
Contrast that with failure inside a horizontally scaled architecture. This may be less
catastrophic because a single machine represents a much smaller percentage of the
system as a whole.

MongoDB was designed to make horizontal scaling manageable. It does so via a
range-based partitioning mechanism, known as sharding, which automatically manages

Original database 68 GB of RAM

1690 GB of storage

Scaling up increases the Scaling out adds more
capacity of a single machine. machines of similar size.

—
—

_//

5000 GB of storage

68 GB of RAM 68 GB of RAM 68 GB of RAM
1690 GB of storage 1690 GB of storage 1690 GB of storage

200 GB of RAM

Figure 1.4 Horizontal versus vertical scaling

http://www.it-ebooks.info/

1.3

MongoDB’s core server and tools 15

the distribution of data across nodes. There’s also a hash- and tag-based sharding
mechanism, but it’s just another form of the range-based sharding mechanism.

The sharding system handles the addition of shard nodes, and it also facilitates
automatic failover. Individual shards are made up of a replica set consisting of at least
two nodes, ensuring automatic recovery with no single point of failure. All this means
that no application code has to handle these logistics; your application code commu-
nicates with a sharded cluster just as it speaks to a single node. Chapter 12 explores
sharding in detail.

You’ve seen a lot of MongoDB’s most compelling features; in chapter 2, you’ll begin
to see how some of them work in practice. But at this point, let’s take a more pragmatic
look at the database. In the next section, you’ll look at MongoDB in its environment, the
tools that ship with the core server, and a few ways of getting data in and out.

MongoDB'’s core server and tools

MongoDB is written in C++ and actively developed by MongoDB, Inc. The project
compiles on all major operating systems, including Mac OS X, Windows, Solaris, and
most flavors of Linux. Precompiled binaries are available for each of these platforms
at http://mongodb.org. MongoDB is open source and licensed under the GNU-Affero
General Public License (AGPL). The source code is freely available on GitHub, and
contributions from the community are frequently accepted. But the project is guided
by the MongoDB, Inc. core server team, and the overwhelming majority of commits
come from this group.

About the GNU-AGPL

The GNU-AGPL is the subject of some controversy. In practice, this licensing means
that the source code is freely available and that contributions from the community
are encouraged. But GNU-AGPL requires that any modifications made to the source
code must be published publicly for the benefit of the community. This can be a con-
cern for companies that want to modify MongoDB but don’t want to publish these
changes to others. For companies wanting to safeguard their core server enhance-
ments, MongoDB, Inc. provides special commercial licenses.

MongoDB v1.0 was released in November 2009. Major releases appear approximately
once every three months, with even point numbers for stable branches and odd num-
bers for development. As of this writing, the latest stable release is v3.0.°

What follows is an overview of the components that ship with MongoDB along with
a high-level description of the tools and language drivers for developing applications
with the database.

5 You should always use the latest stable point release; for example, v3.0.6. Check out the complete installation
instructions in appendix A.

http://mongodb.org
http://www.it-ebooks.info/

16 CHAPTER 1 A database for the modern web

1.3.1 Core server

The core database server runs via an executable called mongod (mongodb.exe on Win-
dows). The mongod server process receives commands over a network socket using a
custom binary protocol. All the data files for a mongod process are stored by default in
/data/db on Unix-like systems and in c\data\db on Windows. Some of the examples
in this text may be more Linux-oriented. Most of our MongoDB production servers
are run on Linux because of its reliability, wide adoption, and excellent tools.

mongod can be run in several modes, such as a standalone server or a member of a
replica set. Replication is recommended when you’re running MongoDB in produc-
tion, and you generally see replica set configurations consisting of two replicas plus a
mongod running in arbiter mode. When you use MongoDB’s sharding feature, you’ll
also run mongod in config server mode. Finally, a separate routing server exists called
mongos, which is used to send requests to the appropriate shard in this kind of setup.
Don’t worry too much about all these options yet; we’ll describe each in detail in the
replication (11) and sharding (12) chapters.

Configuring a mongod process is relatively simple; it can be accomplished both with
command-line arguments and with a text configuration file. Some common configu-
rations to change are setting the port that mongod listens on and setting the directory
where it stores its data. To see these configurations, you can run mongod --help.

1.3.2 JavaScript shell

The MongoDB command shell is a JavaScript®based tool for administering the data-
base and manipulating data. The mongo executable loads the shell and connects to a
specified mongod process, or one running locally by default. The shell was developed
to be similar to the MySQL shell; the biggest differences are that it’s based on Java-
Script and SQL isn’t used. For instance, you can pick your database and then insert a
simple document into the users collection like this:

> use my_database
> db.users.insert ({name: "Kyle"})

The first command, indicating which database you want to use, will be familiar to
users of MySQL. The second command is a JavaScript expression that inserts a simple
document. To see the results of your insert, you can issue a simple query:

> db.users.find()
{ id: ObjectId("4ba667b0a90578631c9caeald"), name: "Kyle" }

5 If you'd like an introduction or refresher to JavaScript, a good resource is http://eloquentjavascript.net.
JavaScript has a syntax similar to languages like C or Java. If you’re familiar with either of those, you should
be able to understand most of the JavaScript examples.

http://eloquentjavascript.net
http://www.it-ebooks.info/

133

MongoDB’s core server and tools 17

The f£ind method returns the inserted document, with an object ID added. All docu-
ments require a primary key stored in the _id field. You're allowed to enter a custom
_id as long as you can guarantee its uniqueness. But if you omit the id altogether, a
MongoDB object ID will be inserted automatically.

In addition to allowing you to insert and query for data, the shell permits you to
run administrative commands. Some examples include viewing the current database
operation, checking the status of replication to a secondary node, and configuring a
collection for sharding. As you’ll see, the MongoDB shell is indeed a powerful tool
that’s worth getting to know well.

All that said, the bulk of your work with MongoDB will be done through an applica-
tion written in a given programming language. To see how that’s done, we must say a
few things about MongoDB’s language drivers.

Database drivers

If the notion of a database driver conjures up nightmares of low-level device hacking,
don’t fret; the MongoDB drivers are easy to use. The driver is the code used in an
application to communicate with a MongoDB server. All drivers have functionality to
query, retrieve results, write data, and run database commands. Every effort has been
made to provide an API that matches the idioms of the given language while also
maintaining relatively uniform interfaces across languages. For instance, all of the
drivers implement similar methods for saving a document to a collection, but the rep-
resentation of the document itself will usually be whatever is most natural to each lan-
guage. In Ruby, that means using a Ruby hash. In Python, a dictionary is appropriate.
And in Java, which lacks any analogous language primitive, you usually represent doc-
uments as a Map object or something similar. Some developers like using an object-
relational mapper to help manage representing their data this way, but in practice, the
MongoDB drivers are complete enough that this isn’t required.

Language drivers

As of this writing, MongoDB, Inc. officially supports drivers for C, C++, C#, Erlang,
Java, Node.js, JavaScript, Perl, PHP, Python, Scala, and Ruby—and the list is always
growing. If you need support for another language, there are probably community-
supported drivers for it, developed by MongoDB users but not officially managed
by MongoDB, Inc., most of which are pretty good. If no community-supported driver
exists for your language, specifications for building a new driver are documented at
http://mongodb.org. Because all of the officially supported drivers are used heavily
in production and provided under the Apache license, plenty of good examples are
freely available for would-be driver authors.

Beginning in chapter 3, we describe how the drivers work and how to use them to
write programs.

http://mongodb.org
http://www.it-ebooks.info/

18

CHAPTER 1 A database for the modern web

1.3.4 Command-line tools

14

MongoDB is bundled with several command-line utilities:

= mongodump and mongorestore—Standard utilities for backing up and restoring

a database. mongodump saves the database’s data in its native BSON format and
thus is best used for backups only; this tool has the advantage of being usable
for hot backups, which can easily be restored with mongorestore.

mongoexport and mongoimport—Export and import JSON, CSV, and TSV’ data;
this is useful if you need your data in widely supported formats. mongoimport
can also be good for initial imports of large data sets, although before importing,
it’s often desirable to adjust the data model to take best advantage of MongoDB.
In such cases, it’s easier to import the data through one of the drivers using a
custom script.

mongosniff—A wire-sniffing tool for viewing operations sent to the database. It
essentially translates the BSON going over the wire to human-readable shell
statements.

mongostat—->Similar to iostat, this utility constantly polls MongoDB and the
system to provide helpful stats, including the number of operations per second
(inserts, queries, updates, deletes, and so on), the amount of virtual memory
allocated, and the number of connections to the server.

mongotop—Similar to top, this utility polls MongoDB and shows the amount of
time it spends reading and writing data in each collection.

mongoperf—Helps you understand the disk operations happening in a running
MongoDB instance.

mongooplog—Shows what’s happening in the MongoDB oplog.
Bsondump—~Converts BSON files into human-readable formats including JSON.
We’ll cover BSON in much more detail in chapter 2.

Why MongoDB?

You’ve seen a few reasons why MongoDB might be a good choice for your projects.
Here, we’ll make this more explicit, first by considering the overall design objectives
of the MongoDB project. According to its creators, MongoDB was designed to combine
the best features of key-value stores and relational databases. Because of their simplic-
ity, key-value stores are extremely fast and relatively easy to scale. Relational databases
are more difficult to scale, at least horizontally, but have a rich data model and a pow-
erful query language. MongoDB is intended to be a compromise between these two
designs, with useful aspects of both. The end goal is for it to be a database that scales
easily, stores rich data structures, and provides sophisticated query mechanisms.

7 CSV stands for Comma-Separated Values, meaning data split into multiple fields, which are separated by com-
mas. This is a popular format for representing tabular data, since column names and many rows of values
can be listed in a readable file. TSV stands for Tab-Separated Values—the same format with tabs used instead

of commas.

http://www.it-ebooks.info/

14.1

Why MongoDB? 19

In terms of use cases, MongoDB is well-suited as a primary datastore for web appli-
cations, analytics and logging applications, and any application requiring a medium-
grade cache. In addition, because it easily stores schema-less data, MongoDB is also
good for capturing data whose structure can’t be known in advance.

The preceding claims are bold. To substantiate them, we’re going to take a broad
look at the varieties of databases currently in use and contrast them with MongoDB.
Next, you'll see some specific MongoDB use cases as well as examples of them in produc-
tion. Then, we’ll discuss some important practical considerations for using MongoDB.

MongoDB versus other databases

The number of available databases has exploded, and weighing one against another
can be difficult. Fortunately, most of these databases fall under one of a few catego-
ries. In table 1.1, and in the sections that follow, we describe simple and sophisticated
key-value stores, relational databases, and document databases, and show how these
compare with MongoDB.

Table 1.1 Database families

Examples

Data model

Scalability model

Use cases

Simple key-value
stores

Sophisticated key-
value stores

Relational data-
bases

Memcached

HBase, Cassan-
dra, Riak KV,
Redis, CouchDB

Oracle Database,
IBM DB2, Micro-
soft SQL Server,
MySQL,
PostgreSQL

Key-value, where
the value is a
binary blob.

Variable. Cassan-
dra uses a key-
value structure
known as a col-
umn. HBase and
Redis store binary
blobs. CouchDB
stores JSON
documents.

Tables.

Variable. Mem-
cached can scale
across nodes,
converting all
available RAM into
a single, mono-
lithic datastore.

Eventually consis-
tent, multinode
distribution for
high availability
and easy failover.

Vertical scaling.
Limited support
for clustering and
manual partition-
ing.

Caching. Web ops.

High-throughput
verticals (activity
feeds, message
queues). Caching.
Web ops.

System requiring
transactions
(banking, finance)
or SQL. Normal-
ized data model.

SIMPLE KEY-VALUE STORES

Simple key-value stores do what their name implies: they index values based on a sup-
plied key. A common use case is caching. For instance, suppose you needed to cache
an HTML page rendered by your app. The key in this case might be the page’s URL,
and the value would be the rendered HTML itself. Note that as far as a key-value store

http://www.it-ebooks.info/

20

CHAPTER 1 A database for the modern web

is concerned, the value is an opaque byte array. There’s no enforced schema, as you’d
find in a relational database, nor is there any concept of data types. This naturally lim-
its the operations permitted by key-value stores: you can insert a new value and then
use its key either to retrieve that value or delete it. Systems with such simplicity are
generally fast and scalable.

The best-known simple key-value store is Memcached, which stores its data in mem-
ory only, so it trades durability for speed. It’s also distributed; Memcached nodes run-
ning across multiple servers can act as a single datastore, eliminating the complexity
of maintaining cache state across machines.

Compared with MongoDB, a simple key-value store like Memcached will often
allow for faster reads and writes. But unlike MongoDB, these systems can rarely act as
primary datastores. Simple key-value stores are best used as adjuncts, either as caching
layers atop a more traditional database or as simple persistence layers for ephemeral
services like job queues.

SOPHISTICATED KEY-VALUE STORES

It’s possible to refine the simple key-value model to handle complicated read/write
schemes or to provide a richer data model. In these cases, you end up with what we’ll
term a sophisticated key-value store. One example is Amazon’s Dynamo, described in
a widely studied white paper titled “Dynamo: Amazon’s Highly Available Key-Value
Store” (http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf). The aim
of Dynamo is to be a database robust enough to continue functioning in the face of
network failures, datacenter outages, and similar disruptions. This requires that the
system always be read from and written to, which essentially requires that data be auto-
matically replicated across multiple nodes. If a node fails, a user of the system—per-
haps in this case a customer with an Amazon shopping cart—won’t experience any
interruptions in service. Dynamo provides ways of resolving the inevitable conflicts
that arise when a system allows the same data to be written to multiple nodes. At the
same time, Dynamo is easily scaled. Because it’s masterless—all nodes are equal—it’s
easy to understand the system as a whole, and nodes can be added easily. Although
Dynamo is a proprietary system, the ideas used to build it have inspired many systems
falling under the NoSQL umbrella, including Cassandra, HBase, and Riak KV.

By looking at who developed these sophisticated key-value stores, and how they’ve
been used in practice, you can see where these systems shine. Let’s take Cassandra,
which implements many of Dynamo’s scaling properties while providing a column-
oriented data model inspired by Google’s BigTable. Cassandra is an open source
version of a datastore built by Fac for its inbox search feature. The system
scales horizontally to index more than 50 TB of inbox data, allowing for searches on
inbox keywords and recipients. Data is indexed by user ID, where each record consists
of an array of search terms for keyword searches and an array of recipient IDs for
recipient searches.”

8 See “Cassandra: A Decentralized Structured Storage System,” at http://mng.bz/5321.

http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://mng.bz/5321
http://www.it-ebooks.info/

Why MongoDB? 21

These sophisticated key-value stores were developed by major internet companies
such as Amazon, Google, and Fac to manage cross-sections of systems with
extraordinarily large amounts of data. In other words, sophisticated key-value stores
manage a relatively self-contained domain that demands significant storage and avail-
ability. Because of their masterless architecture, these systems scale easily with the
addition of nodes. They opt for eventual consistency, which means that reads don’t
necessarily reflect the latest write. But what users get in exchange for weaker consis-
tency is the ability to write in the face of any one node’s failure.

This contrasts with MongoDB, which provides strong consistency, a rich data
model, and secondary indexes. The last two of these attributes go hand in hand; key-
value stores can generally store any data structure in the value, but the database is
unable to query them unless these values can be indexed. You can fetch them with the
primary key, or perhaps scan across all of the keys, but the database is useless for que-
rying these without secondary indexes.

RELATIONAL DATABASES

Much has already been said of relational databases in this introduction, so in the inter-
est of brevity, we need only discuss what RDBMSs (Relational Database Management
Systems) have in common with MongoDB and where they diverge. Popular relational
databases include MySQL, PostgreSQL, Microsoft SQL Server, Oracle Database, IBM
DB2, and so on; some are open-source and some are proprietary. MongoDB and rela-
tional databases are both capable of representing a rich data model. Where relational
databases use fixed-schema tables, MongoDB has schema-free documents. Most rela-
tional databases support secondary indexes and aggregations.

Perhaps the biggest defining feature of relational databases from the user’s per-
spective is the use of SQL as a query language. SQL is a powerful tool for working with
data; it’s not perfect for every job, but in some cases it’s more expressive and easier to
work with than MongoDB’s query language. Additionally, SQL is fairly portable between
databases, though each implementation has its own quirks. One way to think about it
is that SQL may be easier for a data scientist or full-time analyst who writes queries to
explore data. MongoDB’s query language is aimed more at developers, who write a
query once to embed it in their application. Both models have their strengths and
weaknesses, and sometimes it comes down to personal preference.

There are also many relational databases intended for analytics (or as a “data ware-
house”) rather than as an application database. Usually data is imported in bulk to
these platforms and then queried by analysts to answer business-intelligence ques-
tions. This area is dominated by enterprise vendors with HP Vertica or Teradata Data-
base, which both offer horizontally scalable SQL databases.

There is also growing interest in running SQL queries over data stored in
Hadoop. Apache Hive is a widely used tool that translates a SQL query into a Map-
Reduce job, which offers a scalable way of querying large data sets. These queries
use the relational model, but are intended only for slower analytics queries, not for
use inside an application.

http://www.it-ebooks.info/

22 CHAPTER 1 A database for the modern web

DOCUMENT DATABASES

Few databases identify themselves as document databases. As of this writing, the clos-
est open-source database comparable to MongoDB is Apache’s CouchDB. CouchDB’s
document model is similar, although data is stored in plain text as JSON, whereas
MongoDB uses the BSON binary format. Like MongoDB, CouchDB supports secondary
indexes; the difference is that the indexes in CouchDB are defined by writing map-
reduce functions, a process that’s more involved than using the declarative syntax
used by MySQL and MongoDB. They also scale differently. CouchDB doesn’t partition
data across machines; rather, each CouchDB node is a complete replica of every other.

1.4.2 Use cases and production deployments

Let’s be honest. You’re not going to choose a database solely on the basis of its fea-
tures. You need to know that real businesses are using it successfully. Let’s look at a few
broadly defined use cases for MongoDB and some examples of its use in production.’

WEB APPLICATIONS

MongoDB is well-suited as a primary datastore for web applications. Even a simple web
application will require numerous data models for managing users, sessions, app-specific
data, uploads, and permissions, to say nothing of the overarching domain. Just as this
aligns well with the tabular approach provided by relational databases, so too it bene-
fits from MongoDB’s collection and document model. And because documents can
represent rich data structures, the number of collections needed will usually be less
than the number of tables required to model the same data using a fully normalized
relational model. In addition, dynamic queries and secondary indexes allow for the
easy implementation of most queries familiar to SQL developers. Finally, as a web
application grows, MongoDB provides a clear path for scale.

MongoDB can be a useful tool for powering a high-traffic website. This is the case
with The Business Insider (TBI), which has used MongoDB as its primary datastore since
January 2008. TBI is a news site, although it gets substantial traffic, serving more than
a million unique page views per day. What’s interesting in this case is that in addition
to handling the site’s main content (posts, comments, users, and so on), MongoDB
processes and stores real-time analytics data. These analytics are used by TBI to gener-
ate dynamic heat maps indicating click-through rates for the various news stories.

AGILE DEVELOPMENT

Regardless of what you may think about the agile development movement, it’s hard to
deny the desirability of building an application quickly. A number of development
teams, including those from Shutterfly and The New York Times, have chosen
MongoDB in part because they can develop applications much more quickly on it
than on relational databases. One obvious reason for this is that MongoDB has no
fixed schema, so all the time spent committing, communicating, and applying schema
changes is saved.

9 For an up-to-date list of MongoDB production deployments, see http://mng.bz/z2CH.

http://mng.bz/z2CH
http://www.it-ebooks.info/

Why MongoDB? 23

In addition, less time need be spent shoehorning the relational representation of
data into an object-oriented data model or dealing with the vagaries and optimizing
the SQL produced by object-relational mapping (ORM) technology. Thus, MongoDB
often complements projects with shorter development cycles and agile, mid-sized teams.

ANALYTICS AND LOGGING

We alluded earlier to the idea that MongoDB works well for analytics and logging,
and the number of applications using MongoDB for these is growing. Often, a well-
established company will begin its forays into the MongoDB world with special apps
dedicated to analytics. Some of these companies include GitHub, Disqus, Justin.tv,
and Gilt Groupe, among others.

MongoDB’s relevance to analytics derives from its speed and from two key features:
targeted atomic updates and capped collections. Atomic updates let clients efficiently
increment counters and push values onto arrays. Capped collections are useful for
logging because they store only the most recent documents. Storing logging data in a
database, as compared with the filesystem, provides easier organization and greater
query power. Now, instead of using grep or a custom log search utility, users can employ
the MongoDB query language to examine log output.

CACHING

Many web-applications use a layer of caching to help deliver content faster. A data
model that allows for a more holistic representation of objects (it’s easy to shove a doc-
ument into MongoDB without worrying much about the structure), combined with
faster average query speeds, frequently allows MongoDB to be run as a cache with richer
query capabilities, or to do away with the caching layer all together. The Business
Insider, for example, was able to dispense with Memcached, serving page requests
directly from MongoDB.

VARIABLE SCHEMAS

You can get some sample JSON data from https://dev.twitter.com/rest/tools/console,
provided that you know how to use it. After getting the data and saving it as sam-
plejson, you can import it to MongoDB as follows:

$ cat sample.json | mongoimport -c tweets

2015-08-28T11:48:27.584+0300 connected to: localhost
2015-08-28T11:48:27.660+0300 imported 1 document

Here you’re pulling down a small sample of a Twitter stream and piping that directly
into a MongoDB collection. Because the stream produces JSON documents, there’s no
need to alter the data before sending it to the database. The mongoimport tool directly
translates the data to BSON. This means that each tweet is stored with its structure
intact, as a separate document in the collection. This makes it easy to index and query
its content with no need to declare the structure of the data in advance.

If your application needs to consume a JSON API, then having a system that so eas-
ily translates JSON is invaluable. It’s difficult to know the structure of your data before
you store it, and MongoDB’s lack of schema constraints may simplify your data model.

https://dev.twitter.com/rest/tools/console
http://www.it-ebooks.info/

24

15

CHAPTER 1 A database for the modern web

Tips and limitations

For all these good features, it’s worth keeping in mind a system’s trade-offs and limita-
tions. We’d like to note some limitations before you start building a real-world applica-
tion on MongoDB and running it in production. Many of these are consequences of
how MongoDB manages data and moves it between disk and memory in memory-
mapped files.

First, MongoDB should usually be run on 64-bit machines. The processes in a 32-bit
system are only capable of addressing 4 GB of memory. This means that as soon as
your data set, including metadata and storage overhead, hits 4 GB, MongoDB will no
longer be able to store additional data. Most production systems will require more
than this, so a 64-bit system will be necessary.'’

A second consequence of using virtual memory mapping is that memory for the
data will be allocated automatically, as needed. This makes it trickier to run the data-
base in a shared environment. As with database servers in general, MongoDB is best
run on a dedicated server.

Perhaps the most important thing to know about MongoDB’s use of memory-
mapped files is how it affects data sets that exceed the size of available RAM. When you
query such a data set, it often requires a disk access for data that has been swapped out
of memory. The consequence is that many users report excellent MongoDB perfor-
mance until the working set of their data exceeds memory and queries slow signifi-
cantly. This problem isn’t exclusive to MongoDB, but it’s a common pitfall and
something to watch.

A related problem is that the data structures MongoDB uses to store its collections
and documents aren’t terribly efficient from a data-size perspective. For example,
MongoDB stores the document keys in each document. This means that every docu-
ment with a field named ‘username’ will use 8 bytes to store the name of the field.

An oft-cited pain-point with MongoDB from SQL developers is that its query lan-
guage isn’t as familiar or easy as writing SQL queries, and this is certainly true in some
cases. MongoDB has been more explicitly targeted at developers—not analysts—than
most databases. Its philosophy is that a query is something you write once and embed
in your application. As you’ll see, MongoDB queries are generally composed of JSON
objects rather than text strings as in SQL. This makes them simpler to create and parse
programmatically, which can be an important consideration, but may be more diffi-
cult to change for ad-hoc queries. If you’re an analyst who writes queries all day, you’ll
probably prefer working with SQL.

Finally, it’s worth mentioning that although MongoDB is one of the simplest data-
bases to run locally as a single node, there’s a maintenance cost to running a large
cluster. This is true of most distributed databases, but it’s acute with MongoDB because
it requires a cluster of three configuration nodes and handles replication separately

10" 64-bit architectures can theoretically address up to 16 exabytes of memory, which is for all intents and pur-
poses unlimited.

http://www.it-ebooks.info/

1.6

History of MongoDB 25

with sharding. In some databases, such as HBase, data is grouped into shards that can
be replicated on any machine of the cluster. MongoDB instead allows shards of replica
sets, meaning that a piece of data is replicated only within its replica set. Keeping
sharding and replication as separate concepts has certain advantages, but also means
that each must be configured and managed when you set up a MongoDB cluster.
Let’s have a quick look at the other changes that have happened in MongoDB.

History of MongoDB

When the first edition of MongoDB in Action was released, MongoDB 1.8.x was the most
recent stable version, with version 2.0.0 just around the corner. With this second edi-
tion, 3.0.x is the latest stable version.!!

A list of the biggest changes in each of the official versions is shown below. You
should always use the most recent version available, if possible, in which case this list
isn’t particularly useful. If not, this list may help you determine how your version dif-
fers from the content of this book. This is by no means an exhaustive list, and because
of space constraints, we’ve listed only the top four or five items for each release.

VERSION 1.8.X (NO LONGER OFFICIALLY SUPPORTED)
» Sharding—Sharding was moved from “experimental” to production-ready status.
» Replica sels—Replica sets were made production-ready.
» Replica pairs deprecated—Replica set pairs are no longer supported by MongoDB, Inc.
» Geo search—Two-dimensional geo-indexing with coordinate pairs (2D indexes)
was introduced.

VERSION 2.0.X (NO LONGER OFFICIALLY SUPPORTED)

» Journaling enabled by default—This version changed the default for new data-
bases to enable journaling. Journaling is an important function that prevents
data corruption.

» Band queries—This version added the $and query operator to complement the
$or operator.

» Sparse indexes—Previous versions of MongoDB included nodes in an index for
every document, even if the document didn’t contain any of the fields being
tracked by the index. Sparse indexing adds only document nodes that have rel-
evant fields. This feature significantly reduces index size. In some cases this can
improve performance because smaller indexes can result in more efficient use
of memory.

» Replica set priorities—This version allows “weighting” of replica set members to
ensure that your best servers get priority when electing a new primary server.

w Collection level compact/repair—Previously you could perform compact/repair
only on a database; this enhancement extends it to individual collections.

"' MongoDB actually had a version jump from 2.6 straight to 3.0, skipping 2.8. See http://www.mongodb.com/
blog/post/announcing-mongodb-30 for more details about v3.0.

http://www.mongodb.com/blog/post/announcing-mongodb-30
http://www.mongodb.com/blog/post/announcing-mongodb-30
http://www.it-ebooks.info/

26

CHAPTER 1 A database for the modern web

VERSION 2.2.X (NO LONGER OFFICIALLY SUPPORTED)

Aggregation framework—This version features the first iteration of a facility to
make analysis and transformation of data much easier and more efficient. In
many respects this facility takes over where map/reduce leaves off; it’s built on a
pipeline paradigm, instead of the map/reduce model (which some find diffi-
cult to grasp).

TTL collections—Collections in which the documents have a time-limited lifespan
are introduced to allow you to create caching models such as those provided by
Memcached.

DB level locking—This version adds database level locking to take the place of the
global lock, which improves the write concurrency by allowing multiple opera-
tions to happen simultaneously on different databases.

Tag-aware sharding—This version allows nodes to be tagged with IDs that reflect
their physical location. In this way, applications can control where data is stored
in clusters, thus increasing efficiency (read-only nodes reside in the same data
center) and reducing legal jurisdiction issues (you store data required to
remain in a specific country only on servers in that country).

VERSION 2.4.X (OLDEST STABLE RELEASE)

Enterprise version—The first subscriber-only edition of MongoDB, the Enterprise
version of MongoDB includes an additional authentication module that allows
the use of Kerberos authentication systems to manage database login data. The
free version has all the other features of the Enterprise version.

Aggregation framework performance—Improvements are made in the performance
of the aggregation framework to support real-time analytics; chapter 6 explores
the Aggregation framework.

Text search—An enterprise-class search solution is integrated as an experimental
feature in MongoDB; chapter 9 explores the new text search features.
Enhancements to geospatial indexing—This version includes support for polygon
intersection queries and GeoJSON, and features an improved spherical model
supporting ellipsoids.

V8 JavaScript engine—MongoDB has switched from the Spider Monkey JavaScript
engine to the Google V8 Engine; this move improves multithreaded operation
and opens up future performance gains in MongoDB’s JavaScript-based map/
reduce system.

VERSION 2.6.X (STABLE RELEASE)

Btext queries—This version added the $text query operator to support text search
in normal find queries.

Aggregation improvements—Aggregation has various improvements in this ver-
sion. It can stream data over cursors, it can output to collections, and it has
many new supported operators and pipeline stages, among many other features
and performance improvements.

http://www.it-ebooks.info/

1.7

Additional resources 27

Improved wire protocol for writes—Now bulk writes will receive more granular and
detailed responses regarding the success or failure of individual writes in a
batch, thanks to improvements in the way errors are returned over the network
for write operations.

New update operators—New operators have been added for update operations,
such as $mul, which multiplies the field value by the given amount.

Sharding improvements—Improvements have been made in sharding to better
handle certain edge cases. Contiguous chunks can now be merged, and dupli-
cate data that was left behind after a chunk migration can be cleaned up auto-
matically.

Security improvements—Collection-level access control is supported in this ver-
sion, as well as user-defined roles. Improvements have also been made in SSL
and x509 support.

Query system improvements—Much of the query system has been refactored. This
improves performance and predictability of queries.

Enterprise module—The MongoDB Enterprise module has improvements and
extensions of existing features, as well as support for auditing.

VERSION 3.0.X (NEWEST STABLE RELEASE)

The MMAPv1 storage engine now has support for collection-level locking.
Replica sets can now have up to 50 members.

Support for the WiredTiger storage engine; WiredTiger is only available in the
64-bit versions of MongoDB 3.0.

The 3.0 WiredTiger storage engine provides document-level locking and
compression.

Pluggable storage engine API that allows third parties to develop storage engines
for MongoDB.

Improved explain functionality.

SCRAM-SHA-1 authentication mechanism.

The ensurelIndex () function has been replaced by the createIndex () function
and should no longer be used.

Additional resources

This text is intended to be both a tutorial and a reference, so much of the language is

intended to introduce readers to new subjects and then describe these subjects in
more detail. If you’re looking for a pure reference, the best resource is the MongoDB
user’s manual, available at http://docs.mongodb.org/manual. This is an in-depth
guide to the database, which will be useful if you need to review a subject, and we

highly recommend it.

If you have a specific problem or question about MongoDB, it’s likely that someone

else has as well. A simple web-search will usually return results about it from resources
like blog posts or from Stack Overflow (http://stackoverflow.com), a tech-oriented

http://docs.mongodb.org/manual
http://stackoverflow.com
http://www.it-ebooks.info/

28

18

CHAPTER 1 A database for the modern web

question and answer site. These are invaluable when you get stuck, but double-check
that the answer applies to your version of MongoDB.

You can also get help in places like the MongoDB IRC chat or user forums. Mon-
goDB, Inc. also offers consulting services intended to help make MongoDB easy to use
in an enterprise environment. Many cities have their own MongoDB user groups,
organized through sites like http://meetup.com. These are often a good way to meet
folks knowledgeable about MongoDB and learn about how others are using the data-
base. Finally, you can contact us (the authors) directly at the Manning forums, which
have a space specifically for MongoDB in Action http://manning-sandbox.com/
forum jsparforumID=677. This is a space to ask in-depth questions that might not be
covered in the text and point out omissions or errata. Please don’t hesitate to post
a question!

Summary

We’ve covered a lot. To summarize, MongoDB is an open source, document-based
database management system. Designed for the data and scalability requirements of
modern internet applications, MongoDB features dynamic queries and secondary
indexes, fast atomic updates and complex aggregations, and support for replication
with automatic failover and sharding for scaling horizontally.

That’s a mouthful, but if you’ve read this far, you should have a good feel for all
these capabilities. You’re probably itching to code. It’s one thing to talk about a data-
base’s features, but another to use the database in practice. Fortunately, that’s what
you’ll do in the next two chapters. First, you’ll get acquainted with the MongoDB
JavaScript shell, which is incredibly useful for interacting with the database. Then, in
chapter 3 you’ll start experimenting with the driver and build a simple MongoDB-
based application in Ruby.

http://meetup.com
http://manning-sandbox.com/forum.jspa?forumID=677
http://manning-sandbox.com/forum.jspa?forumID=677
http://www.it-ebooks.info/

MongoDB through
the JavaScript shell

This chapter covers

Using CRUD operations in the MongoDB shell
Building indexes and using explain ()
Understanding basic administration

Getting help

The previous chapter hinted at the experience of running MongoDB. If you're
ready for a more hands-on introduction, this is it. Using the MongoDB shell, this
chapter teaches the database’s basic concepts through a series of exercises. You’ll
learn how to create, read, update, and delete (CRUD) documents and, in the pro-
cess, get to know MongoDB’s query language. In addition, we’ll take a preliminary
look at database indexes and how they’re used to optimize queries. Then we’ll
explore some basic administrative commands and suggest a few ways of getting
help as you continue working with MongoDB’s shell. Think of this chapter as both
an elaboration of the concepts already introduced and as a practical tour of the
most common tasks performed from the MongoDB shell.

The MongoDB shell is the go-to tool for experimenting with the database,
running ad-hoc queries, and administering running MongoDB instances. When
you’re writing an application that uses MongoDB, you’ll use a language driver (like

29

http://www.it-ebooks.info/

30

2.1

211

CHAPTER 2 MongoDB through the JavaScript shell

MongoDB’s Ruby gem) rather than the shell, but the shell is likely where you’ll test
and refine these queries. Any and all MongoDB queries can be run from the shell.

If you’re completely new to MongoDB’s shell, know that it provides all the features
that you’d expect of such a tool; it allows you to examine and manipulate data and
administer the database server itself. MongoDB’s shell differs from others, however, in
its query language. Instead of employing a standardized query language such as SQL,
you interact with the server using the JavaScript programming language and a simple
API. This means that you can write JavaScript scripts in the shell that interact with a
MongoDB database. If you’re not familiar with JavaScript, rest assured that only a super-
ficial knowledge of the language is necessary to take advantage of the shell, and all
examples in this chapter will be explained thoroughly. The MongoDB API in the shell
is similar to most of the language drivers, so it’s easy to take queries you write in the
shell and run them from your application.

You’ll benefit most from this chapter if you follow along with the examples, but to
do that, you’ll need to have MongoDB installed on your system. You’ll find installation
instructions in appendix A.

Diving into the MongoDB shell

MongoDB'’s JavaScript shell makes it easy to play with data and get a tangible sense of
documents, collections, and the database’s particular query language. Think of the
following walkthrough as a practical introduction to MongoDB.

You’ll begin by getting the shell up and running. Then you’ll see how JavaScript
represents documents, and you’ll learn how to insert these documents into a MongoDB
collection. To verify these inserts, you’ll practice querying the collection. Then it’s on
to updates. Finally, we’ll finish out the CRUD operations by learning to remove data
and drop collections.

Starting the shell

Follow the instructions in appendix A and you should quickly have a working MongoDB
installation on your computer, as well as a running mongod instance. Once you do,
start the MongoDB shell by running the mongo executable:

mongo

If the shell program starts successfully, your screen will look like figure 2.1. The shell
heading displays the version of MongoDB you’re running, along with some additional
information about the currently selected database.

10:25 $ mongo
MongoDB shell version: 3.0.4
connecting to: test

>

Figure 2.1 MongoDB
JavaScript shell on startup

http://www.it-ebooks.info/

212

Diving into the MongoDB shell 31

If you know some JavaScript, you can start entering code and exploring the shell right
away. In either case, read on to see how to run your first operations against MongoDB.

Databases, collections, and documents

As you probably know by now, MongoDB stores its information in documents, which
can be printed out in JSON (JavaScript Object Notation) format. You’d probably like
to store different types of documents, like users and orders, in separate places. This
means that MongoDB needs a way to group documents, similar to a table in an
RDBMS. In MongoDB, this is called a collection.

MongoDB divides collections into separate databases. Unlike the usual overhead
that databases produce in the SQL world, databases in MongoDB are just namespaces
to distinguish between collections. To query MongoDB, you’ll need to know the data-
base (or namespace) and collection you want to query for documents. If no other
database is specified on startup, the shell selects a default database called test. As a
way of keeping all the subsequent tutorial exercises under the same namespace, let’s
start by switching to the tutorial database:

> use tutorial
switched to db tutorial

You’ll see a message verifying that you’ve switched databases.

Why does MongoDB have both databases and collections? The answer lies in how
MongoDB writes its data out to disk. All collections in a database are grouped in the
same files, so it makes sense, from a memory perspective, to keep related collections
in the same database. You might also want to have different applications access the
same collections (multitenancy) and, it’s also useful to keep your data organized so
you’re prepared for future requirements.

On creating databases and collections

You may be wondering how you can switch to the tutorial database without explicitly
creating it. In fact, creating the database isn’t required. Databases and collections
are created only when documents are first inserted. This behavior is consistent with
MongoDB’s dynamic approach to data; just as the structure of documents needn’t
be defined in advance, individual collections and databases can be created at run-
time. This can lead to a simplified and accelerated development process. That said,
if you’re concerned about databases or collections being created accidentally, most
of the drivers let you enable a strict mode to prevent such careless errors.

It’s time to create your first document. Because you’re using a JavaScript shell, your
documents will be specified in JSON. For instance, a simple document describing a
user might look like this:

{username: "smith"}

http://www.it-ebooks.info/

32

2.13

CHAPTER 2 MongoDB through the JavaScript shell

The document contains a single key and value for storing Smith’s username.

Inserts and queries

To save this document, you need to choose a collection to save it to. Appropriately
enough, you'll save it to the users collection. Here’s how:

> db.users.insert ({username: "smith"})
WriteResult ({ "nInserted" : 1 })

NOTE Note that in our examples, we’ll preface MongoDB shell commands with
a > so that you can tell the difference between the command and its output.

You may notice a slight delay after entering this code. At this point, neither the tuto-
rial database nor the users collection has been created on disk. The delay is caused by
the allocation of the initial data files for both.

If the insert succeeds, you’ve just saved your first document. In the default MongoDB
configuration, this data is now guaranteed to be inserted even if you kill the shell or
suddenly restart your machine. You can issue a query to see the new document:

> db.users.find ()

Since the data is now part of the users collection, reopening the shell and running the
query will show the same result. The response will look something like this:

{ "™ id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith" }

_ID FIELDS IN MoNnGcoDB
Note that an _id field has been added to the document. You can think of the id
value as the document’s primary key. Every MongoDB document requires an _id, and
if one isn’t present when the document is created, a special MongoDB ObjectID will
be generated and added to the document at that time. The ObjectID that appears in
your console won’t be the same as the one in the code listing, but it will be unique
among all _id values in the collection, which is the only requirement for the field. You
can set your own _1id by setting it in the document you insert, the ObjectID is just
MongoDB’s default.

We’ll have more to say about ObjectIDs in the next chapter. Let’s continue for now
by adding a second user to the collection:

> db.users.insert ({username: "jones"})
WriteResult ({ "nInserted" : 1 })

There should now be two documents in the collection. Go ahead and verify this by
running the count command:

> db.users.count ()
2

http://www.it-ebooks.info/

Diving into the MongoDB shell 33

PASS A QUERY PREDICATE

Now that you have more than one document in the collection, let’s look at some
slightly more sophisticated queries. As before, you can still query for all the docu-
ments in the collection:

> db.users.find ()

{ " id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith" }
{ " id" : ObjectId("552e542a58cd52bcb257¢325"), "username" : "jones" }

You can also pass a simple query selector to the £find method. A query selector is a
document that’s used to match against all documents in the collection. To query for
all documents where the username is jones, you pass a simple document that acts as
your query selector like this:

> db.users.find ({username: "jones"})
{ " id" : ObjectId("552e542a58cd52bcb257¢325"), "username" : "jones" }

The query predicate {username: "jones"} returns all documents where the user-
name is jones—it literally matches against the existing documents.

Note that calling the find method without any argument is equivalent to passing in
an empty predicate; db.users.find() is the same as db.users.find ({}).

You can also specify multiple fields in the query predicate, which creates an
implicit AND among the fields. For example, you query with the following selector:

> db.users.find ({
. _id: ObjectId("552e458158cd52bcb257¢c324"),
. username: "smith"

3]

{ " id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith" }

The three dots after the first line of the query are added by the MongoDB shell to indi-
cate that the command takes more than one line.

The query predicate is identical to the returned document. The predicate ANDs
the fields, so this query searches for a document that matches on both the _id and
usernamne fields.

You can also use MongoDB’s $and operator explicitly. The previous query is identi-
cal to
> db.users.find ({ $and: [

{ _id: ObjectId("552e458158cd52bcb257c324") },
{ username: "smith" }
}

.o 1)
{ " id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith" }

Selecting documents with an OR is similar: just use the $or operator. Consider the fol-
lowing query:

> db.users.find({ $or: [
{ username: "smith" },

http://www.it-ebooks.info/

34

2.1.4

CHAPTER 2 MongoDB through the JavaScript shell

{ username: "jones" }

)
{ " id" : ObjectId("552e458158cd52bcb257¢c324"), "username" : "smith" }
{ " id" : ObjectId("552e542a58cd52bcb257¢325"), "username" : "jones" }

The query returns both the smith and jones documents, because we asked for either a
username of smith or a username of jones.

This example is different than previous ones, because it doesn’t just insert or
search for a specific document. Rather, the query itself is a document. The idea of rep-
resenting commands as documents is used often in MongoDB and may come as a sur-
prise if you're used to relational databases. One advantage of this interface is that it’s
easier to build queries programmatically in your application because they're docu-
ments rather than a long SQL string.

We’ve presented the basics of creating and reading data. Now it’s time to look at
how to update that data.

Updating documents

All updates require at least two arguments. The first specifies which documents to
update, and the second defines how the selected documents should be modified. The
first few examples demonstrate modifying a single document, but the same operations
can be applied to many documents, even an entire collection, as we show at the end of
this section. But keep in mind that by default the update () method updates a sin-
gle document.

There are two general types of updates, with different properties and use cases.
One type of update involves applying modification operations to a document or docu-
ments, and the other type involves replacing the old document with a new one.

For the following examples, we’ll look at this sample document:

> db.users.find ({username: "smith"})
{ " id" : ObjectId("552e458158cd52bcb257¢c324"), "username" : "smith" }

OPERATOR UPDATE
The first type of update involves passing a document with some kind of operator
description as the second argument to the update function. In this section, you’ll
see an example of how to use the $set operator, which sets a single field to the spec-
ified value.

Suppose that user Smith decides to add her country of residence. You can record
this with the following update:

> db.users.update ({username: "smith"}, {$set: {country: "Canada"}})
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

This update tells MongoDB to find a document where the username is smith, and
then to set the value of the country property to Canada. You see the change reflected

http://www.it-ebooks.info/

Diving into the MongoDB shell 35

in the message that gets sent back by the server. If you now issue a query, you’ll see
that the document has been updated accordingly:

> db.users.find ({username: "smith"})
{ " id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith",
"country" : "Canada" }

REPLACEMENT UPDATE

Another way to update a document is to replace it rather than just set a field. This is
sometimes mistakenly used when an operator update with a $set was intended. Con-
sider a slightly different update command:

> db.users.update ({username: "smith"}, {country: "Canada"})
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

In this case, the document is replaced with one that only contains the country field,
and the username field is removed because the first document is used only for match-
ing and the second document is used for replacing the document that was previously
matched. You should be careful when you use this kind of update. A query for the doc-
ument yields the following:

> db.users.find ({country: "Canada"})
{ " id" : ObjectId("552e458158cd52bcb257¢c324"), "country" : "Canada" }

The 1idis the same, yet data has been replaced in the update. Be sure to use the $set
operator if you intend to add or set fields rather than to replace the entire document.
Add the username back to the record:

> db.users.update ({country: "Canada"}, {$set: {username: "smith"}})

WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

> db.users.find ({country: "Canada"})

{ " id" : ObjectId("552e458158cd52bcb257c324"), "country" : "Canada",
"username" : "smith" }

If you later decide that the country stored in the profile is no longer needed, the value
can be removed as easily using the Sunset operator:

> db.users.update ({username: "smith"}, {$unset: {country: 1}}
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

> db.users.find ({username: "smith"})

{ " id" : ObjectId("552e458158cd52bcb257¢324"), "username" : "smith" }

UPDATING COMPLEX DATA

Let’s enrich this example. You're representing your data with documents, which, as
you saw in chapter 1, can contain complex data structures. Let’s suppose that, in addi-
tion to storing profile information, your users can store lists of their favorite things. A
good document representation might look something like this:

{

username: "smith",
favorites: ({

http://www.it-ebooks.info/

36 CHAPTER 2 MongoDB through the JavaScript shell

cities: ["Chicago", "Cheyenne"],
movies: ["Casablanca", "For a Few Dollars More", "The Sting"]

The favorites key points to an object containing two other keys, which point to lists of
favorite cities and movies. Given what you know already, can you think of a way to modify
the original smith document to look like this? The $set operator should come to mind:

> db.users.update({username: "smith"},

{

$set: |
favorites: {
cities: ["Chicago", "Cheyenne"],
movies: ["Casablanca", "For a Few Dollars More", "The Sting"]
1
1
3
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Please note that the use of spacing for indenting isn’t mandatory, but it helps avoid
errors as the document is more readable this way.
Let’s modity jones similarly, butin this case you’ll only add a couple of favorite movies:

> db.users.update({username: "jones"},
{
$set: {
favorites: {
movies: ["Casablanca", "Rocky"]
1
1
Iy
WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

If you make a typo, you can use the up arrow key to recall the last shell statement.
Now query the users collection to make sure that both updates succeeded:

> > db.users.find () .pretty ()
{
" id" : ObjectId("552e458158cd52bcb257¢324"),
"username" : "smith",
"favorites" : {
"cities" : [
"Chicago",
"Cheyenne"
1,
"movies" : [
"Casablanca",
"For a Few Dollars More",
"The Sting"

http://www.it-ebooks.info/

Diving into the MongoDB shell 37

"_id" : ObjectId("552e542a58cd52bcb257¢325"),
"username" : "jones",
"favorites" : {
"movies" : [
"Casablanca",
"Rocky"

Strictly speaking, the find () command returns a cursor to the returning documents.
Therefore, to access the documents you’ll need to iterate the cursor. The £ind () com-
mand automatically returns 20 documents—if they’re available—after iterating the
cursor 20 times.

With a couple of example documents at your fingertips, you can now begin to see
the power of MongoDB’s query language. In particular, the query engine’s ability to
reach into nested inner objects and match against array elements proves useful in this
situation. Notice how we appended the pretty operation to the find operation to get
nicely formatted results returned by the server. Strictly speaking, pretty () is actually
cursor.pretty (), which is a way of configuring a cursor to display results in an easy-
to-read format.

You can see an example of both of these concepts demonstrated in this query to
find all users who like the movie Casablanca:

> db.users.find ({"favorites.movies": "Casablanca"})

The dot between favorites and movies instructs the query engine to look for a key
named favorites that points to an object with an inner key named movies and
then to match the value of the inner key. Thus, this query will return both user doc-
uments because queries on arrays will match if any element in the array matches the
original query.

To see a more involved example, suppose you know that any user who likes Casa-
blanca also likes The Maltese Falcon and that you want to update your database to reflect
this fact. How would you represent this as a MongoDB update?

MORE ADVANCED UPDATES

You could conceivably use the $set operator again, but doing so would require you to
rewrite and send the entire array of movies. Because all you want to do is to add an ele-
ment to the list, you're better off using either $push or $addToSet. Both operators add
an item to an array, but the second does so uniquely, preventing a duplicate addition.
This is the update you’re looking for:

> db.users.update({"favorites.movies": "Casablanca"},
{$addToSet: {"favorites.movies": "The Maltese Falcon"} },
false,
true)

WriteResult ({ "nMatched" : 2, "nUpserted" : 0, "nModified" : 2 })

http://www.it-ebooks.info/

38

2.15

2.1.6

CHAPTER 2 MongoDB through the JavaScript shell

Most of this should be decipherable by now. The first argument is a query predicate
that matches against users who have Casablanca in their movies list. The second argu-
ment adds The Maltese Falcon to that list using the $addToSet operator.

The third argument, false, controls whether an upsert is allowed. This tells the
update operation whether it should insert a document if it doesn’t already exist,
which has different behavior depending on whether the update is an operator update
or a replacement update.

The fourth argument, true, indicates that this is a multi-update. By default, a Mon-
goDB update operation will apply only to the first document matched by the query
selector. If you want the operation to apply to all documents matched, you must be
explicit about that. You want your update to apply to both smith and jones, so the
multi-update is necessary.

We’ll cover updates in more detail later, but try these examples before moving on.

Deleting data

Now you know the basics of creating, reading, and updating data through the Mon-
goDB shell. We’ve saved the simplest operation, removing data, for last.

If given no parameters, a remove operation will clear a collection of all its docu-
ments. To get rid of, say, a foo collection’s contents, you enter:

> db.foo.remove ()

You often need to remove only a certain subset of a collection’s documents, and for
that, you can pass a query selector to the remove () method. If you want to remove all
users whose favorite city is Cheyenne, the expression is straightforward:

> db.users.remove ({"favorites.cities": "Cheyenne"})
WriteResult ({ "nRemoved" : 1 })

Note that the remove () operation doesn’t actually delete the collection; it merely
removes documents from a collection. You can think of it as being analogous to SQL’s
DELETE command.

If your intent is to delete the collection along with all of its indexes, use the drop ()
method:

> db.users.drop ()

Creating, reading, updating, and deleting are the basic operations of any database; if
you’ve followed along, you should be in a position to continue practicing basic CRUD
operations in MongoDB. In the next section, you’ll learn how to enhance your que-
ries, updates, and deletes by taking a brief look at secondary indexes.

Other shell features

You may have noticed this already, but the shell does a lot of things to make working
with MongoDB easier. You can revisit earlier commands by using the up and down

http://www.it-ebooks.info/

22

221

Creating and querying with indexes 39

arrows, and use autocomplete for certain inputs, like collection names. The autocom-
plete feature uses the tab key to autocomplete or to list the completion possibilities.!
You can also discover more information in the shell by typing this:

> help

Alot of functions print pretty help messages that explain them as well. Try it out:

> db.help ()
DB methods:
db.adminCommand (nameOrDocument) - switches to 'admin' db, and runs

command [just calls db.runCommand(...)]
db.auth (username, password)
db.cloneDatabase (fromhost)
db.commandHelp (name) returns the help for the command
db.copyDatabase (fromdb, todb, fromhost)

Help on queries is provided through a different function called explain, which we’ll
investigate in later sections. There are also a number of options you can use when
starting the MongoDB shell. To display a list of these, add the help flag when you start
the MongoDB shell:

$ mongo --help

You don’t need to worry about all these features, and we’re not done working with the
shell yet, but it’s worth knowing where you can find more information when you need it.

Creating and querying with indexes

It’s common to create indexes to enhance query performance. Fortunately, MongoDB’s
indexes can be created easily from the shell. If you're new to database indexes, this
section should make the need for them clear; if you already have indexing experi-
ence, you'll see how easy it is to create indexes and then profile queries against them
using the explain() method.

Creating a large collection

An indexing example makes sense only if you have a collection with many documents.
So you’ll add 20,000 simple documents to a numbers collection. Because the MongoDB
shell is also a JavaScript interpreter, the code to accomplish this is simple:

> for(i = 0; i < 20000; i++) {

db.numbers.save ({num: 1i});

}

WriteResult ({ "nInserted" : 1 })

1

For the full list of keyboard shortcuts, please visit http://docs.mongodb.org/v3.0/reference/program/

mongo/#mongo-keyboard-shortcuts.

http://docs.mongodb.org/v3.0/reference/program/mongo/#mongo-keyboard-shortcuts
http://docs.mongodb.org/v3.0/reference/program/mongo/#mongo-keyboard-shortcuts
http://www.it-ebooks.info/

40 CHAPTER 2 MongoDB through the JavaScript shell

That’s a lot of documents, so don’t be surprised if the insert takes a few seconds to
complete. Once it returns, you can run a couple of queries to verify that all the docu-
ments are present:

> db.numbers.count ()
20000

> db.numbers.find ()

{ " id": ObjectId("4bfbfl32dbalaa7c30ac830a"), "num": 0 }

{ "_id": ObjectId("4bfbfl32dbalaa7c30ac830b"), "num": 1 }
" id": ObjectId("4bfbfl32dbalaa7c30ac830c"), "num": 2
_ J

{ " id": ObjectId("4bfbfl32dbalaa7c30ac8304"), "num": 3 }

{ "_id": ObjectId("4bfbfl32dbalaa7c30ac830e"), "num": 4 }
" id": ObjectI "4 132dbalaa7c¢c30ac830f"), "num": 5
_id bj d("4bfbf db £mr)

" id": ObjectI "4 132dbalaa7c¢30ac8310"), "num": 6
_id bj d("4bfbf db)
" id": ObjectI "4 132dbalaa7¢30ac8311"), "num": 7
_id bj d("4bfbf db)

{ " id": ObjectId("4bfbfl32dbalaa7c30ac8312"), "num": 8 }
" id": ObjectI "4 132dbalaa7c¢30ac8313"), "num": 9
_id bj d("4bfbf db)

" id": ObjectlI "4 132dbalaa7c¢30ac8314"), "num": 10
_id bj d("4bfbf db)

{ " id": ObjectId("4bfbfl32dbalaa7c30ac8315"), "num": 11 }
" id": ObjectI "4 132dbalaa7c30ac8316"), "num": 12
_id bj d("4bfbf db)

" id": ObjectI "4 132dbalaa7¢30ac8317"), "num": 13
_id bj d("4bfbf db)

{ " id": ObjectId("4bfbfl32dbalaa7c30ac8318"), "num": 14 }
" id": ObjectI "4 132dbalaa7c¢30ac8319"), "num": 15
_id bj d("4bfbf db)

" id": ObjectI "4 132dbalaa7c30ac831la"), "num": 16
_id bj d("4bfbf db)

{ " id": ObjectId("4bfbfl32dbalaa7c30ac831b"), "num": 17 }
" id": ObjectI "4 132dbalaa7c30ac831c"), "num": 18
_id bj d("4bfbf db)

{ " id": ObjectId("4bfbfl32dbalaa7c30ac831d"), "num": 19 }

Type "it" for more

The count () command shows that you’ve inserted 20,000 documents. The subse-
quent query displays the first 20 results (this number may be different in your shell).
You can display additional results with the it command:

it

" id": ObjectId("4bfbfl32dbalaa7c30ac831le"), "num": 20 }

" id": ObjectId("4bfbfl32dbalaa7c30ac831f"), "num": 21 }
"_id": ObjectId("4bfbfl132dbalaa7c30ac8320"), "num": 22 }

——— Y

The it command instructs the shell to return the next result set.”

With a sizable set of documents available, let’s try a couple queries. Given what you
know about MongoDB’s query engine, a simple query matching a document on its num
attribute makes sense:

> db.numbers.find ({num: 500})
{ v id" : ObjectId("4bfbfl32dbalaa7c30ac84fe"), "num" : 500 }

2 You may be wondering what’s happening behind the scenes here. All queries create a cursor, which allows for
iteration over a result set. This is somewhat hidden when using the shell, so itisn’t necessary to discuss in detail
at the moment. If you can’t wait to learn more about cursors and their idiosyncrasies, see chapters 3 and 4.

http://www.it-ebooks.info/

22.2

Creating and querying with indexes 41

RANGE QUERIES

More interestingly, you can also issue range queries using the special $gt and $1t
operators. They stand for greater than and less than, respectively. Here’s how you
query for all documents with a num value greater than 199,995:

db.numbers.find({num: {"$gt": 19995 }})

" id" : ObjectId("552e660b58cd52bcb2581142"), "num" : 19996
"_id" : ObjectId("552e660b58cd52bcb2581143"), "num" : 19997
"_id" : ObjectId("552e660b58cd52bcb2581144"), "num" : 19998
" id" : ObjectId("552e660b58cd52bcb2581145"), "num" : 19999

-
—— e

You can also combine the two operators to specify upper and lower boundaries:

db.numbers.find({num: {"$gt": 20, "slt": 25 }})

o~ — Y

"_id" : ObjectId("552e660558cd52bcb257¢33b"), "num" : 21 }
"7id" : ObjectId("552e660558cd52bcb257¢33¢"), "num" : 22 }
"_id" : ObjectId("552e660558cd52bcb257¢33d"), "num" : 23 }

() }

"_id" : ObjectId("552e660558cd52bcb257¢33e"), "num" : 24
You can see that by using a simple JSON document, you're able to specify a range
query in much the same way you might in SQL. $gt and $1t are only two of a host of
operators that comprise the MongoDB query language. Others include $gte for greater
than or equal to, s1te for (you guessed it) less than or equal to, and $ne for not equal
to. You’ll see other operators and many more example queries in later chapters.

Of course, queries like this are of little value unless they’re also efficient. In the
next section, we’ll start thinking about query efficiency by exploring MongoDB’s
indexing features.

Indexing and explain()

If you’ve spent time working with relational databases, you’re probably familiar with
SQL’s EXPLAIN, an invaluable tool for debugging or optimizing a query. When any
database receives a query, it must plan out how to execute it; this is called a query
plan. EXPLAIN describes query paths and allows developers to diagnose slow opera-
tions by determining which indexes a query has used. Often a query can be executed
in multiple ways, and sometimes this results in behavior you might not expect.
EXPLAIN explains. MongoDB has its own version of EXPLAIN that provides the same ser-
vice. To get an idea of how it works, let’s apply it to one of the queries you just issued.
Try running the following on your system:

> db.numbers.find ({num: {"$gt": 19995}}) .explain("executionStats")

The result should look something like what you see in the next listing. The "execution-
Stats" keyword is new to MongoDB 3.0 and requests a different mode that gives more
detailed output.

http://www.it-ebooks.info/

42

CHAPTER 2 MongoDB through the JavaScript shell

Listing 2.1 Typical explain ("executionStats") output for an unindexed query

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.numbers",
"indexFilterSet" : false,
"parsedQuery" : {

"num" . {
"Sgt" : 19995
}
).
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"num" ;o {
"Sgt" : 19995
}
1
"direction" : "forward"
).
"rejectedPlans" : []

1

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 4,
"executionTimeMillis" : 8,
"totalKeysExamined" : 0,
"totalDocsExamined" : 20000,
"executionStages" : {

"stage" : "COLLSCAN",
"filter" : {

"num" : {

"$Sgt" : 19995
} }
"nReturned" : 4,
"executionTimeMillisEstimate" : 0,
"works" : 20002,
"advanced" : 4,
"needTime" : 19997,
"needFetch" : 0,
"saveState" : 156,
"restoreState" : 156,
"isEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 20000
}

1

"serverInfo" : {

"host" : "rMacBook.local",
"port" : 27017,

"version" : "3.0.6",

http://www.it-ebooks.info/

Creating and querying with indexes 43

"gitVersion" : "nogitversion"

b

nok" i 1

}

Upon examining the explain() output,” you may be surprised to see that the query
engine has to scan the entire collection, all 20,000 documents (docsExamined), to
return only four results (nReturned). The value of the totalKeysExamined field
shows the number of index entries scanned, which is zero. Such a large difference
between the number of documents scanned and the number returned marks this as
an inefficient query. In a real-world situation, where the collection and the documents
themselves would likely be larger, the time needed to process the query would be sub-
stantially greater than the eight milliseconds (millis) noted here (this may be differ-
ent on your machine).

What this collection needs is an index. You can create an index for the num key
within the documents using the createIndex () method. Try entering the following
index creation code:

> db.numbers.createIndex ({num: 1})

{

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok"™ : 1

The createIndex() method replaces the ensureIndex() method in MongoDB 3. If
you’re using an older MongoDB version, you should use ensureIndex() instead of
createIndex (). In MongoDB 3, ensureIndex () is still valid as it’s an alias for create-
Index (), but you should stop using it.

As with other MongoDB operations, such as queries and updates, you pass a docu-
ment to the createIndex () method to define the index’s keys. In this case, the {num: 1}
document indicates that an ascending index should be built on the num key for all
documents in the numbers collection.

You can verify that the index has been created by calling the getIndexes ()
method:

> db.numbers.getIndexes ()
[
{
||v|| . 1,
nkeyn . {
"oidr o1

b

* In these examples we’re inserting “hostname” as the machine’s hostname. On your platform this may appear
as localhost, your machine’s name, or its name plus . local. Don’t worry if your output looks a little dif-
ferent than ours‘; it can vary based on your platform and your exact version of MongoDB.

http://www.it-ebooks.info/

44

CHAPTER 2 MongoDB through the JavaScript shell

"name" : " id n,

"ns" : "tutorial.numbers"
I

"V" : 1’

"key" : {

"num" : 1

I

"name" : "num_ 1",

"ns" : "tutorial.numbers"

The collection now has two indexes. The first is the standard _id index that’s automat-
ically built for every collection; the second is the index you created on num. The
indexes for those fields are called _id_ and num_1, respectively. If you don’t provide a
name, MongoDB sets hopefully meaningful names automatically.

If you run your query with the explain() method, you’ll now see the dramatic dif-
ference in query response time, as shown in the following listing.

Listing 2.2 explain () output for an indexed query

> db.numbers.find ({num: {"$gt": 19995 }}).explain("executionStats")
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.numbers",
"indexFilterSet" : false,
"parsedQuery" : {
"num" : {
"Sgt" : 19995
}
¥
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"num" : 1
1, Using the

"indexName" : "num 1", num_1 index

"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"num" : [
"(19995.0, inf.o]"

}
b

"rejectedPlans" : []

b

http://www.it-ebooks.info/

Four
documents
returned

Creating and querying with indexes 45

"executionStats" : {
"executionSuccess" true,
"nReturned" : 4,
"executionTimeMillis" : O,
"totalKeysExamined" : 4,
"totalDocsExamined" : 4,
"executionStages" : {
"stage" "FETCH",
"nReturned" : 4,
"executionTimeMillisEstimate"
"works" : 5,
"advanced" : 4,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"igEOF" : 1,
"invalidates" : 0,
"docsExamined" : 4,
"alreadyHasObj" : 0,
"inputStage" : {
"stage" "IXSCAN",
"nReturned" : 4,

"executionTimeMillisEstimate" : 0,

"works" : 4,
"advanced" : 4,
"needTime" : O,
"needFetch" : 0,
"saveState" 0
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"num" : 1

1

¥
"indexName"
"isMultiKey™" false,
"direction" "forward",
"indexBounds" : {
"num" : [
"(19995.0,

n num_l ",

inf.o]™"

¥

"keysExamined" : 4,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0,
"matchTested" : 0

}

"serverInfo" : {
"host™" "rMacBook.local™",
"port" 27017,
"version" "3.0.6",

Only four
documents
scanned

0, <+

Much
faster!

Using the
num_1 index

o

http://www.it-ebooks.info/

46

2.3

23.1

CHAPTER 2 MongoDB through the JavaScript shell

"gitVersion" : "nogitversion"

.

nok" i 1

Now that the query utilizes the index num_1 on num, it scans only the four documents
pertaining to the query. This reduces the total time to serve the query from 8 ms to
0 ms!

Indexes don’t come free; they take up some space and can make your inserts
slightly more expensive, but they’re an essential tool for query optimization. If this
example intrigues you, be sure to check out chapter 8, which is devoted to indexing
and query optimization. Next you’ll look at the basic administrative commands
required to get information about your MongoDB instance. You’ll also learn tech-
niques for getting help from the shell, which will aid in mastering the various shell
commands.

Basic administration

This chapter promised to be an introduction to MongoDB via the JavaScript shell.
You’ve already learned the basics of data manipulation and indexing. Here, we’ll
present techniques for getting information about your mongod process. For instance,
you’ll probably want to know how much space your various collections are taking up,
or how many indexes you’ve defined on a given collection. The commands detailed
here can take you a long way in helping to diagnose performance issues and keep
tabs on your data.

We’ll also look at MongoDB’s command interface. Most of the special, non-CRUD
operations that can be performed on a MongoDB instance, from server status checks
to data file integrity verification, are implemented using database commands. We’ll
explain what commands are in the MongoDB context and show how easy they are to
use. Finally, it’s always good to know where to look for help. To that end, we’ll point
out places in the shell where you can turn for help to further your exploration of
MongoDB.

Getting database information

You’ll often want to know which collections and databases exist on a given installation.
Fortunately, the MongoDB shell provides a number of commands, along with some
syntactic sugar, for getting information about the system.

show dbs prints a list of all the databases on the system:

> show dbs
admin (empty)
local 0.078GB

tutorial 0.078GB

http://www.it-ebooks.info/

Basic administration 47

show collections displays a list of all the collections defined on the current data-
base.* If the tutorial database is still selected, you’ll see a list of the collections you
worked with in the preceding tutorial:

> show collections

numbers

system. indexes
users

The one collection that you may not recognize is system.indexes. This is a special
collection that exists for every database. Each entry in system.indexes defines an
index for the database, which you can view using the getIndexes () method, as you
saw earlier. But MongoDB 3.0 deprecates direct access to the system.indexes collec-
tions; you should use createIndexes and listIndexes instead. The getIndexes () Java-
Script method can be replaced by the db. runCommand ({"listIndexes": "numbers"})
shell command.

For lower-level insight into databases and collections, the stats () method proves
useful. When you run it on a database object, you’ll get the following output:

> db.stats()

{

"db" : "tutorial",
"collections" : 4,
"objects" : 20010,
"avgObjSize" : 48.0223888055972,
"dataSize" : 960928,
"storageSize" : 2818048,
"numExtents" : 8,
"indexes" : 3,
"indexSize" : 1177344,
"fileSize" : 67108864,
"nsSizeMB" : 16,
"extentFreeList" :
"num" : O,
"totalSize" : 0
b
"dataFileVersion" :
"major" : 4,
"minor" : 5
e s

You can also run the stats () command on an individual collection:

> db.numbers.stats ()

{

"ns" : "tutorial.numbers",
"count" : 20000,

* You can also enter the more succinct show tables.

http://www.it-ebooks.info/

48

23.2

CHAPTER 2 MongoDB through the JavaScript shell

"size" : 960064,
"avgObjSize" : 48,
"storageSize" : 2793472,
"numExtents" : 5,
"nindexes" : 2,
"lastExtentSize" : 2097152,
"paddingFactor" : 1,
"paddingFactorNote" : "paddingFactor is unused and unmaintained in 3.0.
It remains hard coded to 1.0 for compatibility only.",
"systemFlags" : 1,
"userFlags" : 1,
"totalIndexSize" : 1169168,
"indexSizes" : {
" id " : 654080,
"num_1" : 515088

b

nokn ;o1

Some of the values provided in these result documents are useful only in complicated
debugging or tuning situations. But at the very least, you’ll be able to find out how
much space a given collection and its indexes are occupying.

How commands work

A certain set of MongoDB operations—distinct from the insert, update, remove, and
query operations described so far in this chapter—are known as database commands.
Database commands are generally administrative, as with the stats() methods just
presented, but they may also control core MongoDB features, such as updating data.

Regardless of the functionality they provide, what all database commands have in
common is their implementation as queries on a special virtual collection called $cmd.
To show what this means, let’s take a quick example. Recall how you invoked the
stats () database command:

> db.stats ()

The stats () method is a helper that wraps the shell’s command invocation method.
Try entering the following equivalent operation:

> db.runCommand ({dbstats: 1})

The results are identical to what’s provided by the stats() method. Note that the
command is defined by the document {dbstats: 1}. In general, you can run any
available command by passing its document definition to the runCommand () method.
Here’s how you’d run the collection stats command:

> db.runCommand ({collstats: "numbers"})

The output should look familiar.

http://www.it-ebooks.info/

24

Getting help 49

But to get to the heart of database commands, you need to see how the run-
Command () method works. That’s not hard to find out because the MongoDB shell will
print the implementation of any method whose executing parentheses are omitted.
Instead of running the command like this

> db.runCommand ()

you can execute the parentheses-less version and see the internals:

> db.runCommand
function (obj, extra)({

if (typeof(obj) == "string") {
var n = {};
nlobj]l = 1;
obj = n;
if (extra && typeof (extra) == "object") {
for (var x in extra)
n[x] = extralx];
1
1
1
return this.getCollection("$cmd") .findOne(obj);

}

The last line in the function is nothing more than a query on the $cmd collection. To
define it properly, then, a database command is a query on a special collection, $cmd,
where the query selector defines the command itself. That’s all there is to it. Can you
think of a way to run the collection stats command manually? It’s this simple:

> db.$cmd.findOne ({collstats: "numbers"});

Using the runCommand helper is easier but it’s always good to know what’s going on
beneath the surface.

Getting help

By now, the value of the MongoDB shell as a testing ground for experimenting with
data and administering the database should be evident. But because you’ll likely
spend a lot of time in the shell, it’s worth knowing how to get help.

The built-in help commands are the first place to look. db.help () prints a list of
commonly used methods for operating on databases. You’ll find a similar list of meth-
ods for operating on collections by running db.numbers.help ().

There’s also built-in tab completion. Start typing the first characters of any method
and then press the Tab key twice. You’ll see a list of all matching methods. Here’s the
tab completion for collection methods beginning with get:

> db.numbers.get
db.numbers.getCollection (db.numbers.getIndexes (
db.numbers.getShardDistribution (

http://www.it-ebooks.info/

50

CHAPTER 2 MongoDB through the JavaScript shell

db.numbers.getDB (db.numbers.getIndices (
db.numbers.getShardvVersion (

db.numbers.getDiskStorageStats (db.numbers.getMongo (
db.numbers.getSlaveOk (

db.numbers.getFullName (db.numbers .getName (
db.numbers.getSplitKeysForChunks (

db.numbers.getIndexKeys (db.numbers.getPagesInRAM (
db.numbers.getWriteConcern (

db.numbers.getIndexSpecs (db.numbers.getPlanCache (
db.numbers.getIndexStats (db.numbers.getQueryOptions (

The official MongoDB manual is an invaluable resource and can be found at http://
docs.mongodb.org. It has both tutorials and reference material, and it’s kept up-to-
date with new releases of MongoDB. The manual also includes documentation for
each language-specific MongoDB driver implementation, such as the Ruby driver,
which is necessary when accessing MongoDB from an application.

If you’re more ambitious, and are comfortable with JavaScript, the shell makes it
easy to examine the implementation of any given method. For instance, suppose
you’d like to know exactly how the save () method works. Sure, you could go trolling
through the MongoDB source code, but there’s an easier way: enter the method name
without the executing parentheses. Here’s how you’d normally execute save ():

> db.numbers.save ({num: 123123123}) ;

And this is how you can check the implementation:

> db.numbers.save
function (obj , opts){
if (obj == null)
throw "can't save a null";

if (typeof(obj) == "number" || typeof(obj) == "string")
throw "can't save a number or string"

if (typeof(obj. id) == "undefined") {
obj._id = new ObjectId() ;
return this.insert(obj , opts);

}

else {

return this.update({ _id : obj. id } , obj , Object.merge ({
upsert:true }, opts));

}

Read the function definition closely, and you’ll see that save () is merely a wrapper for
insert () and update (). After checking the type of the obj argument, if the object
you’re trying to save doesn’t have an _1id field, then the field is added, and insert () is
invoked. Otherwise an update is performed.

This trick for examining the shell’s methods comes in handy. Keep this technique
in mind as you continue exploring the MongoDB shell.

http://docs.mongodb.org
http://docs.mongodb.org
http://www.it-ebooks.info/

2.5

Summary 51

Summary

You’ve now seen the document data model in practice, and we’ve demonstrated a vari-
ety of common MongoDB operations on that data model. You’ve learned how to cre-
ate indexes and have seen an example of index-based performance improvements
through the use of explain (). In addition, you should be able to extract information
about the collections and databases on your system, you now know all about the clever
$cmd collection, and if you ever need help, you’ve picked up a few tricks for finding
your way around.

You can learn a lot by working in the MongoDB shell, but there’s no substitute for
the experience of building a real application. That’s why we’re going from a carefree
data playground to a real-world data workshop in the next chapter. You’ll see how the
drivers work, and then, using the Ruby driver, you’ll build a simple application, hitting
MongoDB with some real, live data.

http://www.it-ebooks.info/

Writing programs
using MongoDB

This chapter covers

® |ntroducing the MongoDB API through Ruby
m Understanding how the drivers work

m Using the BSON format and MongoDB network
protocol

®m Building a complete sample application

It’s time to get practical. Though there’s much to learn from experimenting with
the MongoDB shell, you can see the real value of this database only after you’ve
built something with it. That means jumping into programming and taking a first
look at the MongoDB drivers. As mentioned before, MongoDB, Inc. provides offi-
cially supported, Apache-licensed MongoDB drivers for all of the most popular pro-
gramming languages. The driver examples in the book use Ruby, but the principles
we’ll illustrate are universal and easily transferable to other drivers. Throughout
the book we’ll illustrate most commands with the JavaScript shell, but examples of
using MongoDB from within an application will be in Ruby.

We’re going to explore programming in MongoDB in three stages. First, you’ll
install the MongoDB Ruby driver and we’ll introduce the basic CRUD (create, read,
update, delete) operations. This process should go quickly and feel familiar because

52

http://www.it-ebooks.info/

3.1

3.11

MongoDB through the Ruby lens 53

the driver API is similar to that of the shell. Next, we’re going to delve deeper into the
driver, explaining how it interfaces with MongoDB. Without getting too low-level, this
section will show you what’s going on behind the scenes with the drivers in general.
Finally, you’ll develop a simple Ruby application for monitoring Twitter. Working with
a real-world data set, you’ll begin to see how MongoDB works in the wild. This final
section will also lay the groundwork for the more in-depth examples presented in part 2
of the book.

New to Ruby?

Ruby is a popular and readable scripting language. The code examples have been
designed to be as explicit as possible so that even programmers unfamiliar with Ruby
can benefit. Any Ruby idioms that may be hard to understand will be explained in the
book. If you’d like to spend a few minutes getting up to speed with Ruby, start with
the official 20-minute tutorial at http:/mng.bz/THRS3.

MongoDB through the Ruby lens

Normally when you think of drivers, what comes to mind are low-level bit manipula-
tions and obtuse interfaces. Thankfully, the MongoDB language drivers are nothing
like that; instead, they’ve been designed with intuitive, language-sensitive APIs so that
many applications can sanely use a MongoDB driver as the sole interface to the data-
base. The driver APIs are also fairly consistent across languages, which means that
developers can easily move between languages as needed; anything you can do in the
JavaScript API, you can do in the Ruby APIL If you’re an application developer, you can
expect to find yourself comfortable and productive with any of the MongoDB drivers
without having to concern yourself with low-level implementation details.

In this first section, you’ll install the MongoDB Ruby driver, connect to the data-
base, and learn how to perform basic CRUD operations. This will lay the groundwork
for the application you’ll build at the end of the chapter.

Installing and connecting

You can install the MongoDB Ruby driver using RubyGems, Ruby’s package manage-
ment system.

Many newer operating systems come with Ruby already installed. You can check if
you already have Ruby installed by running ruby --version from your shell. If you
don’t have Ruby installed on your system, you can find detailed installation instruc-
tions at www.ruby-lang.org/en/downloads.

You’ll also need Ruby’s package manager, RubyGems. You may already have this
as well; check by running gem --version. Instructions for installing RubyGems can
be found at http://docs.rubygems.org/read/chapter/3. Once you have RubyGems
installed, run:

gem install mongo

http://mng.bz/THR3
http://docs.rubygems.org/read/chapter/3
http://www.ruby-lang.org/en/downloads
http://www.it-ebooks.info/

54

CHAPTER 3 Writing programs using MongoDB

This should install both the mongo and bson' gems. You should see output like the fol-
lowing (the version numbers will likely be newer than what’s shown here):

Fetching: bson-3.2.1.gem (100%)

Building native extensions. This could take a while...
Successfully installed bson-3.2.1

Fetching: mongo-2.0.6.gem (100%)

Successfully installed mongo-2.0.6

2 gems installed

We also recommend you install the bson ext gem, though this is optional. bson_ext
is an official gem that contains a C implementation of BSON, enabling more efficient
handling of BSON in the MongoDB driver. This gem isn’t installed by default because
installation requires a compiler. Rest assured, if you're unable to install bson_ext,
your programs will still work as intended.

You'll start by connecting to MongoDB. First, make sure that mongod is running by
running the mongo shell to ensure you can connect. Next, create a file called connect.rb
and enter the following code:

require 'rubygems'
require 'mongo'

Sclient = Mongo::Client.new(['127.0.0.1:27017'], :database => 'tutorial')
Mongo: :Logger.logger.level = ::Logger::ERROR
Susers = S$client[:users]

puts 'connected!'

The first two require statements ensure that you’'ve loaded the driver. The next three
lines instantiate the client to localhost and connect to the tutorial database, store a ref-
erence to the users collection in the $users variable, and print the string connected!.
We place a s in front of each variable to make it global so that it’ll be accessible out-
side of the connect.rb script. Save the file and run it:

$ ruby connect.rb

D, [2015-06-05T12:32:38.843933 #33946] DEBUG -- : MONGODB | Adding
127.0.0.1:27017 to the cluster. | runtime: 0.0031lms
D, [2015-06-05T12:32:38.847534 #33946] DEBUG -- : MONGODB | COMMAND |

namespace=admin.$cmd selector={:ismaster=>1} flags=[] limit=-1 skip=0
project=nil | runtime: 3.4170ms
connected!

If no exceptions are raised, you’ve successfully connected to MongoDB from Ruby and
you should see connected! printed to your shell. That may not seem glamorous, but
connecting is the first step in using MongoDB from any language. Next, you’ll use that
connection to insert some documents.

1

BSON, explained in the next section, is the JSON-inspired binary format that MongoDB uses to represent doc-

uments. The bson Ruby gem serializes Ruby objects to and from BSON.

http://www.it-ebooks.info/

MongoDB through the Ruby lens 55

3.1.2 Inserting documents in Ruby

To run interesting MongoDB queries you first need some data, so let’s create some
(this is the C in CRUD). All of the MongoDB drivers are designed to use the most natu-
ral document representation for their language. In JavaScript, JSON objects are the
obvious choice, because JSON is a document data structure; in Ruby, the hash data
structure makes the most sense. The native Ruby hash differs from a JSON object in
only a couple of small ways; most notably, where J[SON separates keys and values with a
colon, Ruby uses a hash rocket (=>).?

If you're following along, you can continue adding code to the connect.rb file.
Alternatively, a nice approach is to use Ruby’s interactive shell, irb. irb is a REPL
(Read, Evaluate, Print Loop) console, in which you can type Ruby code to have it
dynamically executed, making it ideal for experimentation. Anything you write in irb
can be put in a script, so we recommend using it to learn new things, then copying
your commands when you’d like them executed in a program. You can launch irb
and require connect.rb so that you’ll immediately have access to the connection, data-
base, and collection objects initialized therein. You can then run Ruby code and
receive immediate feedback. Here’s an example:

$ irb -r ./connect.rb

irb(main) :017:0> id = $users.insert one({"last name" => "mtsouk"})

=> #<Mongo: :Operation: :Result:70275279152800 documents=[{"ok"=>1, "n"=>1}]>
irb(main) :014:0> $users.find() .each do |user|

irb(main) :015:1* puts user

irb(main) :016:1> end

{"7id":>BSON: :ObjectId('55e3eelc5ae119511d000000'), "last name"=>"knuth" }
{" id"=>BSON: :0ObjectId('55e3£13d5ael119516a000000'), "last name"=>"mtsouk"}
=> #<Enumerator: #<Mongo::Cursor:0x70275279317980
@view=#<Mongo: :Collection: :View:0x70275279322740 namespace='tutorial.users
@selector={} @options={}>>:each>

irb gives you a command line shell with a prompt followed by > (this may look a little
different on your machine). The prompt allows you to type in commands, and in the
previous code we’ve highlighted the user input in bold. When you run a command in
irb it will print out the value returned by the command, if there is one; that’s what is
shown after => above.

Let’s build some documents for your users’ collection. You’ll create two documents
representing two users, Smith and Jones. Each document, expressed as a Ruby hash, is
assigned to a variable:

smith = {"last name" => "smith", "age" => 30}
jones = {"last name" => "jones", "age" => 40}

2 In Ruby 1.9, you may optionally use a colon as the key-value separator, like hash = {foo: 'bar'}, but we’ll
stick with the hash rocket in the interest of backward compatibility.

http://www.it-ebooks.info/

56

3.1.3

CHAPTER 3 Writing programs using MongoDB

To save the documents, you’ll pass them to the collection’s insert method. Each call to
insert returns a unique ID, which you’ll store in a variable to simplify later retrieval:

smith id = $users.insert one (smith)
jones_id = $users.insert_one (jones)

You can verify that the documents have been saved with some simple queries, so you
can query with the user collection’s £ind () method like this:

irb(main) :013:0> $users.find("age" => {"$gt" => 20}) .each.to _a do |row|
irb(main) :014:1* puts row
(

irb(main) :015:1> end

=> [{ " 1id"=>BSON: :ObjectId('55e3f7dd5ael19516a000002"'), "last name"=>"smith",
"age"=>30}, {"_id"=>BSON: :ObjectId('55e3f7e25a€119516a000003"),
"last name"=>"jones", "age"=>40}]

The return values for these queries will appear at the prompt if run in irb. If the
code is being run from a Ruby file, prepend Ruby’s p method to print the output to
the screen:

p $users.find(:age => {"S$gt" => 20}).to_a

You’ve successfully inserted two documents from Ruby. Let’s now take a closer look
at queries.

Queries and cursors

Now that you’ve created documents, it’s on to the read operations (the R in CRUD)
provided by MongoDB. The Ruby driver defines a rich interface for accessing data and
handles most of the details for you. The queries we show in this section are fairly sim-
ple selections, but keep in mind that MongoDB allows more complex queries, such as
text searches and aggregations, which are described in later chapters.

You’ll see how this is so by looking at the standard find method. Here are two pos-
sible find operations on your data set:

$users.find ({"last name" => "smith"}).to a
$users.find ({"age" => {"$gt" => 30}}).to a

The first query searches for all user documents where the last_name is smith and that
the second query matches all documents where age is greater than 30. Try entering
the second query in irb:

2.1.4 :020 > $users.find({"age" => {"$gt" => 30}})
=> #<Mongo::Collection: :View:0x70210212601420 namespace='tutorial.users
@selector={"age"=>{"$gt"=>30}} @options={}>

The results are returned in a Mongo::Collection::View object, which extends
Iterable and makes it easy to iterate through the results. We’ll discuss cursors in

http://www.it-ebooks.info/

3.14

MongoDB through the Ruby lens 57

more detail in Section 3.2.3. In the meantime, you can fetch the results of the
$gt query:

cursor = $users.find({"age" => {"Sgt" => 30}})

cursor.each do |doc|

puts doc["last name"]
end

Here you use Ruby’s each iterator, which passes each result to a code block. The
last_name attribute is then printed to the console. The $gt used in the query is a
MongoDB operator; the $ character has no relation to the $ placed before global Ruby
variables like $users. Also, if there are any documents in the collection without
last_name, you might notice that nil (Ruby’s null value) is printed out; this indicates
the lack of a value and it’s normal to see this.

The fact that you even have to think about cursors here may come as a surprise
given the shell examples from the previous chapter. But the shell uses cursors the
same way every driver does; the difference is that the shell automatically iterates over
the first 20 cursor results when you call £ind (). To get the remaining results, you can
continue iterating manually by entering the it command.

Updates and deletes

Recall from chapter 2 that updates require at least two arguments: a query selector and
an update document. Here’s a simple example using the Ruby driver:

$users.find({"last name" => "smith"}).update one ({"$set" => {"city" =>
"Chicago"}})

This update finds the first user with a last_name of smith and, if found, sets the value
of city to Chicago. This update uses the $set operator. You can run a query to show
the change:

$users.find({"last name" => "smith"}).to a

The view allows you to decide whether you only want to update one document or all
documents matching the query. In the preceding example, even if you had several
users with the last name of smith, only one document would be updated. To apply the
update to a particular smith, you’d need to add more conditions to your query selec-
tor. But if you actually want to apply the update to all smith documents, you must
replace the update one with the update many method:

$users.find({"last name" => "smith"}) .update many ({"$set" => {"city" =»>
"Chicago"}})

Deleting data is much simpler. We’ve discussed how it works in the MongoDB shell and
the Ruby driver is no different. To review: you simply use the remove method. This
method takes an optional query selector that will remove only those documents
matching the selector. If no selector is provided, all documents in the collection will

http://www.it-ebooks.info/

58

3.1.5

CHAPTER 3 Writing programs using MongoDB

be removed. Here, you're removing all user documents where the age attribute is
greater than or equal to 40:

Susers.find ({"age" => {"Sgte" => 40}}).delete one

This will only delete the first one matching the matching criteria. If you want to delete
all documents matching the criteria, you’d have to run this:

$users.find({"age" => {"$gte" => 40}}) .delete many

With no arguments, the drop method deletes all remaining documents:

Susers.drop

Database commands

In the previous chapter you saw the centrality of database commands. There, we
looked at the two stats commands. Here, we’ll look at how you can run commands
from the driver using the listDatabases command as an example. This is one of a
number of commands that must be run on the admin database, which is treated spe-
cially when authentication is enabled. For details on the authentication and the
admin database, see chapter 10.

First, you instantiate a Ruby database object referencing the admin database. You
then pass the command’s query specification to the command method:

$admin _db = $client.use('admin')
$admin db.command ({"listDatabases" => 1})

Note that this code still depends on what we put in the connect.rb script above
because it expects the MongoDB connection to be in $client. The response is a Ruby
hash listing all the existing databases and their sizes on disk:

#<Mongo: :Operation: :Result:70112905054200 documents=[{"databases"=>[
{

"name"=>"local",

"sizeOnDisk"=>83886080.0,

"empty"=>false

b

{

"name"=>"tutorial",
"sizeOnDisk"=>83886080.0,
"empty"=>false

b

"name"=>"admin",

"sizeOnDisk"=>1.0, "empty"=>true
}1, "totalSize"=>167772160.0, "ok"=>1.0}]>
=> nil

http://www.it-ebooks.info/

3.2

321

Houw the drivers work 59

This may look a little different with your version of irb and the MongoDB driver, but it
should still be easy to access. Once you get used to representing documents as Ruby
hashes, the transition from the shell API is almost seamless.

Most drivers provide you convenient functionality that wraps database commands.
You may recall from the previous chapter that remove doesn’t actually drop the collec-
tion. To drop a collection and all its indexes, use the drop_collection method:

db = Sclient.use('tutorial')
db['users'] .drop

It’s okay if you’re still feeling shaky about using MongoDB with Ruby; you’ll get more
practice in section 3.3. But for now, we’re going to take a brief intermission to see how
the MongoDB drivers work. This will shed more light on some of MongoDB’s design
and prepare you to use the drivers effectively.

How the drivers work

At this point it’s natural to wonder what’s going on behind the scenes when you issue
commands through a driver or via the MongoDB shell. In this section, you’ll see how
the drivers serialize data and communicate it to the database.

All MongoDB drivers perform three major functions. First, they generate Mon-
goDB object IDs. These are the default values stored in the _id field of all documents.
Next, the drivers convert any language-specific representation of documents to and
from BSON, the binary data format used by MongoDB. In the previous examples, the
driver serializes all the Ruby hashes into BSON and then deserializes the BSON that’s
returned from the database back to Ruby hashes.

The drivers’ final function is to communicate with the database over a TCP socket
using the MongoDB wire protocol. The details of the protocol are beyond the scope of
this discussion. But the style of socket communication, in particular whether writes on
the socket wait for a response, is important, and we’ll explore the topic in this section.

Object ID generation

Every MongoDB document requires a primary key. That key, which must be unique for
all documents in each collection, is stored in the document’s _id field. Developers are
free to use their own custom values as the _id, but when not provided, a MongoDB
object ID will be used. Before sending a document to the server, the driver checks
whether the _id field is present. If the field is missing, an object ID will be generated
and stored as _id.

MongoDB object IDs are designed to be globally unique, meaning they’re guaran-
teed to be unique within a certain context. How can this be guaranteed? Let’s exam-
ine this in more detail.

You've probably seen object IDs in the wild if you’ve inserted documents into
MongoDB, and at first glance they appear to be a string of mostly random text, like
4c291856238d3b19b2000001. You may not have realized that this text is the hex

http://www.it-ebooks.info/

60 CHAPTER 3 Writing programs using MongoDB

4-byte
timestamp Process ID

/—M/'&

4c291856 238d3b 19b2 000001

W—/ W—/ Figure 3.1 MongoDB

Machine ID Counter object ID format

representation of 12 bytes, and actually stores some useful information. These bytes
have a specific structure, as illustrated in figure 3.1.

The most significant four bytes carry a standard Unix (epoch) timestamp®. The
next three bytes store the machine ID, which is followed by a two-byte process ID.
The final three bytes store a process-local counter that’s incremented each time an
object ID is generated. The counter means that ids generated in the same process and
second won’t be duplicated.

Why does the object ID have this format? It’s important to understand that these
IDs are generated in the driver, not on the server. This is different than many RDBMSs,
which increment a primary key on the server, thus creating a bottleneck for the server
generating the key. If more than one driver is generating IDs and inserting docu-
ments, they need a way of creating unique identifiers without talking to each other.
Thus, the timestamp, machine ID, and process ID are included in the identifier itself
to make it extremely unlikely that IDs will overlap.

You may already be considering the odds of this happening. In practice, you would
encounter other limits before inserting documents at the rate required to overflow
the counter for a given second (2** million per second). It’s slightly more conceivable
(though still unlikely) to imagine that ifyou had many drivers distributed across many
machines, two machines could have the same machine ID. For example, the Ruby
driver uses the following:

@@machine id = Digest::MD5.digest (Socket.gethostname) [0, 3]

For this to be a problem, they would still have to have started the MongoDB driver’s
process with the same process ID, and have the same counter value in a given second.
In practice, don’t worry about duplication; it’s extremely unlikely.

One of the incidental benefits of using MongoDB object IDs is that they include a
timestamp. Most of the drivers allow you to extract the timestamp, thus providing the
document creation time, with resolution to the nearest second, for free. Using the Ruby

> Many Unix machines (we’re including Linux when we say Unix machine) store time values in a format called
Unix Time or POSIX time; they just count up the number of seconds since 00:00 on January 1%, 1970, called
the epoch. This means that a timestamp can be stored as an integer. For example, 2010-06-28 21:47:02 is rep-
resented as 1277761622 (or 0x4c291856 in hexadecimal), the number of seconds since the epoch.

http://www.it-ebooks.info/

3.3

3.3.1

Building a simple application 61

driver, you can call an object ID’s generation_time method to get that ID’s creation
time as a Ruby Time object:

irb> require 'mongo'

irb> id = BSON::ObjectId.from_string('4c291856238d3b19b2000001")

=> BSON::0ObjectId('4c291856238d3b19b2000001")

irb> id.generation_time
=> 2010-06-28 21:47:02 UTC

Naturally, you can also use object IDs to issue range queries on object creation time.
For instance, if you wanted to query for all documents created during June 2013, you
could create two object IDs whose timestamps encode those dates and then issue a
range query on _id. Because Ruby provides methods for generating object IDs from
any Time object, the code for doing this is trivial:*

jun_id = BSON::0bjectId.from time (Time.utc (2013, 6, 1))

jul_id = BSON::0ObjectId.from_ time (Time.utc (2013, 7, 1))
@users.find ({'_id' => {'$gte' => jun id, 'S$lt' => jul id}})

As mentioned before, you can also set your own value for _id. This might make sense
in cases where one of the document’s fields is important and always unique. For
instance, in a collection of users you could store the username in _id rather than on
object ID. There are advantages to both ways, and it comes down to your preference as
a developer.

Building a simple application

Next you’ll build a simple application for archiving and displaying Tweets. You can
imagine this being a component in a larger application that allows users to keep tabs
on search terms relevant to their businesses. This example will demonstrate how easy
it is to consume JSON from an API like Twitter’s and convert that to MongoDB docu-
ments. If you were doing this with a relational database, you’d have to devise a schema
in advance, probably consisting of multiple tables, and then declare those tables. Here,
none of that’s required, yet you’ll still preserve the rich structure of the Tweet docu-
ments, and you’ll be able to query them effectively.

Let’s call the app TweetArchiver. TweetArchiver will consist of two components:
the archiver and the viewer. The archiver will call the Twitter search API and store the
relevant Tweets, and the viewer will display the results in a web browser.

Setting up
This application requires four Ruby libraries. The source code repository for this chap-
ter includes a file called Gemfile, which lists these gems. Change your working directory

* This example will actually not work; it’s meant as a thoughtful exercise. By now you should have enough
knowledge to create meaningful data for the query to return something. Why not take the time and try it out?

http://www.it-ebooks.info/

62

3.3.2

CHAPTER 3 Writing programs using MongoDB

to chapter3 and make sure an 1s command shows the Gemfile. You can then install
them from your system command line like this:

gem install bundler
bundle install

This will ensure the bundler gem is installed. Next, install the other gems using
Bundler’s package management tools. This is a widely used Ruby tool for ensuring
that the gems you use match some predetermined versions: the versions that match
our code examples.

Our Gemfile lists the mongo, twitter, bson and sinatra gems, so these will be
installed. The mongo gem we’ve used already, but we include it to be sure we have the
right version. The twitter gem is useful for communicating with the Twitter API. The
sinatra gem is a framework for running a simple web server in Ruby, and we discuss it
in more detail in section 3.3.3.

We provide the source code for this example separately, but introduce it gradually
to help you understand it. We recommend you experiment and try new things to get
the most out of the example.

It’ll be useful to have a configuration file that you can share between the archiver
and viewer scripts. Create a file called config.rb (or copy it from the source code) that
looks like this:

DATABASE HOST = 'localhost'
DATABASE_ PORT = 27017

DATABASE NAME = "twitter-archive"
COLLECTION NAME = "tweets"

TAGS = ["#MongoDB", "#Mongo"]
CONSUMER_KEY = "replace me"
CONSUMER_SECRET = "replace me"
TOKEN = "replace me"
TOKEN_SECRET = "replace me"

First you specify the names of the database and collection you’ll use for your applica-
tion. Then you define an array of search terms, which you’ll send to the Twitter API.

Twitter requires that you register a free account and an application for accessing
the API, which can be accomplished at http://apps.twitter.com. Once you’ve regis-
tered an application, you should see a page with its authentication information, per-
haps on the API keys tab. You will also have to click the button that creates your access
token. Use the values shown to fill in the consumer and API keys and secrets.

Gathering data

The next step is to write the archiver script. You start with a TweetArchiver class.
You’ll instantiate the class with a search term. Then you’ll call the update method on
the TweetArchiver instance, which issues a Twitter API call, and save the results to a
MongoDB collection.

http://apps.twitter.com
http://www.it-ebooks.info/

Building a simple application 63

Let’s start with the class’s constructor:

def initialize(tag)
connection = Mongo::Connection.new (DATABASE HOST, DATABASE PORT)

db = connection [DATABASE NAME]
@tweets = db[COLLECTION_NAME]
@tweets.ensure index([['tags', 1], ['id', -111)

@tag = tag
@tweets_found = 0

@client = Twitter::REST::Client.new do |config]
config.consumer key = API_KEY
config.consumer_secret = API_SECRET
config.access_token ACCESS_TOKEN
config.access_token secret = ACCESS_TOKEN SECRET

end

end

The initialize method instantiates a connection, a database object, and the collec-
tion object you’ll use to store the Tweets.

You’re creating a compound index on tags ascending and id descending. Because
you’re going to want to query for a particular tag and show the results from newest to
oldest, an index with tags ascending and id descending will make that query use the
index both for filtering results and for sorting them. As you can see here, you indicate
index direction with 1 for ascending and -1 for descending. Don’t worry if this doesn’t
make sense now—we discuss indexes with much greater depth in chapter 8.

You're also configuring the Twitter client with the authentication information from
config.rb. This step hands these values to the Twitter gem, which will use them when
calling the Twitter API. Ruby has somewhat unique syntax often used for this sort of con-
figuration; the config variable is passed to a Ruby block, in which you set its values.

MongoDB allows you to insert data regardless of its structure. With a relational
database, each table needs a well-defined schema, which requires planning out which
values you would like to store. In the future, Twitter may change its API so that different
values are returned, which will likely require a schema change if you want to store these
additional values. Not so with MongoDB. Its schema-less design allows you to save the
document you get from the Twitter API without worrying about the exact format.

The Ruby Twitter library returns Ruby hashes, so you can pass these directly to
your MongoDB collection object. Within your TweetArchiver, you add the following
instance method:
def save_ tweets_for (term)

@client.search(term) .each do |tweet|

@tweets_found += 1
tweet_doc = tweet.to_h

tweet doc[:tags] = term

tweet _doc[: id] = tweet_doc[:id]

@tweets.insert_one (tweet_doc)
end

end

http://www.it-ebooks.info/

64 CHAPTER 3 Writing programs using MongoDB

Before saving each Tweet document, make two small modifications. To simplify later
queries, add the search term to a tags attribute. You also set the _id field to the ID of
the Tweet, replacing the primary key of your collection and ensuring that each Tweet
is added only once. Then you pass the modified document to the save method.

To use this code in a class, you need some additional code. First, you must config-
ure the MongoDB driver so that it connects to the correct mongod and uses the desired
database and collection. This is simple code that you’ll replicate often as you use
MongoDB. Next, you must configure the Twitter gem with your developer credentials.
This step is necessary because Twitter restricts its API to registered developers. The
next listing also provides an update method, which gives the user feedback and calls
save tweets for.

Listing 3.1 archiver.rb—A class for fetching Tweets and archiving them in MongoDB

SLOAD_PATH << File.dirname(_FILE_)
require 'rubygems'

require 'mongo'

require 'twitter'

require 'config!

class TweetArchiver

def initialize(tag)

client =
Mongo: :Client .new (["#{DATABASE HOST}:#{DATABASE PORT}"], :database =>
Create "#{DATABASE NAME}")
a new @tweets = client ["#{COLLECTION NAME}"]
instance @tweets.indexes.drop_all
of Tweet- @tweets.indexes.create_many ([
Archive. { :key => { tags: 1 }},

{ :key => { id: -1 }}
1)
@tag = tag
@tweets_found = 0

@client = Twitter::REST::Client.new do |config]|

config.consumer key = "#{API KEY}"
config.consumer secret = "#{API_SECRET}" %;:25::;:::
config.access_token = "#{ACCESS_TOKEN}" using the values
config.access token secret = "#{ACCESS TOKEN SECRET}" found in config.rb.
end
end
def update
puts "Starting Twitter search for '#{etag}'..." A user facing
save_tweets for (etag) method to wrap
print "#{@tweets found} Tweets saved.\n\n" save_tweets_for
end

private

http://www.it-ebooks.info/

3.3.3

Building a simple application 65

def save tweets for (term)
@client.search(term) .each do |tweet|
@tweets_found += 1
tweet_doc = tweet.to_h

Search with the
Twitter client and
save the results

tweet doc[:tags] = term to Mongo.
tweet_doc[:_id] = tweet_doc[:id]
@tweets.insert_one (tweet_doc)
end
end
end

All that remains is to write a script to run the TweetArchiver code against each of the
search terms. Create a file called update.rb (or copy it from the provided code) con-
taining the following:

SLOAD_PATH << File.dirname(__ FILE)

require 'config!'
require 'archiver'

TAGS.each do |tag]
archive = TweetArchiver.new(tag)
archive.update

end

Next, run the update script:

ruby update.rb

You’ll see some status messages indicating that Tweets have been found and saved. You
can verify that the script works by opening the MongoDB shell and querying the col-
lection directly:

> use twitter-archive

switched to db twitter-archive

> db.tweets.count ()
30

What’s important here is that you’ve managed to store Tweets from Twitter searches in
only a few lines of code.” Next comes the task of displaying the results.

Viewing the archive

You’ll use Ruby’s Sinatra web framework to build a simple app to display the results.
Sinatra allows you to define the endpoints for a web application and directly specify
the response. Its power lies in its simplicity. For example, the content of the index
page for your application can be specified with the following:

get '/' do

"response"
end

5 It’s possible to accomplish this in far fewer lines of code. Doing so is left as an exercise to the reader.

http://www.it-ebooks.info/

66

CHAPTER 3 Writing programs using MongoDB

This code specifies that GET requests to the / endpoint of your application return the
value of response to the client. Using this format, you can write full web applications
with many endpoints, each of which can execute arbitrary Ruby code before returning
a response. You can find more information, including Sinatra’s full documentation, at
http://sinatrarb.com.

We’ll now introduce a file called viewer.rb and place it in the same directory as
the other scripts. Next, make a subdirectory called views, and place a file there called
tweets.erb. After these steps, the project’s file structure should look like this:

- config.rb
- archiver.rb
- update.rb
- viewer.rb
- /views
- tweets.erb

Again, feel free to create these files yourself or copy them from the code examples.
Now edit viewer.rb with the code in the following listing.

Listing 3.2 viewer.rb—Sinatra application for displaying the Tweet archive

SLOAD_PATH << File.dirname(_FILE_)

require 'rubygems' .
require 'mongo’ (G_j' Bequqed
require 'sinatra' libraries
require 'config'

require 'open-uri'

configure do

client = Mongo::Client.new (["#{DATABASE HOST}:#{DATABASE PORT}"], :database
=> "#{DATABASE NAME}")
- 1 n n
ZWEETS = client ["#{COLLECTION NAME}"] Instantiate collection
en for tweets
get '/' do . .
if params['tag'] J Dynamically build
selector = {:tags => params['tag']} query selector...
else
ZEleCtor = {} ...OF use
en blank selector
@tweets = TWEETS.find(selector) .sort (["id", -1]) Issue
Zrb :tweets Render Q} query
en view

The first lines require the necessary libraries along with your config file @. Next
there’s a configuration block that creates a connection to MongoDB and stores a refer-
ence to your tweets collection in the constant TWEETS @.

The real meat of the application is in the lines beginning with get '/' do. The
code in this block handles requests to the application’s root URL. First, you build your

http://sinatrarb.com.
http://www.it-ebooks.info/

Building a simple application 67

query selector. If a tags URL parameter has been provided, you create a query selector
that restricts the result set to the given tags €. Otherwise, you create a blank selector,
which returns all documents in the collection @. You then issue the query @. By now,
you should know that what gets assigned to the @tweets variable isn’t a result set but a
cursor. You’ll iterate over that cursor in your view.

The last line @ renders the view file tweets.erb (see the next listing).

Listing 3.3 tweets.erb—HTML with embedded Ruby for rendering the Tweets

<!DOCTYPE html>
<htmls>
<heads>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style>
body {
width: 1000px;
margin: 50px auto;
font-family: Palatino, serif;
background-color: #dbd4c2;
color: #555050;
}
h2 {
margin-top: 2em;
font-family: Arial, sans-serif;
font-weight: 100;
1
</style>
</head>
<body>
<hl>Tweet Archive</hl>
<% TAGS.each do |tag| %>
<a href="/?tag=<%= URI::encode (tag) %>"><%= tag %>
<% end %>
<% @tweets.each do |tweet| %>
<h2><%= tweet['text'] %></h2>
<p>
<a href="http://twitter.com/<%= tweet['user'] ['screen name'] %$>">
<%= tweet['user'] ['screen name'] %>

on <%= tweet['created_at'] %>
</p>
<img src="<%= tweet['user'] ['profile image url'] %>" width="48" />
<% end %>
</body>
</htmls>

Most of the code is just HTML with some ERB (embedded Ruby) mixed in. The Sinatra
app runs the tweets.erb file through an ERB processor and evaluates any Ruby code
between <% and %> in the context of the application.

The important parts come near the end, with the two iterators. The first of these
cycles through the list of tags to display links for restricting the result set to a given tag.

http://www.it-ebooks.info/

68

CHAPTER 3 Whriting programs using MongoDB

The second iterator, beginning with the etweets.each code, cycles through each
Tweet to display the Tweet’s text, creation date, and user profile image. You can see
results by running the application:

$ ruby viewer.rb

If the application starts without error, you'll see the standard Sinatra startup message
that looks something like this:

2013-07-05 18:30:19] INFO WEBrick 1.3.1

2013-07-05 18:30:19] INFO ruby 1.9.3 (2012-04-20) [x86_64-darwinl0.8.0]

== Sinatra/1.4.3 has taken the stage on 4567 for development with backup from
WEBrick

[2013-07-05 18:30:19] INFO WEBrick::HTTPServerffstart: pid=18465 port=4567

$ ruby viewer.rb
[
[

You can then point your web browser to http://localhost:4567. The page should look
something like the screenshot in figure 3.2. Try clicking on the links at the top of the
screen to narrow the results to a particular tag.

Activities @ Google-chrome-stable ~ Sun 10:49

[} localhost:4567 x

» & 1] localhost:

Tweet Archive

#MongoDB #Mongo

Jeez, you can't trust the world with a silly side blog. Lesson learned, I'll put that #MongoDB
password before going live.

J_Diaz30 on Sun Jul 26 17:26:57 +0000 2015

Bsoneer 0.1.0 released! @MongoDB 3.0 #mongodb #java library to generate codecs for
beans. -> http://t.co/GQDdfdWGua

guicamest on Sun Jul 26 17:11:44 +0000 2015

RT @hayquesaberweb: @CEASOFT #MongoDb Inicia Lunes 24 de Agosto de 5:30pm a
8:30pm, avalado por #EmacsConsultores http://t.co/sgFRsqdazl ...

js_digest on Sun Jul 26 17:23:03 +0000 2015

RT @guicamest: Bsoneer 0.1.0 released! @MongoDB 3.0 #mongodb #java library to
generate codecs for beans. -> http://t.co/GQDdfdWGua

ameanmbot on Sun Jul 26 17:11:47 +0000 2015

me
N

Figure 3.2 Tweet Archiver output rendered in a web browser

http://localhost:4567
http://www.it-ebooks.info/

3.4

Summary 69

That’s the extent of the application. It’s admittedly simple, but it demonstrates some
of the ease of using MongoDB. You didn’t have to define your schema in advance, you
took advantage of secondary indexes to make your queries fast and prevent duplicate
inserts, and you had a relatively simple integration with your programming language.

Summary

You've just learned the basics of talking to MongoDB through the Ruby programming
language. You saw how easy it is to represent documents in Ruby, and how similar Ruby’s
CRUD API is to that of the MongoDB shell. We dove into some internals, exploring how
the drivers in general are built and looking in detail at object IDs, BSON, and the Mon-
goDB network protocol. Finally, you built a simple application to show the use of Mon-
goDB with real data. Though using MongoDB in the real world often requires more
complexity, the prospect of writing applications with the database should be in reach.

Beginning with chapter 4, we’re going to take everything you’ve learned so far and
drill down. Specifically, you’ll investigate how you might build an e-commerce applica-
tion in MongoDB. That would be an enormous project, so we’ll focus solely on a few
sections on the back end. We’ll present some data models for that domain, and you’ll
see how to insert and query that kind of data.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Part 2

Application development
m MongoDB

Et 2 of this book is a deep exploration of MongoDB’s document data model,
query language, and CRUD (create, read, update, and delete) operations.

We’ll make these topics concrete by progressively designing an e-commerce
data model and the CRUD operations necessary for managing such data. Each
chapter will present its subject matter in a top-down fashion, first by present-
ing examples within the sample e-commerce application’s domain, and then
by systematically filling in the details. On your first reading, you may want to
read the e-commerce examples only and save the detailed material for later, or
vice versa.

In chapter 4, you’ll learn some schema design principles and then construct
a basic e-commerce data model for products, categories, users, orders, and prod-
uct reviews. Then you’ll learn how MongoDB organizes data on the database,
collection, and document levels. This chapter includes a summary of BSON’s
core data types.

Chapter 5 covers MongoDB’s query language. You'll learn how to issue com-
mon queries against the data model developed in the previous chapter. Then, in
the nuts and bolts sections, you’ll see the semantics of query operators presented
in detail.

Chapter 6 is all about aggregations. We’ll show you how to do some simple
groupings, and also go in depth into MongoDB’s aggregation framework.

http://www.it-ebooks.info/

72

PART 2 Application development in MongoDB

In presenting MongoDB’s update and delete operations, chapter 7 brings us full
circle by showing the rationale for the e-commerce data model. You’ll learn how to
maintain the category hierarchy and how to manage inventory transactionally. In
addition, the update operators will be covered in detail along with the powerful find-
AndModify command.

http://www.it-ebooks.info/

Document-oriented . data

This chapter covers
m Schema design
m Data models for e-commerce

m Nuts and bolts of databases, collections, and
documents

This chapter takes a close look at document-oriented data modeling and how data is
organized at the database, collection, and document levels in MongoDB. We’ll start
with a brief, general discussion of how to design schemas to use with MongoDB.
Remember, MongoDB itself doesn’t enforce a schema, but every application needs
some basic internal standards about how its data is stored. This exploration of princi-
ples sets the stage for the second part of the chapter, where we examine the design of
an e-commerce schema in MongoDB. Along the way, you’ll see how this schema dif-
fers from an equivalent RDBMS schema, and you’ll learn how the typical relation-
ships between entities, such as one-to-many and many-to-many, are represented in
MongoDB. The e-commerce schema presented here will also serve as a basis for our
discussions of queries, aggregation, and updates in subsequent chapters.

Because documents are the raw materials of MongoDB, we’ll devote the final
portion of this chapter to some of the many details you might encounter when

73

http://www.it-ebooks.info/

74

4.1

CHAPTER 4 Document-oriented data

thinking through your own schemas. This involves a more detailed discussion of data-
bases, collections, and documents than you’ve seen up to this point. But if you read to
the end, you’ll be familiar with most of the obscure features and limitations of docu-
ment data in MongoDB. You may also find yourself returning to this final section of
the chapter later on, as it contains many of the “gotchas” you’ll encounter when using
MongoDB in the wild.

Principles of schema design

Database schema design is the process of choosing the best representation for a data
set, given the features of the database system, the nature of the data, and the applica-
tion requirements. The principles of schema design for relational database systems
are well established. With RDBMSs, you're encouraged to shoot for a normalized data
model,! which helps to ensure generic query ability and avoid updates to data that
might result in inconsistencies. Moreover, the established patterns prevent developers
from wondering how to model, say, one-to-many and many-to-many relationships. But
schema design is never an exact science, even with relational databases. Application
functionality and performance is the ultimate master in schema design, so every
“rule” has exceptions.

If you’re coming from the RDBMS world, you may be troubled by MongoDB’s lack
of hard schema design rules. Good practices have emerged, but there’s still usually
more than one good way to model a given data set. The premise of this section is that
principles can drive schema design, but the reality is that those principles are pliable.
To get you thinking, here are a few questions you can bring to the table when model-
ing data with any database system:

» What are your application access patterns? You need to pin down the needs of your
application, and this should inform not only your schema design but also which
database you choose. Remember, MongoDB isn’t right for every application.
Understanding your application access patterns is by far the most important
aspect of schema design.

The idiosyncrasies of an application can easily demand a schema that goes
against firmly held data modeling principles. The upshot is that you must ask
numerous questions about the application before you can determine the ideal
data model. What’s the read/write ratio? Will queries be simple, such as looking
up a key, or more complex? Will aggregations be necessary? How much data will
be stored?

» What’s the basic unit of data? In an RDBMS, you have tables with columns and rows.
In a key-value store, you have keys pointing to amorphous values. In MongoDB,
the basic unit of data is the BSON document.

' A simple way to think about a “normalized data model” is that information is never stored more than once.
Thus, a one-to-many relationship between entities will always be split into at least two tables.

http://www.it-ebooks.info/

4.2

Designing an e-commerce data model 75

» What are the capabilities of your database? Once you understand the basic data type,
you need to know how to manipulate it. RDBMSs feature ad hoc queries and
joins, usually written in SQL while simple key-value stores permit fetching val-
ues only by a single key. MongoDB also allows ad hoc queries, but joins aren’t
supported.

Databases also diverge in the kinds of updates they permit. With an RDBMS,
you can update records in sophisticated ways using SQL and wrap multiple
updates in a transaction to get atomicity and rollback. MongoDB doesn’t sup-
port transactions in the traditional sense, but it does support a variety of atomic
update operations that can work on the internal structures of a complex docu-
ment. With simple key-value stores, you might be able to update a value, but
every update will usually mean replacing the value completely.

» What makes a good unique id or primary key for a record? There are exceptions, but
many schemas, regardless of the database system, have some unique key for
each record. Choosing this key carefully can make a big difference in how you
access your data and how it’s stored. If you’re designing a user’s collection, for
example, should you use an arbitrary value, a legal name, a username, or a
social security number as the primary key? It turns out that neither legal names
nor social security numbers are unique or even applicable to all users within a
given dataset.

In MongoDB choosing a primary key means picking what should go in the
_id field. The automatic object ids are good defaults, but not ideal in every
case. This is particularly important if you shard your data across multiple
machines because it determines where a certain record will go. We’ll discuss
this in much greater detail in chapter 12.

The best schema designs are always the product of deep knowledge of the database
you’re using, good judgment about the requirements of the application at hand, and
plain old experience. A good schema often requires experimentation and iteration,
such as when an application scales and performance considerations change. Don’t be
afraid to alter your schema when you learn new things; only rarely is it possible to fully
plan an application before its implementation. The examples in this chapter have
been designed to help you develop a good sense of schema design in MongoDB. Hav-
ing studied these examples, you’ll be well-prepared to design the best schemas for
your own applications.

Designing an e-commerce data model

The Twitter example application provided in chapter 3 demonstrated the basic
MongoDB features, but didn’t require much thought about its schema design. That’s
why, in this and in subsequent chapters, we’ll look at the much richer domain of
e-commerce. E-commerce has the advantage of including a large number of famil-
iar data modeling patterns. Plus, it’s not hard to imagine how products, categories,
product reviews, and orders are typically modeled in an RDBMS. This should make

http://www.it-ebooks.info/

76

4.2.1

CHAPTER 4 Document-oriented data

the upcoming examples more instructive because you’ll be able to compare them to
your preconceived notions of schema design.

E-commerce has typically been done with RDBMSs for a couple of reasons. The first
is that e-commerce sites generally require transactions, and transactions are an RDBMS
staple. The second is that, until recently, domains that require rich data models and
sophisticated queries have been assumed to fit best within the realm of the RDBMS.
The following examples call into question this second assumption.

Building an entire e-commerce back end isn’t practical within the space of this
book. Instead, we’ll pick out a handful of common and useful e-commerce entities,
such as products and customer reviews, and show how they might be modeled in
MongoDB. In particular, we’ll look at products and categories, users and orders, and
product reviews. For each entity, we’ll show an example document. Then, we’ll show
some of the database features that complement the document’s structure.

For many developers, data model goes hand in hand with object mapping, and for that
purpose you may have used an object-relational mapping library, such as Java’s Hiber-
nate framework or Ruby’s ActiveRecord. Such libraries can be useful for efficiently
building applications with a RDBMS, but they’re less necessary with MongoDB. This is
due in part to the fact that a document is already an objectlike representation. It’s
also partly due to the MongoDB drivers, which already provide a fairly high-level inter-
face to MongoDB. Without question, you can build applications on MongoDB using
the driver interface alone.

Object mappers can provide value by helping with validations, type checking, and
associations between models, and come standard in frameworks like Ruby on Rails.
Object mappers also introduce an additional layer of complexity between the program-
mer and the database that can obscure important query characteristics. You should
evaluate this tradeoff when deciding if your application should use an object mapper;
there are plenty of excellent applications written both with and without one.? We don’t
use an object mapper in any this book’s examples, and we recommend you first learn
about MongoDB without one.

Schema basics

Products and categories are the mainstays of any e-commerce site. Products, in a nor-
malized RDBMS model, tend to require a large number of tables. There’s a table for
basic product information, such as the name and SKU, but there will be other tables to
relate shipping information and pricing histories. This multitable schema will be facil-
itated by the RDBMS’s ability to join tables.

Modeling a product in MongoDB should be less complicated. Because collec-
tions don’t enforce a schema, any product document will have room for whichever
dynamic attributes the product needs. By using arrays in your document, you can
typically condense a multitable RDBMS representation into a single MongoDB collection.

2 To find out which object mappers are most current for your language of choice, consult the recommenda-
tions at mongodb.org.

http://mongodb.org
http://www.it-ebooks.info/

Designing an e-commerce data model 77

More concretely, listing 4.1 shows a sample product from a gardening store. It’s advis-
able to assign this document to a variable before inserting it to the database using
db.products.insert (yourVariable) to be able to run the queries discussed over the
next several pages.

Listing 4.1 A sample product document

{

_id: ObjectId("4c4b1476238d3b4dd5003981"), <—@) Unique object ID

slug: "wheelbarrow-9092",
sku: "9092", .
Unique slug

name: "Extra Large Wheelbarrow",
description: "Heavy duty wheelbarrow...",
deta%ls: { Nested
weight: 47, Q} document
weight_units: "lbs",
model num: 4039283402,
manufacturer: "Acme",
color: "Green"
¥
total_ reviews: 4,
average review: 4.5,
pricing: {
retail: 589700,
sale: 489700,
b
price history: [<+
{
retail: 529700,
sale: 429700,
start: new Date (2010, 4, 1),
end: new Date (2010, 4, 8)
}, One-to-many
{ relationship
retail: 529700,
sale: 529700,
start: new Date (2010, 4, 9),
end: new Date (2010, 4, 16)
b
1,
primary category: ObjectId("6a5bl476238d3b4dd5000048"), <+
category ids: [
ObjectId("6a5b1476238d3b4dd5000048"),

ObjectId("6a5b1476238d3b4dd5000049") Manydoqnany
1 relationship
main cat_id: ObjectId("6a5b1476238d3b4dd5000048"),
tags: ["tools", "gardening", "soil"],

The document contains the basic name, sku, and description fields. There’s also the
standard MongoDB object ID @ stored in the _id field. We discuss other aspects of
this document in the next section.

http://www.it-ebooks.info/

78

CHAPTER 4 Document-oriented data

UNIQUE SLUG

In addition, you've defined a slug @, wheelbarrow-9092, to provide a meaningful
URL. MongoDB users sometimes complain about the ugliness of object IDs in URLSs.
Naturally, you don’t want URLs that look like this:

http://mygardensite.org/products/4c4b1476238d3b4dd5003981

Meaningful IDs are so much better:

http://mygardensite.org/products/wheelbarrow-9092

These user-friendly permalinks are often called slugs. We generally recommend build-
ing a slug field if a URL will be generated for the document. Such a field should have
a unique index on it so that the value has fast query access and is guaranteed to be
unique. You could also store the slug in _id and use it as a primary key. We’ve chosen
not to in this case to demonstrate unique indexes; either way is acceptable. Assuming
you’re storing this document in the products collection, you can create the unique
index like this:

db.products.createIndex ({slug: 1}, {unique: true})

If you have a unique index on slug, an exception will be thrown if you try to insert a
duplicate value. That way, you can retry with a different slug if necessary. Imagine your
gardening store has multiple wheelbarrows for sale. When you start selling a new
wheelbarrow, your code will need to generate a unique slug for the new product.
Here’s how you’d perform the insert from Ruby:
@products.insert_one ({

:name => "Extra Large Wheelbarrow",

:sku => "9092",
:slug => "wheelbarrow-9092"})

Unless you specify otherwise, the driver automatically ensures that no errors were
raised. If the insert succeeds without raising an exception, you know you’ve chosen a
unique slug. But if an exception is raised, your code will need to retry with a new value
for the slug. You can see an example of catching and gracefully handling an exception
in section 7.3.2.

NESTED DOCUMENTS

Say you have a key, details @), that points to a subdocument containing various prod-
uct details. This key is totally different from the id field because it allows you to find
things inside an existing document. You’ve specified the weight, weight units, and the
manufacturer’s model number. You might store other ad hoc attributes here as well.
For instance, if you were selling seeds, you might include attributes for the expected
yield and time to harvest, and if you were selling lawnmowers, you could include
horsepower, fuel type, and mulching options. The details attribute provides a nice
container for these kinds of dynamic attributes.

http://www.it-ebooks.info/

Designing an e-commerce data model 79

You can also store the product’s current and past prices in the same document.
The pricing key points to an object containing retail and sale prices. price history,
by contrast, references a whole array of pricing options. Storing copies of documents
like this is a common versioning technique.

Next, there’s an array of tag names for the product. You saw a similar tagging exam-
ple in chapter 1. Because you can index array keys, this is the simplest and best way of
storing relevant tags on an item while at the same time assuring efficient queryability.

ONE-TO-MANY RELATIONSHIPS

What about relationships? You often need to relate to documents in other collections.
To start, you'll relate products to a category structure @. You probably want to define
a taxonomy of categories distinct from your products themselves. Assuming a separate
categories collection, you then need a relationship between a product and its primary
category @. This is a one-to-many relationship, since a product only has one primary
category, but a category can be the primary for many products.

IMANY-TO-MANY RELATIONSHIPS
You also want to associate each product with a list of relevant categories other than the
primary category. This relationship is many-to-many, since each product can belong
to more than one category and each category can contain multiple products. In an
RDMBS, you’d use a join table to represent a many-to-many relationship like this one.
Join tables store all the relationship references between two tables in a single table.
Using a SQL join, it’s then possible to issue a single query to retrieve a product with
all its categories, and vice versa.

MongoDB doesn’t support joins, so you need a different many-to-many strategy.
We've defined a field called category ids @ containing an array of object IDs. Each
object ID acts as a pointer to the _id field of some category document.

A RELATIONSHIP STRUCTURE

The next listing shows a sample category document. You can assign it to a new variable
and insert it into the categories collection using db.categories. insert (newCategory).
This will help you using it in forthcoming queries without having to type it again.

Listing 4.2 A category document

{

_id: ObjectId("6a5b1476238d3b4dd5000048"),
slug: "gardening-tools",
name: "Gardening Tools",
description: "Gardening gadgets galore!",
parent_id: ObjectId("55804822812cb336b78728£9"),
ancestors: [
{
name: "Home",
_id: ObjectId("558048£0812cb336b78728fa"),
slug: "home"

b

http://www.it-ebooks.info/

80

4.2.2

CHAPTER 4 Document-oriented data

name: "Outdoors",
_id: ObjectId("55804822812cb336b78728f9"),
slug: "outdoors"

}

If you go back to the product document and look carefully at the object IDs in its
category_ids field, you'll see that the product is related to the Gardening Tools cate-
gory just shown. Having the category_ids array key in the product document enables
all the kinds of queries you might issue on a many-to-many relationship. For instance,
to query for all products in the Gardening Tools category, the code is simple:

db.products.find ({category ids: ObjectId('6a5bl1476238d3b4dd5000048')})

To query for all categories from a given product, you use the $in operator:

db.categories.find ({_id: {$in: product['category ids'l}})

The previous command assumes the product variable is already defined with a com-
mand similar to the following:

product = db.products.findOne ({"slug": "wheelbarrow-9092"})

You’ll notice the standard _id, slug, name, and description fields in the category
document. These are straightforward, but the array of parent documents may not be.
Why are you redundantly storing such a large percentage of each of the document’s
ancestor categories?

Categories are almost always conceived of as a hierarchy, and there are many ways of
representing this in a database. For this example, assume that “Home” is the category
of products, “Outdoors” a subcategory of that, and “Gardening Tools” a subcategory of
that. MongoDB doesn’t support joins, so we’ve elected to denormalize the parent cate-
gory names in each child document, which means they’re duplicated. This way, when
querying for the Gardening Products category, there’s no need to perform additional
queries to get the names and URLs of the parent categories, Outdoors and Home.

Some developers would consider this level of denormalization unacceptable. But
for the moment, try to be open to the possibility that the schema is best determined by
the demands of the application, and not necessarily the dictates of theory. When you
see more examples of querying and updating this structure in the next two chapters,
the rationale will become clearer.

Users and orders

If you look at how you model users and orders, you’ll see another common relation-
ship: one-to-many. That is, every user has many orders. In an RDBMS, you’d use a for-
eign key in your orders table; here, the convention is similar. See the following listing.

http://www.it-ebooks.info/

Designing an e-commerce data model 81

Listing 4.3 An e-commerce order, with line items, pricing, and a shipping address

{
_id: ObjectId("6a5b1476238d3b4dd5000048"),
user id: ObjectId("4c4bl1476238d3b4dd5000001"),
state: "CART",
line items: [Denormalized

{ product
. . , " : .
_id: ObjectId("4c4b1476238d3b4dd5003981"), information

sku: "9092",
name: "Extra Large Wheelbarrow",
quantity: 1,
pricing: {
retail: 5897,
sale: 4897,
}
b
{
_id: ObjectId("4c4b1476238d3b4dd5003982"),
sku: "10027",
name: "Rubberized Work Glove, Black",
quantity: 2,
pricing: {
retail: 1499,
sale: 1299

}}
1,
shipping address: {
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215
1
sub_total: 6196

}

Denormalized
sum of sale
prices

The second order attribute, user_id, stores a given user’s _id. It’s effectively a pointer
to the sample user, which will be discussed in listing 4.4. This arrangement makes it easy
to query either side of the relationship. Finding all orders for a given user is simple:

db.orders.find ({user id: user[' id'l})
The query for getting the user for a particular order is equally simple:
db.users.findOne ({_id: order['user id'l})

Using an object ID as a reference in this way, it’s easy to build a one-to-many relation-
ship between orders and users.

THINKING WITH DOCUMENTS
We’ll now look at some other salient aspects of the order document. In general,
you’re using the rich representation afforded by the document data model. Order

http://www.it-ebooks.info/

82

CHAPTER 4 Document-oriented data

documents include both the line items and the shipping address. These attributes, in
a normalized relational model, would be located in separate tables. Here, the line
items are an array of subdocuments, each describing a product in the shopping cart.
The shipping address attribute points to a single object containing address fields.

This representation has several advantages. First, there’s a win for the human
mind. Your entire concept of an order, including line items, shipping address, and
eventual payment information, can be encapsulated in a single entity. When querying
the database, you can return the entire order object with one simple query. What’s
more, the products, as they appeared when purchased, are effectively frozen within
your order document. Finally, as you’ll see in the next two chapters, you can easily
query and modify this order document.

The user document (shown in listing 4.4) presents similar patterns, because it
stores a list of address documents along with a list of payment method documents. In
addition, at the top level of the document, you find the basic attributes common to
any user model. As with the slug field on your product, it’s smart to keep a unique
index on the username field.

Listing 4.4 A user document, with addresses and payment methods

{

~id: ObjectId("4c4bl1476238d3b4dd5000001"),
username: "kbanker",
email: "kylebankeregmail.com",
first_name: "Kyle",
last_name: "Banker",
hashed _password: "bdlcfal94c3a603e7186780824b04419",
addresses: [
{
name: "home",
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215
¥
{
name: "work",
street: "1 E. 23rd Street",
city: "New York",
state: "NY",
zip: 10010
}
1,
payment methods: [
{
name: "VISA",
payment_ token: "43f6baldfda6b8106dc7"

}

http://www.it-ebooks.info/

4.2.3

Designing an e-commerce data model 83

Reviews

We’ll close the sample data model with product reviews, shown in the following listing.
Each product can have many reviews, and you create this relationship by storing a
product id in each review.

Listing 4.5 A document representing a product review

{

_id: ObjectId("4c4bl1476238d3b4dd5000041"),

product_id: ObjectId("4c4b1476238d3b4dd5003981"),

date: new Date (2010, 5, 7),

title: "Amazing",

text: "Has a squeaky wheel, but still a darn good wheelbarrow.",

rating: 4,

user_id: ObjectId("4c4bl476238d3b4dd5000042"),

username: "dgreenthumb",

helpful votes: 3,

voter_ ids: [
ObjectId("4c4b1476238d3b4dd5000033"),
ObjectId("7a4£0376238d3b4dd5000003"),
ObjectId("92c21476238d3b4dd5000032")

Most of the remaining attributes are self-explanatory. You store the review’s date, title,
and text; the rating provided by the user; and the user’s ID. But it may come as a sur-
prise that you store the username as well. If this were an RDBMS, you’d be able to pull
in the username with a join on the users table. Because you don’t have the join option
with MongoDB, you can proceed in one of two ways: either query against the user col-
lection for each review or accept some denormalization. Issuing a query for every
review might be unnecessarily costly when username is extremely unlikely to change,
so here we’ve chosen to optimize for query speed rather than normalization.

Also noteworthy is the decision to store votes in the review document itself. It’s
common for users to be able to vote on reviews. Here, you store the object ID of each
voting user in an array of voter IDs. This allows you to prevent users from voting on a
review more than once, and it also gives you the ability to query for all the reviews a
user has voted on. You cache the total number of helpful votes, which among other
things allows you to sort reviews based on helpfulness. Caching is useful because Mon-
goDB doesn’t allow you to query the size of an array within a document. A query to
sort reviews by helpful votes, for example, is much easier if the size of the voting array
is cached in the helpful votes field.

At this point, we’ve covered a basic e-commerce data model. We’ve seen the basics
of a schema with subdocuments, arrays, one-to-many and many-to-many relationships,
and how to use denormalization as a tool to make your queries simpler. If this is
your first time looking at a MongoDB data model, contemplating the utility of this
model may require a leap of faith. Rest assured that the mechanics of all of this—from

http://www.it-ebooks.info/

84

4.3

4.3.1

CHAPTER 4 Document-oriented data

adding votes uniquely, to modifying orders, to querying products intelligently—will be
explored and explained in the next few chapters.

Nuts and bolts: On databases, collections,
and documents

We’re going to take a break from the e-commerce example to look at some of the core
details of using databases, collections, and documents. Much of this involves defini-
tions, special features, and edge cases. If you've ever wondered how MongoDB allo-
cates data files, which data types are strictly permitted within a document, or what the
benefits of using capped collections are, read on.

Databases

A database is a namespace and physical grouping of collections and their indexes. In
this section, we’ll discuss the details of creating and deleting databases. We’ll also
jump down a level to see how MongoDB allocates space for individual databases on
the filesystem.

IMANAGING DATABASES

There’s no explicit way to create a database in MongoDB. Instead, a database is cre-
ated automatically once you write to a collection in that database. Have a look at this
Ruby code:

connection = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')
db = connection.database

Recall that the JavaScript shell performs this connection when you start it, and then
allows you to select a database like this:

use garden

Assuming that the database doesn’t exist already, the database has yet to be created on
disk even after executing this code. All you’ve done is instantiate an instance of the
class Mongo: : DB, which represents a MongoDB database. Only when you write to a col-
lection are the data files created. Continuing on in Ruby,

products = db['products']
products.insert one ({:name => "Extra Large Wheelbarrow"})

When you call insert_one on the products collection, the driver tells MongoDB to
insert the product document into the garden.products collection. If that collec-
tion doesn’t exist, it’s created; part of this involves allocating the garden database
on disk.

You can delete all the data in this collection by calling:

products.find ({}) .delete many

http://www.it-ebooks.info/

Nuts and bolis: On databases, collections, and documents 85

This removes all documents which match the filter {}, which is all documents in the
collection. This command doesn’t remove the collection itself; it only empties it. To
remove a collection entirely, you use the drop method, like this:

products.drop

To delete a database, which means dropping all its collections, you issue a special com-
mand. You can drop the garden database from Ruby like so:

db.drop

From the MongoDB shell, run the dropDatabase () method using JavaScript:

use garden
db.dropDatabase () ;

Be careful when dropping databases; there’s no way to undo this operation since it
erases the associated files from disk. Let’s look in more detail at how databases store
their data.

DATA FILES AND ALLOCATION

When you create a database, MongoDB allocates a set of data files on disk. All collec-
tions, indexes, and other metadata for the database are stored in these files. The data
files reside in whichever directory you designated as the dbpath when starting mongod.
When left unspecified, mongod stores all its files in /data/db.? Let’s see how this direc-
tory looks after creating the garden database:

$ cd /data/db
$ 1ls -lah

drwxr-xr-x 81 pbakkum admin 2.7K Jul 1 10:42

drwxr-xr-x 5 root admin 170B Sep 19 2012 ..
-rw------- 1 pbakkum admin 64M Jul 1 10:43 garden.O
e e 1 pbakkum admin 128M Jul 1 10:42 garden.l
STW------- 1 pbakkum admin 16M Jul 1 10:43 garden.ns
-rWXr-Xr-X 1 pbakkum admin 3B Jul 1 08:31 mongod.lock

These files depend on the databases you’ve created and database configuration, so
they will likely look different on your machine. First note the mongod.lock file, which
stores the server’s process ID. Never delete or alter the lock file unless you’re recover-
ing from an unclean shutdown. If you start mongod and get an error message about the
lock file, there’s a good chance that you’ve shut down uncleanly, and you may have to
initiate a recovery process. We discuss this further in chapter 11.

The database files themselves are all named after the database they belong to. gar-
den.ns is the first file to be generated. The file’s extension, ns, stands for namespaces.
The metadata for each collection and index in a database gets its own namespace file,

3 On Windows, it’s c\data\db. If you install MongoDB with a package manager, it may store the files elsewhere.
For example using Homebrew on OS X places your data files in /usr/local/var/mongodb.

http://www.it-ebooks.info/

86

CHAPTER 4 Document-oriented data

which is organized as a hash table. By default, the .ns file is fixed to 16 MB, which lets
it store approximately 26,000 entries, given the size of their metadata. This means that
the sum of the number of indexes and collections in your database can’t exceed
26,000. There’s usually no good reason to have this many indexes and collections, but
if you do need more than this, you can make the file larger by using the --nssize
option when starting mongod.

In addition to creating the namespace file, MongoDB allocates space for the collec-
tions and indexes in files ending with incrementing integers starting with 0. Study the
directory listing and you’ll see two core data files, the 64 MB garden. 0 and the 128 MB
garden.l. The initial size of these files often comes as a shock to new users. But
MongoDB favors this preallocation to ensure that as much data as possible will be
stored contiguously. This way, when you query and update the data, those operations
are more likely to occur in proximity rather than being spread across the disk.

As you add data to your database, MongoDB continues to allocate more data files.
Each new data file gets twice the space of the previously allocated file until the largest
preallocated size of 2 GB is reached. At that point, subsequent files will all be 2 GB.
Thus, garden.2 will be 256 MB, garden.3 will use 512 MB, and so forth. The assump-
tion here is that if the total data size is growing at a constant rate, the data files
should be allocated increasingly, which is a common allocation strategy. Certainly one
consequence is that the difference between allocated space and actual space used can
be high.*

You can always check the amount of space used versus the amount allocated by
using the stats command in the JavaScript shell:

> db.stats ()

"db" : "garden",
"collections" : 3,
"objects" : 5,
"avgObjsize" : 49.6,
"dataSize" : 248,
"storageSize" : 12288,
"numExtents" : 3,
"indexes" : 1,
"indexSize" : 8176,
"fileSize" : 201326592,
"nsSizeMB" : 16,
"dataFileVersion" : {

"major" : 4,

"minor" : 5
b

nok" : 1

* This may present a problem in deployments where space is at a premium. For those situations, you may use

some combination of the --noprealloc and --smallfiles server options.

http://www.it-ebooks.info/

4.3.2

Nuts and bolis: On databases, collections, and documents 87

In this example, the fileSize field indicates the total size of files allocated for this
database. This is simply the sum of the sizes of the garden database’s two data files,
garden.0 and garden.1. The difference between dataSize and storageSize is trick-
ier. The former is the actual size of the BSON objects in the database; the latter
includes extra space reserved for collection growth and also unallocated deleted
space.’ Finally, the indexSize value shows the total size of indexes for this database.

It’s important to keep an eye on total index size; database performance will be best
when all utilized indexes can fit in RAM. We’ll elaborate on this in chapters 8 and 12
when presenting techniques for troubleshooting performance issues.

What does this all mean when you plan a MongoDB deployment? In practical
terms, you should use this information to help plan how much disk space and RAM
you’ll need to run MongoDB. You should have enough disk space for your expected
data size, plus a comfortable margin for the overhead of MongoDB storage, indexes, and
room to grow, plus other files stored on the machine, such as log files. Disk space is gen-
erally cheap, so it’s usually best to allocate more space than you think you’ll need.

Estimating how much RAM you’ll need is a little trickier. You’ll want enough RAM
to comfortably fit your “working set” in memory. The working set is the data you touch
regularly in running your application. In the e-commerce example, you’ll probably
access the collections we covered, such products and categories collections, frequently
while your application is running. These collections, plus their overhead and the size
of their indexes, should fit into memory; otherwise there will be frequent disk accesses
and performance will suffer. This is perhaps the most common MongoDB perfor-
mance issue. We may have other collections, however, that we only need to access
infrequently, such as during an audit, which we can exclude from the working set. In
general, plan ahead for enough memory to fit the collections necessary for normal
application operation.

Collections

Collections are containers for structurally or conceptually similar documents. Here,
we’ll describe creating and deleting collections in more detail. Then we’ll present
MongoDB’s special capped collections, and we’ll look at examples of how the core
server uses collections internally.

IMANAGING COLLECTIONS

As you saw in the previous section, you create collections implicitly by inserting docu-
ments into a particular namespace. But because more than one collection type exists,
MongoDB also provides a command for creating collections. It provides this com-
mand from the JavaScript shell:

db.createCollection("users")

5 Technically, collections are allocated space inside each data file in chunks called extents. The storageSize
is the total space allocated for collection extents.

http://www.it-ebooks.info/

88

CHAPTER 4 Document-oriented data

When creating a standard collection, you have the option of preallocating a specific
number of bytes. This usually isn’t necessary but can be done like this in the Java-
Script shell:

db.createCollection ("users", {size: 20000})

Collection names may contain numbers, letters, or . characters, but must begin with
a letter or number. Internally, a collection name is identified by its namespace
name, which includes the name of the database it belongs to. Thus, the products
collection is technically referred to as garden.products when referenced in a mes-
sage to or from the core server. This fully qualified collection name can’t be longer
than 128 characters.

It’s sometimes useful to include the . character in collection names to provide a
kind of virtual namespacing. For instance, you can imagine a series of collections with
titles like the following:

products.categories
products.images
products.reviews

Keep in mind that this is only an organizational principle; the database treats collec-
tions named with a . like any other collection.

Collections can also be renamed. As an example, you can rename the products col-
lection with the shell’s renameCollection method:

db.products.renameCollection ("store products")

CAPPED COLLECTIONS

In addition to the standard collections you’ve created so far, it’s possible to create
what’s known as a capped collection. Capped collections are originally designed for
high-performance logging scenarios. They’re distinguished from standard collections
by their fixed size. This means that once a capped collection reaches its maximum
size, subsequent inserts will overwrite the least-recently-inserted documents in the col-
lection. This design prevents users from having to prune the collection manually
when only recent data may be of value.

To understand how you might use a capped collection, imagine you want to
keep track of users’ actions on your site. Such actions might include viewing a prod-
uct, adding to the cart, checking out, and purchasing. You can write a script to sim-
ulate logging these user actions to a capped collection. In the process, you’ll see
some of these collections’ interesting properties. The next listing presents a simple
demonstration.

http://www.it-ebooks.info/

Nuts and bolis: On databases, collections, and documents 89

Listing 4.6 Simulating the logging of user actions to a capped collection

require 'mongo'

VIEW_PRODUCT = 0 # action type constants Action
ADD TO CART = 1 types
CHECKOUT = 2
PURCHASE =3
client = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')
client [:user_ actions] .drop
actions = client[:user actions, :capped => true, :size => 16384] garqgmuser
actions.create _acuoqs
collection
500.times do |n| # loop 500 times, using n as the iterator
doc = {
:username => "kbanker",
:action_code => rand(4), # random value between 0 and 3, inclusive
:time => Time.now.utc,
:n =>n Sample
} document
actions.insert one (doc)
end

First, you create a 16 KB capped collection called user actions using client.® Next,
you insert 500 sample log documents @. Each document contains a username, an
action code (represented as a random integer from 0 through 3), and a timestamp.
You’ve included an incrementing integer, n, so that you can identify which documents
have aged out. Now you’ll query the collection from the shell:

> use garden
> db.user_actions.count () ;
160

Even though you’ve inserted 500 documents, only 160 documents exist in the collec-
tion.” If you query the collection, you’ll see why:

db.user_ actions.find() .pretty();

{

"_id" : ObjectId("51d1c69878b10ela0e000040"),

"username" : "kbanker",

"action_code" : 3,

"time" : ISODate("2013-07-01T18:12:40.443Z2Z"),
"n" : 340

® The equivalent creation command from the shell would be db.createCollection ("user actions",
{capped: true, size: 16384}).

7 This number may vary depending on your version of MongoDB; the notable part is that it’s less than the num-
ber of documents inserted.

http://www.it-ebooks.info/

90

CHAPTER 4 Document-oriented data

" id" : ObjectId("51d1c69878b10ela0e000041"),
"username" : "kbanker",

"action code" : 2,

"time" : ISODate("2013-07-01T18:12:40.4442"),
"n" : 341

"_id" : ObjectId("51d1c69878b10ela0e000042"),

"username" : "kbanker",

"action code" : 2,

"time" : ISODate("2013-07-01T18:12:40.4452"),
"n' : 342

The documents are returned in order of insertion. If you look at the n values, it’s clear
that the oldest document in the collection is the collection where n is 340, which
means that documents 0 through 339 have already aged out. Because this capped col-
lection has a maximum size of 16,384 bytes and contains only 160 documents, you
can conclude that each document is about 102 bytes in length. You’ll see how to
confirm this assumption in the next subsection. Try adding a field to the example to
observe how the number of documents stored decreases as the average document
size increases.

In addition to the size limit, MongoDB allows you to specify a maximum number
of documents for a capped collection with the max parameter. This is useful because
it allows finer-grained control over the number of documents stored. Bear in mind
that the size configuration has precedence. Creating a collection this way might
look like this:

> db.createCollection ("users.actions",
{capped: true, size: 16384, max: 100})

Capped collections don’t allow all operations available for a normal collection. For
one, you can’t delete individual documents from a capped collection, nor can you
perform any update that will increase the size of a document. Capped collections were
originally designed for logging, so there was no need to implement the deletion or
updating of documents.

TTL COLLECTIONS

MongoDB also allows you to expire documents from a collection after a certain
amount of time has passed. These are sometimes called time-to-live (TTL) collections,
though this functionality is actually implemented using a special kind of index. Here’s
how you would create such a TTL index:

> db.reviews.createIndex ({time field: 1}, {expireAfterSeconds: 3600})

This command will create an index on time field. This field will be periodically
checked for a timestamp value, which is compared to the current time. If the difference

http://www.it-ebooks.info/

Nuts and bolis: On databases, collections, and documents 91

between time_field and the current time is greater than your expireAfterSeconds
setting, then the document will be removed automatically. In this example, review
documents will be deleted after an hour.

Using a TTL index in this way assumes that you store a timestamp in time_field.
Here’s an example of how to do this:

> db.reviews.insert ({
time_field: new Date(),

})...

This insertion sets time field to the time at insertion. You can also insert other time-
stamp values, such as a value in the future. Remember, TTL indexes just measure the
difference between the indexed value and the current time, to compare to expire-
AfterSeconds. Thus, if you put a future timestamp in this field, it won’t be deleted
until that timestamp plus the expireAfterSeconds value. This functionality can be
used to carefully manage the lifecycle of your documents.

TTL indexes have several restrictions. You can’t have a TTL index on _id, or on a
field used in another index. You also can’t use TTL indexes with capped collections
because they don’t support removing individual documents. Finally, you can’t have com-
pound TTL indexes, though you can have an array of timestamps in the indexed field.
In that case, the TTL property will be applied to the earliest timestamp in the collection.

In practice, you may never find yourself using TTL collections, but they can be a
valuable tool in some cases, so it’s good to keep them in mind.

SYSTEM COLLECTIONS

Part of MongoDB’s design lies in its own internal use of collections. Two of these spe-
cial system collections are system.namespaces and system.indexes. You can query
the former to see all the namespaces defined for the current database:

db.system.namespaces.find () ;

>

{ "name" : "garden.system.indexes" }

{ "name" : "garden.products.$ id " }

{ "name" : "garden.products" }

{ "name" : "garden.user actions.$ id " }

{ "name" : "garden.user actions", "options" : { "create" : "user actions",
"capped" : true, "size" : 1024 } }

The first collection, system.indexes, stores each index definition for the current
database. To see a list of indexes you've defined for the garden database, query the
collection:

> db.system.indexes.find() ;

{ mvr 2 1, "key" : { " _idn 1}, "ns" : "garden.products", "name" : " id " }
{ "w' o 1, "key" : { "oidn 1 }, "ns" : "garden.user actions", "name"

noig on }

{ "vv : 1, "key" : { "time field" : 1 }, "name" : "time field 1", "ns"

"garden.reviews", "expireAfterSeconds" : 3600 }

http://www.it-ebooks.info/

92

4.3.3

CHAPTER 4 Document-oriented data

system.namespaces and system.indexes are both standard collections, and access-
ing them is a useful feature for debugging. MongoDB also uses capped collections for
replication, a feature that keeps two or more mongod servers in sync with each other.
Each member of a replica set logs all its writes to a special capped collection called
oplog.rs. Secondary nodes then read from this collection sequentially and apply new
operations to themselves. We’ll discuss replication in more detail in chapter 10.

Documents and insertion
We’ll round out this chapter with some details on documents and their insertion.

DOCUMENT SERIALIZATION, TYPES, AND LIMITS
All documents are serialized to BSON before being sent to MongoDB; they’re later
deserialized from BSON. The driver handles this process and translates it from and to
the appropriate data types in its programming language. Most of the drivers provide a
simple interface for serializing from and to BSON; this happens automatically when
reading and writing documents. You don’t need to worry about this normally, but we’ll
demonstrate it explicitly for educational purposes.

In the previous capped collections example, it was reasonable to assume that the
sample document size was roughly 102 bytes. You can check this assumption by using
the Ruby driver’s BSON serializer:

doc = {
: id => BSON::0ObjectId.new,
:username => "kbanker",
:action_code => rand(5),
:time => Time.now.utc,
n o=> 1

}

bson = doc.to_bson
puts "Document #{doc.inspect} takes up #{bson.length} bytes as BSON"

The serialize method returns a byte array. If you run this code, you’ll get a BSON
object 82 bytes long, which isn’t far from the estimate. The difference between the
82-byte document size and the 102-byte estimate is due to normal collection and
document overhead. MongoDB allocates a certain amount of space for a collection,
but must also store metadata. Additionally, in a normal (uncapped) collection,
updating a document can make it outgrow its current space, necessitating a move to
a new location and leaving an empty space in the collection’s memory.® Characteris-
tics like these create a difference in the size of your data and the size MongoDB uses
on disk.

8 For more details take a look at the padding factor configuration directive. The padding factor ensures that
there’s some room for the document to grow before it has to be relocated. The padding factor starts at 1, so
in the case of the first insertion, there’s no additional space allocated.

http://www.it-ebooks.info/

Nuts and bolis: On databases, collections, and documents 93

Deserializing BSON is as straightforward with a little help from the StringIO class.
Try running this Ruby code to verify that it works:
string io = StringIO.new(bson)
deserialized doc = String.from bson(string io)

puts "Here's our document deserialized from BSON:"
puts deserialized doc.inspect

Note that you can’t serialize just any hash data structure. To serialize without error, the
key names must be valid, and each of the values must be convertible into a BSON type.
A valid key name consists of a string with a maximum length of 255 bytes. The string
may consist of any combination of ASCII characters, with three exceptions: it can’t
begin with a $, it must not contain any . characters, and it must not contain the null
byte, except in the final position. When programming in Ruby, you may use symbols
as hash keys, but they’ll be converted into their string equivalents when serialized.

It may seem odd, but the key names you choose affect your data size because key
names are stored in the documents themselves. This contrasts with an RDBMS, where
column names are always kept separate from the rows they refer to. When using
BSON, if you can live with dob in place of date_of_birth as a key name, you’ll save 10
bytes per document. That may not sound like much, but once you have a billion such
documents, you’ll save nearly 10 GB of data size by using a shorter key name. This
doesn’t mean you should go to unreasonable lengths to ensure small key names; be
sensible. But if you expect massive amounts of data, economizing on key names will
save space.

In addition to valid key names, documents must contain values that can be serial-
ized into BSON. You can view a table of BSON types, with examples and notes, at http://
bsonspec.org. Here, we’ll only point out some of the highlights and gotchas.

STRINGS

All string values must be encoded as UTF-8. Though UTF-8 is quickly becoming the
standard for character encoding, there are plenty of situations when an older encod-
ing is still used. Users typically encounter issues with this when importing data gener-
ated by legacy systems into MongoDB. The solution usually involves either converting
to UTF-8 before inserting, or, bearing that, storing the text as the BSON binary type.’

NUMBERS

BSON specifies three numeric types: double, int, and long. This means that BSON can
encode any IEEE floating-point value and any signed integer up to 8 bytes in length.
When serializing integers in dynamic languages, such as Ruby and Python, the driver
will automatically determine whether to encode as an int or a long. In fact, there’s
only one common situation where a number’s type must be made explicit: when
you're inserting numeric data via the JavaScript shell. JavaScript, unhappily, natively

¢ Incidentally, if you're new to character encodings, you owe it to yourself to read Joel Spolsky’s well-known
introduction (http://mng.bz/LVO6).

http://bsonspec.org
http://bsonspec.org
http://mng.bz/LVO6
http://www.it-ebooks.info/

94

CHAPTER 4 Document-oriented data

supports only a single numeric type called Number, which is equivalent to an IEEE 754
Double. Consequently, if you want to save a numeric value from the shell as an integer,
you need to be explicit, using either NumberLong () or NumberInt (). Try this example:

db.numbers.save ({n: 5});
db.numbers.save ({n: NumberLong(5)}) ;

You've saved two documents to the numbers collection, and though their values are
equal, the first is saved as a double and the second as a long integer. Querying for all
documents where n is 5 will return both documents:

> db.numbers.find ({n: 5});
{ "_id" : ObjectId("4c581c98d5bbeb2365a838£f9"), "n" : 5 }
{ " id" : ObjectId("4c581c9bdSbbeb2365a838fa"), "n" : NumberLong(5) }

You can see that the second value is marked as a long integer. Another way to see
this is to query by BSON type using the special $type operator. Each BSON type is
identified by an integer, beginning with 1. If you consult the BSON spec at http://
bsonspec.org, you’ll see that doubles are type 1 and 64-bit integers are type 18. Thus,
you can query the collection for values by type:

db.numbers.find ({n: {Stype: 1}});

> {
{ v id" : ObjectId("4c581c98d5bbeb2365a838£9"), "n" : 5 }

> db.numbers.find ({n: {Stype: 18}});

{ " _id" : ObjectId("4c581c9bdSbbeb2365a838fa"), "n" : NumberLong(5) }

This verifies the difference in storage. You might never use the $type operator in pro-
duction, but as seen here, it’s a great tool for debugging.

The only other issue that commonly arises with BSON numeric types is the lack of
decimal support. This means that if you’re planning on storing currency values in
MongoDB, you need to use an integer type and keep the values in cents.

DATETIMES

The BSON datetime type is used to store temporal values. Time values are represented
using a signed 64-bit integer marking milliseconds since the Unix epoch. A negative
value marks milliseconds prior to the epoch."

A couple usage notes follow. First, if you're creating dates in JavaScript, keep in
mind that months in JavaScript dates are 0-based. This means that new Date (2011, 5,
11) will create a date object representing June 11, 2011. Next, if you’re using the Ruby
driver to store temporal data, the BSON serializer expects a Ruby Time object in UTC.
Consequently, you can’t use date classes that maintain a time zone because a BSON
datetime can’t encode that data.

19 The Unix epoch is defined as midnight, January 1, 1970, coordinated universal time (UTC). We discuss epoch
time briefly in section 3.2.1.

http://bsonspec.org
http://bsonspec.org
http://www.it-ebooks.info/

Nuts and bolis: On databases, collections, and documents 95

VIRTUAL TYPES

What if you must store your times with their time zones? Sometimes the basic BSON
types don’t suffice. Though there’s no way to create a custom BSON type, you can
compose the various primitive BSON values to create your own virtual type in a sub-
document. For instance, if you wanted to store times with zone, you might use a docu-
ment structure like this, in Ruby:

time_with_zone: ({
time: new Date(),
zone: "EST"

It’s not difficult to write an application so that it transparently handles these compos-
ite representations. This is usually how it’s done in the real world. For example,
Mongo-Mapper, an object mapper for MongoDB written in Ruby, allows you to define
to mongo and from mongo methods for any object to accommodate these sorts of cus-
tom composite types.

LIMITS ON DOCUMENTS

BSON documents in MongoDB v2.0 and later are limited to 16 MB in size."! The limit
exists for two related reasons. First, it’s there to prevent developers from creating
ungainly data models. Though poor data models are still possible with this limit, the
16 MB limit helps discourage schemas with oversized documents. If you find yourself
needing to store documents greater than 16 MB, consider whether your schema
should split data into smaller documents, or whether a MongoDB document is even
the right place to store such information—it may be better managed as a file.

The second reason for the 16 MB limit is performance-related. On the server side,
querying a large document requires that the document be copied into a buffer before
being sent to the client. This copying can get expensive, especially (as is often the
case) when the client doesn’t need the entire document.!? In addition, once sent,
there’s the work of transporting the document across the network and then deserializ-
ing it on the driver side. This can become especially costly if large batches of multi-
megabyte documents are being requested at once.

MongoDB documents are also limited to a maximum nesting depth of 100. Nesting
occurs whenever you store a document within a document. Using deeply nested docu-
ments—for example, if you wanted to serialize a tree data structure to a MongoDB

"I The number has varied by server version and is continually increasing. To see the limit for your server version,
run db.isMaster () in the shell and examine the maxBsonObjectSize field. If you can’t find this field,
then the limit is 4 MB (and you’re using a very old version of MongoDB). You can find more on limits like
this at http://docs.mongodb.org/manual/reference/limits.

12 As you'll see in the next chapter, you can always specify which fields of a document to return in a query to
limit response size. If you’re doing this frequently, it may be worth reevaluating your data model.

http://docs.mongodb.org/manual/reference/limits
http://www.it-ebooks.info/

96

44

CHAPTER 4 Document-oriented data

document—results in documents that are difficult to query and can cause problems
during access. These types of data structures are usually accessed through recursive
function calls, which can outgrow their stack for especially deeply nested documents.
If you find yourself with documents hitting the size or nesting limits, you’re proba-
bly better off splitting them up, modifying your data model, or using an extra collec-
tion or two. If you’re storing large binary objects, like images or videos, that’s a slightly
different case. See appendix C for techniques on handling large binary objects.

BULK INSERTS
As soon as you have valid documents, the process of inserting them is straightforward.
Most of the relevant details about inserting documents, including object ID genera-
tion, how inserts work on the network layer, and checking for exceptions, were cov-
ered in chapter 3. But one final feature, bulk inserts, is worth discussing here.

All of the drivers make it possible to insert multiple documents at once. This can be
extremely handy if you’re inserting lots of data, as in an initial bulk import or a migra-
tion from another database system. Here’s a simple Ruby example of this feature:

docs = [# define an array of documents
{ :username => 'kbanker' },
{ :username => 'pbakkum' },
{ :username => 'sverch' }
]
@col = @db['test_bulk insert']
@ids = @col.insert_many (docs) # pass the entire array to insert
puts "Here are the ids from the bulk insert: #{@ids.inspect}"

Instead of returning a single object ID, a bulk insert returns an array with the object
IDs of all documents inserted. This is standard for MongoDB drivers.

Bulk inserts are useful mostly for performance. Inserting this way means only a sin-
gle roundtrip of communication to the server, rather than three separate roundtrips.
This method has a limit, however, so if you want to insert a million documents, you’ll
have to split this into multiple bulk inserts of a group of documents."®

Users commonly ask what the ideal bulk insert size is, but the answer to this is
dependent on too many factors to respond concretely, and the ideal number can
range from 10 to 200. Benchmarking will be the best counsel in this case. The only
limitation imposed by the database here is a 16 MB cap on any one insert operation.
Experience shows that the most efficient bulk inserts will fall well below this limit.

Summary

We’ve covered a lot of ground in this chapter; congratulations for making it this far!
We began with a theoretical discussion of schema design and then proceeded to
outline the data model for an e-commerce application. This gave you a chance to see

13 The limit for bulk inserts is 16 MB.

http://www.it-ebooks.info/

Summary 97

what documents might look like in a production system, and it should have started
you thinking in a more concrete way about the differences between schemas in
RDMBSs and MongoDB.

We ended the chapter with a harder look at databases, documents, and collections;
you may return to this section later on for reference. We’ve explained the rudiments
of MongoDB, but we haven’t started moving data around. That will all change in the
next chapter, where you’ll explore the power of ad hoc queries.

http://www.it-ebooks.info/

Constructing queries

This chapter covers

= Querying an e-commerce data model
® The MongoDB query language in detail
m Query selectors and options

MongoDB doesn’t use SQL. It instead features its own JSON-like query language.
You’ve explored this language throughout the book, but now let’s turn to some
meatier, real-world examples. You'll revisit the e-commerce data model introduced
in the previous chapter and present a variety of queries against it. Among the que-
ries you’ll practice are _id lookups, ranges, ordering, and projections. This chapter
then surveys the MongoDB query language as a whole, looking at each available
query operator in detail.

Keep in mind as you’re reading this chapter that MongoDB’s query language and
aggregation functions (which chapter 6 covers) are still works in progress, and refine-
ments are being added with each release. As it stands, mastering queries and aggre-
gations in MongoDB isn’t so much a matter of mapping out every nook as it is
finding the best ways to accomplish everyday tasks. Through the examples in this
chapter, you’ll learn the clearest routes to take. By the end of the chapter, you should
have a good intuitive understanding of queries in MongoDB, and you’ll be ready to
apply these tools to the design of application schemas.

98

http://www.it-ebooks.info/

5.1

511

E-commerce queries 99

E-commerce queries

This section continues our exploration of the e-commerce data model sketched out in
the previous chapter. You've defined a document structure for products, categories,
users, orders, and product reviews. Now, with that structure in mind, we’ll show you
how you might query these entities in a typical e-commerce application. Some of these
queries are simple. For instance, _id lookups shouldn’t be a mystery at this point. But
we’ll also show you a few more sophisticated patterns, including querying for and dis-
playing a category hierarchy, as well as providing filtered views of product listings. In
addition, we’ll keep efficiency in mind by looking at possible indexes for some of
these queries.

Products, categories, and reviews

Most e-commerce applications provide at least two basic views of products and catego-
ries. First is the product home page, which highlights a given product, displays
reviews, and gives some sense of the product’s categories. Second is the product listing
page, which allows users to browse the category hierarchy and view thumbnails of all
the products within a selected category. Let’s begin with the product home page, in
many ways the simpler of the two.

Imagine that your product page URLs are keyed on a product slug (you learned
about these userfriendly permalinks in chapter 4). In that case, you can get all the
data you need for your product page with the following three queries:
product = db.products.findOne ({'slug': 'wheel-barrow-9092'})

db.categories.findOne ({' id': product['main cat id'l})
db.reviews.find ({ 'product_id': product[' id']})

The first query finds the product with the slug wheel-barrow-9092. Once you have
your product, you query for its category information with a simple id query on the
categories collection. Finally, you issue another simple lookup that gets all the reviews
associated with the product.

FINDONE VS. FIND QUERIES

You’ll notice that the first two queries use the findone method but the last uses find
instead. All of the MongoDB drivers provide these two methods, so it’s worth reviewing
the difference between them. As discussed in chapter 3, £ind returns a cursor object,
whereas findOne returns a document. The findOne method is similar to the following,
though a cursor is returned even when you apply a limit:

db.products.find ({'slug': 'wheel-barrow-9092'}).limit (1)

If you're expecting a single document, findOne will return that document if it exists.
If you need to return multiple documents, use find. You’ll then need to iterate over
that cursor somewhere in your application.

If your findOne query matches multiple items in the database, it’ll return the first
item in the natural sort order of the documents in the collection. In most cases (but

http://www.it-ebooks.info/

100

CHAPTER 5 Constructing queries

not always) this is the same order that the documents were inserted into the collec-
tion, and for capped collections, it’s always the case. If you expect multiple result doc-
uments, you should almost always use a £ind query or explicitly sort the results.

Now look again at the product page queries. See anything unsettling? If the query
for reviews seems a bit liberal, you’re right. This query says to return all reviews for the
given product, but doing so wouldn’t be prudent in cases where a product had hun-
dreds of reviews.

SKIP, LIMIT, AND SORT QUERY OPTIONS
Most applications paginate reviews, and for enabling this MongoDB provides skip and
limit options. You can use these options to paginate the review document like this:

db.reviews.find ({'product id': product[' id'l}).skip(0).limit (12)

Notice how you set these options by calling the skip and limit methods on the
returned value of find. This can be confusing because it’s a different pattern than you
usually see, even in other MongoDB drivers. They appear to be called after the query,
but the sorting and limiting parameters are sent with the query and handled by the
MongoDB server. This syntax pattern, called method chaining, is intended to make it
easier to build queries.

You also want to display reviews in a consistent order, which means you have to sort
your query results. If you want to sort by the number of helpful votes received by each
review, you can specify that easily:

db.reviews.find ({ 'product id': product[' id']}).
sort ({'helpful votes': -1}).
limit (12)

In short, this query tells MongoDB to return the first 12 reviews sorted by the total
number of helpful votes in descending order. Now, with skip, 1imit, and sort in
place, you need to decide whether to paginate in the first place. For this, you can issue
a count query. You then use the results of the count in combination with the page of
reviews you want. Your queries for the product page are complete:

page number = 1
product = db.products.findOne ({'slug': 'wheel-barrow-9092'})
category = db.categories.findOne ({' id': product['main cat id'l})
reviews_count = db.reviews.count ({'product_id': product[' id']l})
reviews = db.reviews.find ({'product id': product[' id']}).
skip((page_number - 1) * 12).
limit (12).
sort ({'helpful votes': -1})

The order in which you call skip, 1imit, and sort in the JavaScript shell doesn’t matter.

These lookups should use indexes. You've already seen that slugs should have a
unique index on them because they serve as alternate primary keys, and you know
that all _id fields will automatically have a unique index for standard collections. But

http://www.it-ebooks.info/

5.1.2

E-commerce queries 101

it’s also important that you have an index on any fields acting as references. In this
case, that would include the user id and product_id fields on the reviews collection.

PRODUCT LISTING PAGE
With the queries for the product home pages in place, you can now turn to the prod-
uct listing page. Such a page will display a given category with a browsable listing of
products. Links to parent and sibling categories will also appear on the page.

A product listing page is defined by its category; thus, requests for the page will use
the category’s slug:

page number = 1
category = db.categories.findOne ({'slug': 'gardening-tools'})
siblings = db.categories.find({'parent id': category[' id'l})
products = db.products.find({'category id': category[' id'l})
.skip ((page_number - 1) * 12)
.limit (12)
.sort ({'helpful votes': -1})

Siblings are any other categories with the same parent ID, so the query for siblings is
straightforward. Because products all contain an array of category IDs, the query for
finding all products in a given category is also trivial. You can imagine providing alter-
native sort methods (by name, price, and so forth). For those cases, you change the
sort field.

It’s important to consider whether these sorts will be efficient. You may choose to
rely on your index to handle sorting for you, but as you add more sort options, the
number of indexes grows, and the cost of maintaining those indexes may not be rea-
sonable because each index makes writes slightly more expensive. We’ll discuss this
further in chapter 8, but start thinking about these trade-offs now.

The product listing page has a base case, where you’re viewing the rootlevel cate-
gories but no products. A query against the categories collection for a null parent ID
is all that’s required to get these root-level categories:

categories = db.categories.find({'parent id': null})

Users and orders

The queries in the previous section were generally limited to _id lookups and sorts. In
looking at users and orders, we’ll dig deeper because you’ll want to generate basic
reports on orders. The example queries search documents that look like those from
chapter 4, listing 4.1 (products) and listing 4.4 (users).

Let’s start with something simpler: user authentication. Users log in to the applica-
tion by providing a username and password. Thus, you’d expect to see the following
query frequently:

db.users.findOne ({
'username': 'kbanker',
'hashed password': 'bdlcfal94c3a603e7186780824b04419'})

http://www.it-ebooks.info/

102

CHAPTER 5 Constructing queries

If the user exists and the password is correct, you’ll get back an entire user document;
otherwise, the query will return nothing. This query is acceptable, but why should you
return the entire user document if you only want to check that the user exists? You can
limit the fields returned using a projection:

db.users.findOne ({

'username': 'kbanker',
'hashed password': 'bdlcfal94c3a603e7186780824b04419'},
(" iar: 1))

In the JavaScript shell you do a projection by passing in an additional argument: a
hash of the fields you want with their values set to 1. We discuss projections more in
section 5.2.2. If you're already familiar with SQL and RDBMS, this is the difference
between SELECT * and SELECT ID. The response now consists exclusively of the docu-
ment’s _id field:

{ " id": ObjectId("4c4b1476238d3b4dd5000001") }

PARTIAL MATCH QUERIES IN USERS
You might want to query the users collection in a few other ways, such as searching by
name. Often you’ll want to perform a lookup on a single field, such as last name:

db.users.find ({'last name': 'Banker'})

This approach works, but there are limits to searching for an exact match. For one,
you might not know how to spell a given user’s name. In this case, you’ll want some
way of querying for a partial match. Suppose you know that the user’s last name starts
with Ba. MongoDB allows you to query using regular expressions:

db.users.find ({'last name': /*Ba/})

The regular expression /"Ba/ can be read as “the beginning of the line followed by a
B followed by an a.” A prefix search like this one can take advantage of an index, but
not all regular expression queries can use an index.

QUERYING SPECIFIC RANGES

When it comes to marketing to your users, you’ll most likely want to target ranges of
users. For instance, if you want to query for all users residing in Upper Manhattan,
you issue this range query on a user’s zip code:

db.users.find ({'addresses.zip': {'Sgt': 10019, 'S$lt': 10040}})

Recall that each user document contains an array of one or more addresses. This query
will match a user document if any zip code among those addresses falls within the given
range. You can use the $gte (greater than) and $1t (less than) operators to define this
range. To make this query efficient, you’ll want an index defined on addresses. zip.
You’ll see more examples of querying this data in the next chapter, and later on,
you’ll learn how to get insight from the data using MongoDB’s aggregation functions.

http://www.it-ebooks.info/

5.2

5.2.1

MongoDB’s query language 103

But with this introduction under your belt, we’ll now look at MongoDB’s query language
in some depth, explaining the syntax in general and each operator in particular.

MongoDB’s query language

It’s time we explore MongoDB’s query language in all its glory. We’ve already walked
through some real-world query examples; this section is intended as a more compre-
hensive reference of MongoDB query capabilities. If you’re learning about MongoDB
queries for the first time, it may be easier to skim this section and revisit it when you
need to write more advanced queries for your application.

Query criteria and selectors

Query criteria allow you to use one or more query selectors to specify the query’s
results. MongoDB gives you many possible selectors. This section provides an overview.

SELECTOR MATCHING
The simplest way to specify a query is with a selector whose key-value pairs literally
match against the document you’re looking for. Here are a couple of examples:

db.users.find({'last _name': "Banker"})
db.users.find ({'first name': "Smith", birth year: 1975})

The second query reads, “Find me all users such that the first_name is Smith and was
born in 1975.” Note that whenever you pass more than one key-value pair, both must
match; the query conditions function as a Boolean AND. If you want to express a Bool-
ean OR, see the upcoming section on Boolean operators.

In MongoDB all text string matches are case sensitive. If you need to perform case-
insensitive matches, consider using a regex term (explained later in this chapter,
when we discuss the use of the i regex flag) or investigate the use of text search intro-
duced in chapter 9.

RANGES

You frequently need to query for documents the values of which span a certain range.
In most languages, you use <, <=, >, and >=. With MongoDB, you get the analogous set
of operators $1t, $lte, $gt, and $gte. You've used these operators throughout the
book, and they work as you’d expect. Table 5.1 shows the range query operators most
commonly used in MongoDB.

Table 5.1 Summary of range query operators

Operator Description
slt Less than
sgt Greater than
Slte Less than or equal
Sgte Greater than or equal

http://www.it-ebooks.info/

104

CHAPTER 5 Constructing queries

Beginners sometimes struggle with combining these operators. A common mistake is
to repeat the search key:

db.users.find ({'birth year': {'$gte': 1985}, 'birth year': {'S$lte': 2015}})

The aforementioned query only takes into account the last condition. You can prop-
erly express this query as follows:

db.users.find ({'birth year': {'Sgte': 1985, 'Slte': 2015}})

You should also know how these work with different data types. Range queries will
match values only if they have the same type as the value to be compared against.' For
example, suppose you have a collection with the following documents:

{ " id" : ObjectId("4caf82011b0978483ea29ada"), "value" : 97 }
{ " id" : ObjectId("4caf82031b0978483ea29%adb"), "value" : 98 }
{ " id" : ObjectId("4caf82051b0978483ea29adc"), "value" : 99 }
{ " id" : ObjectId("4caf820d1b0978483ea29%ade"), "value" : "a" }
{ " id" : ObjectId("4caf820f1b0978483ea29adf"), "value" : "b" }
{ " id" : ObjectId("4caf82101b0978483ea29ael0"), "value" : "c" }

You then issue the following query:

db.items.find ({'value': {'$gte': 97}})

You may think that this query should return all six documents because the strings
are numerically equivalent to the integers 97, 98, and 99. But this isn’t the case. As
MongoDB is schemaless, this query returns the integer results only because the crite-
ria supplied was an integer itself. If you want the string results, you must query with a
string instead:

db.items.find ({'value': {'Sgte': "a"}})

You won’t need to worry about this type restriction as long as you never store multiple
types for the same key within the same collection. This is a good general practice, and
you should abide by it.

SET OPERATORS

Three query operators—$in, $all, and $nin—take a list of one or more values as
their predicate, so these are called set operators. $in returns a document if any of
the given values matches the search key. You might use this operator to return all
products belonging to some discrete set of categories. Table 5.2 shows these set
query operators.

1

Note that the numeric types—integer, long integer, and double—have type equivalence for these queries.

http://www.it-ebooks.info/

MongoDB’s query language 105

Table 5.2 Summary of set operators

Operator Description
$in Matches if any of the arguments are in the referenced set
Sall Matches if all of the arguments are in the referenced set and is used in documents

that contain arrays

Snin Matches if none of the arguments are in the referenced set

If the following list of category IDs

[
ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000051"),
ObjectId("6a5b1476238d3b4dd5000057")

corresponds to the lawnmowers, hand tools, and work clothing categories, the query
to find all products belonging to these categories looks like this:

db.products.£ind ({
'main_cat_id': {

'$in': [
ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000051"),
ObjectId("6a5b1476238d3b4dd5000057")

]

}
H

Another way of thinking about the $in operator is as a kind of Boolean inclusive OR
against a single attribute. Expressed this way, the previous query might be read, “Find
me all products of which the category is lawnmowers or hand tools or work clothing.”
Note that if you need a Boolean OR over multiple attributes, you’ll want to use the $or
operator, described in the next section:

= $inis frequently used with lists of IDs.

= $nin (not in)) returns a document only when none of the given elements
matches. You might use $nin to find all products that are neither black nor
blue:

db.products.find ({'details.color': {'$nin': ["black", "blue"l}})

= sall matches if every given element matches the search key. If you wanted to
find all products tagged as gift and garden, $all would be a good choice:

db.products.find ({'tags': {'$all': ["gift", "garden"]}})

http://www.it-ebooks.info/

106

CHAPTER 5 Constructing queries

Naturally, this query makes sense only if the tags attribute stores an array of terms,
like this:

'name': "Bird Feeder",
'tags': ["gift", "birds", "garden"]

}

Selectivity is the ability of a query to narrow results using the index. The problem is
that both $ne and $nin operators aren’t selective. Therefore, when using the set oper-
ators, keep in mind that $in and $all can take advantage of indexes, but $nin can’t
and thus requires a collection scan. If you use $nin, try to use it in combination with
another query term that does use an index. Better yet, find a different way to express
the query. You may, for instance, be able to store an attribute whose presence indi-
cates a condition equivalent to your $nin query. For example, if you commonly issue a
query for {timeframe: {$nin: ['morning', 'afternoon']}}, you may be able to
express this more directly as {timeframe: 'evening'}.

BOOLEAN OPERATORS
MongoDB’s Boolean operators include $ne, $not, $or, $and, $nor, and $exists. Table 5.3

summarizes the Boolean operators.

Table 5.3 Summary of Boolean operators

Operator Description
Sne Matches if the argument is not equal to the element
Snot Inverts the result of a match
Sor Matches if any of the supplied set of query terms is true
Snor Matches if none of the supplied set of query terms are true
Sand Matches if all of the supplied set of query terms are true
Sexists Matches if the element exists in the document.

$ne, the not equal to operator, works as you’d expect. In practice, it’s best used in com-
bination with at least one other operator; otherwise, it’s likely to be inefficient because
it can’t take advantage of indexes. For example, you might use $ne to find all products
manufactured by Acme that aren’t tagged with gardening:

db.products.find ({'details.manufacturer': 'Acme', tags: {$ne: "gardening"} })

$ne works on keys pointing to single values and to arrays, as shown in the example
where you match against the tags array.

Whereas $ne matches the negation of a specified value, $not negates the result of
another MongoDB operator or regular expression query. Most query operators already

http://www.it-ebooks.info/

MongoDB’s query language 107

have a negated form ($in and $nin, $gt and $1te, and so on); $not is useful because
it includes documents that aren’t evaluated by the given expression. Consider the fol-
lowing example:

db.users.find({'age': {'$not': {'$1lte': 30}}})

As you’d expect, this query returns documents where age is greater than 30. It also
returns documents with no age field, which makes it distinct from using the $gt oper-
ator in this case.

$or expresses the logical disjunction of two values for two different keys. This is an
important point: if the possible values are scoped to the same key, use $in instead.
Trivially, finding all products that are either blue or green looks like this:

db.products.find ({'details.color': {$in: ['blue', 'Green']}})

But finding all products that are either blue or made by Acme requires $or:

db.products.find ({

'Sor': [
{'details.color': 'blue'},
{'details.manufacturer': 'Acme'}

]
}

$or takes an array of query selectors, where each selector can be arbitrarily complex
and may itself contain other query operators. $nor works much the same as $or but is
logically true only when none of its query selectors are true.

Like $or, the $and operator takes an array of query selectors. Because MongoDB
interprets all query selectors containing more than one key by ANDing the conditions,
you should use $sand only when you can’t express an AND in a simpler way. For exam-
ple, suppose you want to find all products that are tagged with gift or holiday and
either gardening or landscaping. The only way to express this query is with the conjunc-
tion of two $in queries:

db.products.find ({
Sand: [
{
tags: {$in: ['gift', 'holiday']}
}
{
tags: {$in: ['gardening', 'landscaping'l]}
}
]

}

QUERYING FOR A DOCUMENT WITH A SPECIFIC KEY

The final operator we’ll discuss in this section is $Sexists. This operator is necessary
because collections don’t enforce a fixed schema, so you occasionally need a way to
query for documents containing a particular key. Recall that you’d planned to use

http://www.it-ebooks.info/

108

CHAPTER 5 Constructing queries

each product’s details attribute to store custom fields. You might, for instance, store
a color field inside the details attribute. But if only a subset of all products specify a
set of colors, then you can query for the ones that don’t like this:

db.products.find ({'details.color': {$exists: false}})
The opposite query is also possible:
db.products.find ({'details.color': {S$exists: true}})

Here you’re checking whether the field exists in a document at all. Even if a field
exists, it can still be set to null. Depending on your data and query, you may want to
filter those values as well.

MATCHING SUBDOCUMENTS

Some of the entities in this book’s e-commerce data model have keys that point to a
single embedded object. The product’s details attribute is one good example. Here’s
part of the relevant document, expressed as JSON:

{
7id: ObjectId("4c4bl1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9p92",
details:
model num: 4039283402,
manufacturer: "Acme",
manufacturer id: 432,
color: "Green"

You can query such objects by separating the relevant keys with a . (dot). For instance,
if you want to find all products manufactured by Acme, you can use this query:

db.products.find ({ 'details.manufacturer': "Acme"});

Such queries can be specified arbitrarily deep. Supposing you had the following
slightly modified representation

{
~id: ObjectId("4c4bl1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",
details: {
model num: 4039283402,
manufacturer: {
name: "Acme",
id: 432
b

color: "Green"

http://www.it-ebooks.info/

MongoDB’s query language 109

the key in the query selector would contain two dots:
db.products.find ({'details.manufacturer.id’: 432});

But in addition to matching against an individual subdocument attribute, you can
match an object as a whole. For example, imagine you’re using MongoDB to store
stock market positions. To save space, you forgo the standard object ID and replace it
with a compound key consisting of a stock symbol and a timestamp. Here’s how a rep-
resentative document might look:?

{
_id: {
sym: 'GOOG',
date: 20101005

open: 40.23,
high: 45.50,
low: 38.81,
close: 41.22

You could then find the summary of GOOG for October 5, 2010 with the following
_id query:

db.ticks.find({'_id': {'sym': 'GOOG', 'date': 20101005}})

It’s important to realize that a query matching an entire object like this will perform a
strict byte-by-byte comparison, which means that the order of the keys matters. The
following query isn’t equivalent and won’t match the sample document:

db.ticks.find({'_id': {'date': 20101005, 'sym': 'GOOG'}})

Though the order of keys will be preserved in JSON documents entered via the
shell, this isn’t necessarily true for other programming languages, and it’s safer to
assume that order won’t be preserved. For example, hashes in Ruby 1.8 aren’t
order-preserving. To preserve key order in Ruby 1.8, you must use an object of class
BSON: :OrderedHash instead:

doc = BSON::OrderedHash.new

doc['sym'] = 'GOOG'

doc['date'] = 20101005
@ticks.find (doc)

Be sure to check whether the language you're using supports ordered dictionaries; if
not, the language’s MongoDB driver will always provide an ordered alternative.

2Ina potential high-throughput scenario, you’d want to limit document size as much as possible. You could
accomplish this in part by using short key names. Thus you might use the key name oin place of open.

http://www.it-ebooks.info/

110 CHAPTER 5 Constructing queries

ARRAYS

Arrays give the document model much of its power. As you've seen in the e-commerce
example, arrays are used to store lists of strings, object IDs, and even other docu-
ments. Arrays afford rich yet comprehensible documents; it stands to reason that
MongoDB would let you query and index the array type with ease. And it’s true: the
simplest array queries look like queries on any other document type, as you can see
in table 5.4.

Table 5.4 Summary of array operators

Operator Description
SelemMatch Matches if all supplied terms are in the same subdocument
Ssize Matches if the size of the array subdocument is the same as the supplied literal value

Let’s look at these arrays in action. Take product tags again. These tags are repre-
sented as a simple list of strings:

{
~id: ObjectId("4c4bl476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",
tags: ["tools", "equipment", "soil"]

Querying for products with the tag "soil" is trivial and uses the same syntax as query-
ing a single document value:

db.products.find ({tags: "soil"})

Importantly, this query can take advantage of an index on the tags field. If you build
the required index and run your query with explain (), you’ll see that a B-tree cursor®
is used:

db.products.ensurelndex ({tags: 1})

db.products.find ({tags: "soil"}) .explain()

When you need more control over your array queries, you can use dot notation to
query for a value at a particular position within the array. Here’s how you’d restrict the
previous query to the first of a product’s tags:

db.products.find ({'tags.0': "soil"})

3 The WiredTiger storage engine can support additional data structures for indexing. You can find more infor-
mation about it in chapter 10.

http://www.it-ebooks.info/

MongoDB’s query language 111

It might not make much sense to query tags in this way, but imagine you’re dealing
with user addresses. You might represent these with an array of subdocuments:

{

_id: ObjectId("4c4bl1476238d3b4dd5000001")
username: "kbanker",

addresses: [

{
name : "home",
street: "588 5th Street",
city: "Brooklyn",
state: "NY",
zip: 11215

b

{
name: "work",
street: "1 E. 23rd Street",
city: "New York",
state "NY",
zip 10010

You might stipulate that the zeroth element of the array always be the user’s primary
shipping address. Thus, to find all users whose primary shipping address is in New
York, you could again specify the zeroth position and combine that with a dot to target
the state field:

db.users.find({'addresses.0.state': "NY"})

As you can easily understand, you shouldn’t stipulate when writing production code.
You can just as easily omit the position and specify a field alone. The following
query will return a user document if any of the addresses in the list is in New York:

db.users.find ({'addresses.state': "NY"})

As before, you’ll want to index this dotted field:

db.users.ensurelndex ({'addresses.state': 1})

Note that you use the same dot notation regardless of whether a field points to a sub-
document or to an array of subdocuments. The dot notation is powerful, and the
consistency is reassuring. But ambiguity can arise when querying against more than
one attribute within an array of subobjects. For example, suppose you want to fetch a
list of all users whose home address is in New York. Can you think of a way to express
this query?

db.users.find({'addresses.name': 'home', 'addresses.state': 'NY'})

http://www.it-ebooks.info/

112 CHAPTER 5 Constructing queries

The problem with this query is that the field references aren’t restricted to a single
address. In other words, this query will match as long as one of the addresses is desig-
nated as “home” and one is in New York, but what you want is for both attributes to
apply to the same address. Fortunately, there’s a query operator for this. To restrict
multiple conditions to the same subdocument, you use the $elemMatch operator. You
can properly satisfy the query like this:

db.users.find ({

'addresses': {
'SelemMatch': {
'name': 'home',
'state': 'NY'

}
}
3]

Logically, use $elemMatch only when you need to match two or more attributes in a
subdocument.

QUERYING FOR AN ARRAY BY SIZE

The only array operator left to discuss is the $size operator. This operator allows you
to query for an array by its size. For example, if you want to find all users with exactly
three addresses, you can use the $size operator like this:

db.users.find ({'addresses': {$size: 3}})

As of this writing, the $size operator doesn’t use an index and is limited to exact
matches (you can’t specify a range of sizes).* Therefore, if you need to perform queries
based on the size of an array, you should cache the size in its own attribute within the
document and update it manually as the array changes. For instance, you might con-
sider adding an address_length field to your user document. You could then build an
index on this field and issue all the range and exact match queries you require. A possi-
ble solution is to use the aggregation framework, which is described in chapter 6.

JAVASCRIPT QUERY OPERATORS

If you can’t express your query with the tools described thus far, you may need to write
some JavaScript. You can use the special $where operator to pass a JavaScript expres-
sion to any query, as summarized here:

= Swhere Execute some arbitrary JavaScript to select a document

Within a JavaScript context, the keyword this refers to the current document. Let’s
take a contrived example:

db.reviews.find ({
"Swhere': "function() { return this.helpful votes > 3; }"

3]

4 See https://jira.mongodb.org/browse/SERVER-478 for updates on this issue.

https://jira.mongodb.org/browse/SERVER-478
http://www.it-ebooks.info/

MongoDB’s query language 113

There’s also an abbreviated form for simple expressions like this one:

db.reviews.find ({'Swhere': "this.helpful votes > 3"})

This query works, but you’d never want to use it because you can easily express it using
other query operators. The problem is that JavaScript expressions can’t use an index,
and they incur substantial overhead because they must be evaluated within a Java-
Script interpreter context and are single-threaded. For these reasons, you should issue
JavaScript queries only when you can’t express your query using other query opera-
tors. If you do need JavaScript, try to combine the JavaScript expression with at least
one other query operator. The other query operator will pare down the result set,
reducing the number of documents that must be loaded into a JavaScript context.
Let’s look at a quick example to see how this might make sense.

Imagine that for each user, you've calculated a rating reliability factor. This is
essentially an integer that, when multiplied by the user’s rating, results in a more nor-
malized rating. Also suppose that you want to query a particular user’s reviews and
return only a normalized rating greater than 3. Here’s how that query would look:

db.reviews.£find ({
‘useriid‘ : ObjectId("4c4b1476238d3b4dd5000001"),
'Swhere': " (this.rating * .92) > 3"

3]

This query meets both recommendations: it uses a standard query on a presumably
indexed user id field, and it employs a JavaScript expression that’s absolutely beyond
the capabilities of other query operators. Keep in mind that sometimes using the
Aggregation framework can make your life easier.

In addition to recognizing the attendant performance penalties, it’s good to be
aware of the possibility of JavaScript injection attacks. An injection attack becomes pos-
sible whenever a user is allowed to enter code directly into a JavaScript query. An
example is when the user submits a web form and the values are used directly in this
sort of query. If the user sets the values of attribute or value, this query is unsafe:

@users.find ({'Swhere' => "this.#{attribute} == #{value}"})

In this case, the values of attribute and value are inserted into a string, which is then
evaluated to JavaScript. This approach is dangerous because users could potentially
include JavaScript code in the values they send, giving them access to other data in the
collection. This would result in a serious security breach if a malicious user was able to
see data about other users. In general, you should always assume that your users can
and will send you malicious data and plan accordingly.

REGULAR EXPRESSIONS
You saw near the beginning of the chapter that you can use a regular expression within
a query. In that example, you used a prefix expression, /*Ba/, to find last names

http://www.it-ebooks.info/

114 CHAPTER 5 Constructing queries

beginning with Ba, and I pointed out that this query would use an index. In fact,
much more is possible. MongoDB is compiled with Perl Compatible Regular Expres-
sions (PCRE; http://mng.bz/hxmh), which supports a huge gamut of regular expres-
sions. The $regex operator is summarized here:

® Sregex Match the element against the supplied regex term

With the exception of the prefix-style query just described, regular expressions que-
ries can’t use an index and take longer to execute than most selectors. We recom-
mend using them sparingly. Here’s how you might query a given user’s reviews for
text containing the words best or worst. Note that you use the i regex flag® to indicate
case-insensitivity:

db.reviews.find ({
'user id': ObjectId("4c4bl476238d3b4dd5000001"),
'text': /best|worst/i

3]

Using the case-insensitive flag has penalties; it excludes the use of any indexes, which
in MongoDB are always case-sensitive. If you want to use case-insensitive searches on
large numbers of documents, you should use the new text search capability supplied
in version 2.4 or later, or integrate an external text search engine. See chapter 9 for an
explanation of MongoDB’s searching capabilities.

If the language you’re using has a native regex type, you can use a native regex
object to perform the query. You can express an identical query in Ruby like this:

@reviews.find ({
:user_id => BSON::ObjectId("4c4b1476238d3b4dd5000001"),
:text => /best|worst/i

3]

Even though the regex is defined locally, it’s evaluated on the MongoDB server.

If you're querying from an environment that doesn’t support a native regex type,
you can use the special Sregex and $options operators. Using these operators from
the shell, you can express the query in yet another way:

db.reviews.find ({
'user_id': ObjectId("4c4bl1476238d3b4dd5000001"),

"text': |
'Sregex': "best|worst",
"$Soptions': "i"}

3]

® The case-insensitive option will always prevent an index from being used to serve the query, even in the case
of a prefix match.

http://mng.bz/hxmh
http://www.it-ebooks.info/

MongoDB’s query language 115

MongoDB is a case-sensitive system, and when using a regex, unless you use the /i
modifier (that is, /best |worst/1i), the search will have to exactly match the case of
the fields being searched. But one caveat is that if you do use /i, it will disable the
use of indexes. If you want to do indexed case-insensitive search of the contents of
string fields in documents, consider either storing a duplicate field with the contents
forced to lowercase specifically for searching or using MongoDB’s text search capabili-
ties, which can be combined with other queries and does provide an indexed case-
insensitive search.

MISCELLANEOUS QUERY OPERATORS

Two more query operators aren’t easily categorized and thus deserve their own sec-
tion. The first is $mod, which allows you to query documents matching a given modulo
operation, and the second is stype, which matches values by their BSON type. Both
are detailed in table 5.5.

Table 5.5 Summary of miscellaneous operators

Operator Description

$Smod [(quotient), (result)] Matches if the element matches the result when divided by
the quotient

Stype Matches if the element type matches a specified BSON type

Stext Allows you to performs a text search on the content of the
fields indexed with a text index

For instance, $mod allows you to find all order subtotals that are evenly divisible by 3
using the following query:

db.orders.find ({subtotal: {$mod: [3, 01}})

You can see that the $mod operator takes an array having two values. The first is the
divisor and the second is the expected remainder. This query technically reads, “Find
all documents with subtotals that return a remainder of 0 when divided by 3.” This is a
contrived example, but it demonstrates the idea. If you end up using the $mod opera-
tor, keep in mind that it won’t use an index.

The second miscellaneous operator, $type, matches values by their BSON type. 1
don’t recommend storing multiple types for the same field within a collection, but if
the situation ever arises, you have a query operator that lets you test against type.

Table 5.6 shows the type numbers associated with each element type used in
MongoDB. The example shown is how a member of that type would appear in the
JavaScript console. For example, other MongoDB drivers may have a different way of
storing the equivalent of an ISODate object.

http://www.it-ebooks.info/

116

Table 5.6 BSON types

CHAPTER 5

Constructing queries

BSON type $type number Example
Double 1 123.456
String (UTF-8) 2 “Now is the time”
Object 3 { name:"Tim", age: "myob" }
Array 4 [123,2345, "string"]
Binary 5 BinData (2, "DgAAAElt THNvbWUgYmluYXJ5")
ObjectId 7 ObjectId("4elbdda65025ea6601560b50")
Boolean 8 true
Date 9 ISODate ("2011-02-24T21:26:002Z")
Null 10 null
Regex 11 /test/1i
JavaScript 13 function() {return false;}
Symbol 14 Not used; deprecated in the standard
Scoped JavaScript 15 function () {return false;}
32-bit integer 16 10
Timestamp 17 { e 1371429067,
" i "0
}
64-bit integer 18 NumberLong (10)
Maxkey 127 {"$maxKey": 1}
Minkey 255 { "$minKey" : 1}
Maxkey 128 {"maxkey" { "$maxKey" 11}

There are a couple of elements in table 5.6 worth mentioning. maxkey and minkey are
used to insert a “virtual” value that’s the same as the maximum or minimum value in
the index. This means that it can be used to force the document to be sorted out as
the first or last item when using a sort index. Gone are the days of adding a field with
“aardvark” in it to the collection to force a document to sort to the front. Most of the
language drivers have a means for adding a minkey or maxkey type.

Scoped JavaScript and JavaScript look identical in the table, but this is only
because the console doesn’t display the scope, which is a dictionary of key-value pairs
supplied with the JavaScript code fragment. Scope means the context under which
the function is executed. In other words, the function will be able to see the variables
defined in the scope dictionary and use them during execution.

http://www.it-ebooks.info/

5.2.2

MongoDB’s query language 117

Finally, the symbol type has no representation. That’s because in most languages
it’'s not used—it’s only used where the language has a distinct type for “keys.” For
instance, in Ruby there’s a difference between "foo" and : foo—the latter is a symbol.
The Ruby driver will store any key as a symbol.

BSON symbol types

As far as querying is concerned, the MongoDB server will treat a BSON symbol type
in the same way it treats a string; it’s only when the document is retrieved that a dis-
tinct symbol type mapping to the language key type is done. Note also that the sym-
bol type is deprecated in the latest BSON spec (http:/bsonspec.org) and may
disappear at any moment. Regardless of the language you write your data with, you’ll
be able to retrieve it in any other language with a BSON implementation.

Query options

All queries require a query selector. Even if empty, the query selector essentially
defines the query. But when issuing a query, you have a variety of query options to
choose from that allow you to further constrain the result set. Let’s look at those
options next.

PROJECTIONS

You can use a projection to select a subset of fields to return from each documentin a
query result set. Especially in cases where you have large documents, using a projec-
tion will minimize the costs of network latency and deserialization. The only operator,
$slice, is summarized here:

m $slice Select a subset of a document to be returned

Projections are most commonly defined as a set of fields to return:
db.users.find({}, {'username': 1})

This query returns user documents excluding all but two fields: the username and the
_id field, which is a special case and always included by default.

In some situations you may want to specify fields to exclude instead. For instance,
this book’s user document contains shipping addresses and payment methods, but
you don’t usually need these. To exclude them, add those fields to the projection with
a value of 0:

db.users.find({}, {'addresses': 0, 'payment methods': 0})

In your projection you should either do inclusions or exclusions, though the _id field
is a special case. You can exclude the id field in the same way, by setting the value to
0 in the projection document.

In addition to including and excluding fields, you can return a range of values
stored in an array. For example, you might want to store product reviews within the

http://bsonspec.org
http://www.it-ebooks.info/

118

CHAPTER 5 Constructing queries

product document itself. In this case, you’d still want to be able to paginate those
reviews, and for that you could use the $slice operator. To return the first 12 reviews,
or the last 5, you’d use $slice like this:

db.products.find ({}, {'reviews': {$slice: 12}})
db.products.find ({}, {'reviews': {$slice: -5}})

$slice can also take a two-element array the values of which represent numbers to
skip and limit, respectively. Here’s how to skip the first 24 reviews and limit the num-
ber of reviews to 12:

db.products.find ({}, {'reviews': {$slice: [24, 12]}})

Finally, note that using $slice won’t prevent other fields from being returned. If you
want to limit the other fields in the document, you must do so explicitly. For example,
here’s how you can modify the previous query to return only the reviews and the
review rating :

db.products.find ({}, {'reviews': {'$slice': [24, 12]}, 'reviews.rating': 1})

SORTING

As we touched on early in this chapter, you can sort any query result by one or more
fields in ascending or descending order. A simple sort of reviews by rating, descending
from highest to lowest, looks like this:

db.reviews.find ({}) .sort ({'rating': -1})
Naturally, it might be more useful to sort by helpfulness and then by rating:
db.reviews.find ({}) .sort ({ 'helpful votes':-1, 'rating': -1})

In compound sorts like this, the order does matter. As noted elsewhere, JSON entered
via the shell is ordered. Because Ruby hashes aren’t ordered, you indicate sort order
in Ruby with an array of arrays, which is ordered:

@reviews.find ({}) .sort ([['helpful votes', -1], ['rating', -111)

The way you specify sorts in MongoDB is straightforward; understanding how indices
can help improve sorting speeds is critical to using them well. We’ll get to that in chap-
ter 8, but feel free to skip ahead if you’re using sorts heavily now.

SKIP AND LIMIT

There’s nothing mysterious about the semantics of skip and limit. These query
options should always work as you expect. But you should beware of passing large val-
ues (say, values greater than 10,000) for skip because serving such queries requires
scanning over a number of documents equal to the skip value. For example, imagine
you’re paginating a million documents sorted by date, descending, with 10 results per
page. This means that the query to display the 50,000th page will include a skip value

http://www.it-ebooks.info/

5.3

Summary 119

of 500,000, which is incredibly inefficient. A better strategy is to omit the skip alto-
gether and instead add a range condition to the query that indicates where the next
result set begins. Thus, this query

db.docs.find ({}) .skip(500000) .1imit (10) .sort ({date: -1})

becomes this:

previous page date = new Date (2013, 05, 05)
db.docs.find({'date': {'$gt': previous page date}}).limit (10).sort({'date': -1})

This second query will scan far fewer items than the first. The only potential problem
is that if date isn’t unique for each document, the same document may be displayed
more than once. There are many strategies for dealing with this, but the solutions are
left as exercises for the reader.

There’s another set of query types that you can perform on MongoDB data: geo-
spatial queries, which are used to index and retrieve geographical or geometric data
and are typically used for mapping and location-aware applications.

Summary

Queries make up a critical corner of the MongoDB interface. Once you’ve skimmed
this chapter’s material, you’re encouraged to put the query mechanisms to the test. If
you're ever unsure of how a particular combination of query operators will serve you,
the shell is always a ready test bed.

MongoDB also supports query modifiers that are meta-operators that let you
modify the output or behavior of a query. You can find more about them at http://
docs.mongodb.org/manual/reference/operator/query-modifier/.

You’ll use MongoDB queries consistently from now on, and the next two chapters
are a good reminder of that. You’ll tackle aggregation, document updates, and
deletes. Because queries play a key role in most updates, you can look forward to yet
more exploration of the query language.

http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://docs.mongodb.org/manual/reference/operator/query-modifier/
http://www.it-ebooks.info/

Aggregation

This chapter covers

m Aggregation on the e-commerce data model
m Aggregation framework details

m Performance and limitations

m Other aggregation capabilities

In the previous chapter, you saw how to use MongoDB’s JSON-like query language
to perform common query operations, such as lookup by ID, lookup by name, and
sorting. In this chapter, we’ll extend that topic to include more complex queries
using the MongoDB aggregation framework. The aggregation framework is MongoDB’s
advanced query language, and it allows you to transform and combine data from
multiple documents to generate new information not available in any single docu-
ment. For example, you might use the aggregation framework to determine sales
by month, sales by product, or order totals by user. For those familiar with relational
databases, you can think of the aggregation framework as MongoDB’s equivalent to
the SQL GROUP BY clause. Although you could have calculated this information pre-
viously using MongoDB’s map reduce capabilities or within program code, the
aggregation framework makes this task much easier as well as more efficient by

120

http://www.it-ebooks.info/

6.1

Aggregation framework overview 121

allowing you to define a series of document operations and then send them as an
array to MongoDB in a single call.

In this chapter, we’ll show you a number of examples using the e-commerce data
model that’s used in the rest of the book and then provide a detailed look at all the
aggregation framework operators and various options for each operator. By the end
of this chapter, we’ll have examples for the key aspects of the aggregation frame-
work, along with examples of how to use them on the e-commerce data model. We
won’t cover even a fraction of the types of aggregations you might want to build for
an e-commerce data model, but that’s the idea of the aggregation framework: it pro-
vides you with the flexibility to examine your data in more ways than you could have
ever foreseen.

Up to now, you’ve designed your data model and database queries to support fast
and responsive website performance. The aggregation framework can also help with
real-time information summarization that may be needed for an e-commerce website,
but it can do much more: providing answers to a wide variety of questions you might
want to answer from your data but that may require crunching large amounts of data.

Aggregation in MongoDB v2.6 and v3.0

The MongoDB aggregation framework, first introduced in MongoDB v2.2, has contin-
ued to evolve over subsequent releases. This chapter covers the capabilities
included in MongoDB v2.6, first available in April 2014; MongoDB v3.0 uses the
same aggregation framework as the 2.6 version of MongoDB. Version 2.6 incorpo-
rates a number of important enhancements and new operators that improve the
capabilities of the aggregation framework significantly. If you’re running an earlier ver-
sion of MongoDB, you should upgrade to v2.6 or later in order to run the examples
from this chapter.

Aggregation framework overview

A call to the aggregation framework defines a pipeline (figure 6.1), the aggregation
pipeline, where the output from each step in the pipeline provides input to the next
step. Each step executes a single operation on the input documents to transform the
input and generate output documents.

Aggregation pipeline operations include the following:

= S$project—Specify fields to be placed in the output document (projected).
» $match—Select documents to be processed, similar to £ind () .

Input
documents

Output

Operation 1 — Operation 2 > e — Operation n
documents

Figure 6.1 Aggregation pipeline: the output of each operation is input to the next operation.

http://www.it-ebooks.info/

122

CHAPTER 6 Aggregation

$limit—Limit the number of documents to be passed to the next step.
$skip—Skip a specified number of documents.

$unwind—Expand an array, generating one output document for each array
entry.

$group—Group documents by a specified key.

$sort—Sort documents.

$geoNear—Select documents near a geospatial location.

$out—Write the results of the pipeline to a collection (new in v2.6).

$redact—Control access to certain data (new in v2.6).

Most of these operators will look familiar if you’ve read the previous chapter on con-

structing MongoDB queries. Because most of the aggregation framework operators

work similarly to a function used for MongoDB queries, you should make sure you
have a good understanding of section 5.2 on the MongoDB query language before
continuing.

This code example defines an aggregation framework pipeline that consists of a
match, a group, and then a sort:

db.products.aggregate ([{$match: ..}, {$group: ..}, {$sort: ..} 1)

This series of operations is illustrated in figure 6.2.

Products

e
—]
N . . 2 . . 2 Output
— match .. group .. EeksE e documents
—_— >

Select documents Group documents Sort documents.
to be processed. by a specific key.

Figure 6.2 Example aggregation framework pipeline

As the

If youw’

figure illustrates, the code defines a pipeline where

The entire products collection is passed to the $match operation, which then
selects only certain documents from the input collection.

The output from $match is passed to the $sgroup operator, which then groups the
output by a specific key to provide new information such as sums and averages.
The output from the $group operator is then passed to a final $sort operator
to be sorted before being returned as the final result.

re familiar with the SQL GROUP BY clause, you know that it’s used to provide sum-

mary information similar to the summaries outlined here. Table 6.1 provides a detailed
comparison of SQL commands to the aggregation framework operators.

http://www.it-ebooks.info/

6.2

E-commerce aggregation example 123

Table 6.1 SQL versus aggregation framework comparison

SQL command Aggregation framework operator

SELECT Sproject

Sgroup functions: $sum, Smin, Savg, etc.

FROM db.collectionName.aggregate(...)
JOIN Sunwind

WHERE Smatch

GROUP BY Sgroup

HAVING Smatch

In the next section, we’ll take a close look at how the aggregation framework might be
used on the e-commerce data model. First, you'll see how to use the aggregation
framework to provide summary information for the product web page. You’ll then see
how the aggregation framework can be used outside the web page application to
crunch large amounts of data and provide interesting information, such as finding the
highest-spending Upper Manhattan customers.

E-commerce aggregation example

In this section you’ll produce a few example queries for your e-commerce database,
illustrating how to answer a few of the many questions you may want to answer from
your data using aggregation. Before we continue, let’s revisit the e-commerce data
model.

Figure 6.3 shows a data model diagram of our e-commerce data model. Each large
box represents one of the collections in our data model: products, reviews, categories,
orders, and users. Within each collection we show the document structure, indicating
any arrays as separate objects. For example, the products collection in the upper left
of the figure contains product information. For each product there may be many
price_history objects, many category_id objects, and many tags.

The line between products and reviews in the center of the figure shows that a
product may have many reviews and that a review is for one product. You can also see
that a review may have many voter id objects related to it, showing who has voted
that the review is helpful.

A model such as this becomes especially helpful as the data model grows and it
becomes difficult to remember all the implied relationships between collections, or
even the details of what the structure is for each collection. It can also be useful in help-
ing you determine what types of questions you might want to answer from your data.

http://www.it-ebooks.info/

CHAPTER 6 Aggregation

124
Products Reviews
products reviews
1 0.0
1
1 1 1 1
0.0
0.0 0.0 0.0
price history category ids tags voter ids 0.0
0.0
Categories 1 Orders
categories orders
0 a0
1
1
0..1 —parent
0.0 0.0
ancestor line_items
i 0.0
Users
1
users
1
1 1
0.0 0.0
addresses payment methods

Figure 6.3 Data model summarizing e-commerce
collections and relationships

http://www.it-ebooks.info/

6.2.1

E-commerce aggregation example 125

Products, categories, and reviews

Now let’s look at a simple example of how the aggregation framework can be used to
summarize information about a product. Chapter 5 showed an example of counting
the number of reviews for a given product using this query:

product = db.products.findOne ({'slug': 'wheelbarrow-9092'})
reviews_count = db.reviews.count ({'product_id': product[' id']})

Let’s see how to do this using the aggregation framework. First, we’ll look at a query
that will calculate the total number of reviews for all products:

db.reviews.aggregate ([Group the input .
{$group : { _id:'$product id', 4 documents by product_id.

count: {$sum:1} }} : Count the number of

1) reviews for each product.

This single operator pipeline returns one document for each product in your data-
base that has a review, as illustrated here:

{ » id" : ObjectId("4c4bl476238d3b4add5003982"), "count" : 2 } Outputs one
- ’) ¢ : document for
{ » id" : ObjectId("4c4bl476238d3b4add5003981"), "count" 3} each product

In this example, you’ll have many documents as input to the $group operator but only
one output document for each unique _id value—each unique product_id in this
case. The $group operator will add the number 1 for each input document for a prod-
uct, in effect counting the number of input documents for each product id. The
result is then placed in the count field of the output document.

An important point to note is that, in general, input document fields are specified
by preceding them with a dollar sign ($). In this example, when you defined the value
of the _id field you used $product_id to specify that you wanted to use the value of
the input document’s product_id field.

This example also uses the $sum function to count the number of input documents
for each product by adding 1 to the count field for each input document for a given
product_id. The sgroup operator supports a number of functions that can calculate
various aggregated results, including average, minimum, and maximum as well as sum.
These functions are covered in more detail in section 6.3.2 on the $group operator.

Next, add one more operator to your pipeline so that you select only the one prod-
uct you want to get a count for:

product = db.products.findOne ({'slug': 'wheelbarrow-9092'})
ratingSummary = db.reviews.aggregate ([SictoMya
{$match : { product_ id: product[' id'l} }, single product.

{$group : { _id:'$product_id',

count:{$sum:1} }} <]J Return the first

1) .next () ; document in the results.

http://www.it-ebooks.info/

126

CHAPTER 6 Aggregation

This example returns the one product you're interested in and assigns it to the vari-
able ratingSummary. Note that the result from the aggregation pipeline is a cursor a
pointer to your results that allows you to process results of almost any size, one docu-
ment at a time. To retrieve the single document in the result, you use the next () func-
tion to return the first document from the cursor:

{ " id" : ObjectId("4c4b1476238d3b4dd5003981"), "count" : 3 }

Aggregation cursors: New in MongoDB v2.6

Prior to MongoDB v2.6, the result from the aggregation pipeline was a single docu-
ment with a maximum size of 16 MB. Starting with MongoDB v2.6, you can process
results of any size using the cursor. Returning a cursor is the default when you’re run-
ning shell commands. But to avoid breaking existing programs, the default for pro-
grams is still a single 16 MB limited document. To use cursors in a program, you
override this default explicitly to specify that you want a cursor. See “Aggregation cur-
sor option” in section 6.5 to learn more and to see other functions available on the
cursor returned from the aggregation pipeline.

The parameters passed to the $match operator, {'product id': product[' id'l},
should look familiar. They’re the same as those used for the query taken from chap-
ter 5 to calculate the count of reviews for a product:

db.reviews.count ({'product_id': product[' id'l})

These parameters were covered in detail in the previous chapter in section 5.1.1. Most
query operators we covered there are also available in the $match operator.

It’s important to have $match before $group. You could’ve reversed the order, put-
ting smatch after $group, and the query would’ve returned the same results. But
doing so would’ve made MongoDB calculate the count of reviews for all products and
then throw away all but one result. By putting $match first, you greatly reduce how
many documents have to be processed by the $group operator.

Now that you have the total number of reviews for a product, let’s see how to calcu-
late the average review for a product. This topic takes you beyond the capabilities of
the query language covered in chapter 5.

CALCULATING THE AVERAGE REVIEW
To calculate the average review for a product, you use the same pipeline as in the pre-
vious example and add one more field:

product = db.products.findOne ({'slug': 'wheelbarrow-9092'})

ratingSummary = db.reviews.aggregate ([
{$match : {'product id': product[' id'l}},
{$group : { _id:'S$product_id',
average: {$avg:'$rating'},
count: {$sum:1}}}
1) .next () ;

Calculate the
average rating
for a product.

http://www.it-ebooks.info/

E-commerce aggregation example 127

The previous example returns a single document and assigns it to the variable rating-
Summary with the content shown here:

{

" id" : ObjectId("4c4b1476238d3b4dd5003981"),
"average" : 4.333333333333333,
"count" : 3

This example uses the $avg function to calculate the average rating for the product.
Notice also that the field being averaged, rating, is specified using '$rating' in the
$avg function. This is the same convention used for specifying the field for the $group
_1idvalue, where you used this:

_id:'"$product_id'.

COUNTING REVIEWS BY RATING
Next let’s extend the product summary further and AR R R)
show a breakdown of review counts for each rating.
This is probably something you’'ve seen before when
shopping online and is illustrated in figure 6.4. You 5 star

L]

ad

4.5 out of 5 stars

can see that five reviewers have rated the producta b, 4 star

two have rated it a 4, and one has rated it a 3. 3 star

Using the aggregation framework, you can calcu- 2 gtar
late this summary using a single command. In this (g,
case, you first use smatch to select only reviews for the
product being displayed, as we did in the previous Figure 6.4 Reviews summary
example. Next, you group the $match results by rating

o O =~ N O

and count the number of reviews for each rating.
Here’s the aggregation command needed to do this:

Select
countsByRating = db.reviews.aggregate ([product g;‘::gnby. value
{$match : {'product id': product[' id'l}}, $raﬁng?

{$group : { _id:'Srating’,
count: {$sum:1}}} Count number

1) .toArray () ; Convert resulting of reviews for
cursor to an array each rating

As shown in this snippet, you’ve once again produced a count using the $sum func-
tion; this time you counted the number of reviews for each rating. Also note that the
result of this aggregation call is a cursor that you've converted to an array and
assigned to the variable countsByRating.

http://www.it-ebooks.info/

128

CHAPTER 6 Aggregation

SQL query
For those familiar with SQL, the equivalent SQL query would look something like this:
SELECT RATING, COUNT (*) AS COUNT

FROM REVIEWS

WHERE PRODUCT ID = '4c4b1476238d3b4dd5003981'
GROUP BY RATING

This aggregation call would produce an array similar to this:

[{ " id" : 5, "count" : 5 b,
{ " id" : 4, "count" : 2 },
{ v ia" : 3, "count" : 1 }]

JOINING COLLECTIONS

Next, suppose you want to examine the contents of your database and count the num-
ber of products for each main category. Recall that a product has only one main cate-
gory. The aggregation command looks like this:

db.products.aggregate ([
{$group : { _id:'S$main cat id',
count: {$sum:1}}}
1)

This command would produce a list of output documents. Here’s an example:

{ " id" : ObjectId("6a5b1476238d3b4dd5000048"), "count" : 2 }

This result alone may not be very helpful, because you’d be unlikely to know what cat-
egory is represented by ObjectId("6a5b1476238d3b4dd5000048"). One of the limita-
tions of MongoDB is that it doesn’t allow joins between collections. You usually
overcome this by denormalizing your data model—making it contain, through group-
ing or redundancy, attributes that your e-commerce application might normally be
expected to display. For example, in your order collection, each line item also con-
tains the product name, so you don’t have to make another call to read the product
name for each line item when you display an order.

But keep in mind that the aggregation framework will often be used to produce ad
hoc summary reports that you may not always be aware of ahead of time. You may also
want to limit how much you denormalize your data so you don’t end up replicating
too much data, which can increase the amount of space used by your database and
complicate updates (because it may require updating the same information in multi-
ple documents).

Although MongoDB doesn’t allow automatic joins, starting with MongoDB 2.6,
there are a couple of options you can use to provide the equivalent of a SQL join. One

http://www.it-ebooks.info/

E-commerce aggregation example 129

option is to use the forEach function to process the cursor returned from the aggre-
gation command and add the name using a pseudo-join. Here’s an example:

db.mainCategorySummary.remove ({}) ; Remove existing documents

from mainCategorySummary
db.products.aggregate ([

-)) collection
{$group : { _id:'$main cat id',
count: {$sum:1}}}

1) .forEach (function (doc) { :_‘ead cate%ory
var category = db.categories.findOne ({ id:doc. id}); or a result
if (category !== null) {

doc.cat = t . i
} oc.category name = category.name You aren’t guaranteed the
lse { category actually exists!
else
doc.category name = 'not found'; .
} Insert combined
db.mainCategorySummary.insert (doc) ; resuklntoyour.
1) summary collection

In this code, you first remove any existing documents from the existing mainCategory-
Summary collection, just in case it already existed. To perform your pseudo-join, you
process every result document and execute a findOne () call to read the category
name. After adding the category name to the aggregation output document, you then
insert the result into a collection named mainCategorySummary. Don’t worry too
much about the insert function; we’ll cover it in the next chapter.

A find() on the collection mainCategorySummary then will provide you with a
result for each category. The following findOne () command shows the attributes of
the first result:

> db.mainCategorySummary.findOne () ;

{

"_id" : ObjectId("6a5bl476238d3b4dd5000048"),
"count" : 2,
"category name" : "Gardening Tools"

Caution: Pseudo-joins can be slow

As mentioned earlier, starting with MongoDB v2.6 the aggregation pipeline can return
a cursor. But be careful when using a cursor to perform this type of pseudo-join.
Although you can process almost any number of output documents, running the find-
One () command for each document, as you did here to read the category name, can
still be time consuming if done millions of times.

$OUT AND $PROJECT
In a moment you’ll see a much faster option for doing joins using the $unwind opera-
tor, but first you should understand two other operators: $sout and $project. In the

http://www.it-ebooks.info/

130

CHAPTER 6 Aggregation

previous example, you saved the results of your aggregation pipeline into a collection
named mainCategorySummary using program code to process each output document.
You then saved the document using the following:

db.mainCategorySummary.insert (doc) ;

With the sout operator, you can automatically save the output from a pipeline into a
collection. The $out operator will create the collection if it doesn’t exist, or it’ll
replace the collection completely if it does exist. In addition, if the creation of the new
collection fails for some reason, MongoDB leaves the previous collection unchanged.
For example, the following would save the pipeline results to a collection named
mainCategorySummary:

db.products.aggregate ([
{$group : { id:'S$main cat id',
count: {$sum:1}}},
{$out : 'mainCategorySummary'}

Save pipeline
results to collection
mainCategorySummary

1)

The s$project operator allows you to filter which fields will be passed to the next stage
of the pipeline. Although $match allows you to limit how much data is passed to the
next stage by limiting the number of documents passed, $project can be used to limit
the size of each document passed to the next stage. Limiting the size of each docu-
ment can improve performance if you are processing large documents and only need
part of each document. The following is an example of a $project operator that lim-
its the output documents to just the list of category IDs used for each product:

> db.products.aggregate ([
{$project : {category ids:1}}
1)
{ " id" : ObjectId("4c4bl476238d3b4dd5003981"),

"category ids" : [ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000049") 1 }
{ " id" : ObjectId("4c4bl476238d3b4dd5003982"),
"category ids" : [ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000049") 1 }

Now let’s see how to use these operators with the $unwind operator to perform
faster joins.

FASTER JOINS WITH SUNWIND
Next we’ll look at another powerful feature of the aggregation framework, the $unwind
operation. This operator allows you to expand an array, generating one output docu-
ment for every input document array entry. In effect, it provides another type of Mon-
goDB join, where you can join a document with each occurrence of a subdocument.
Earlier you counted the number of products for each main category, where a prod-
uct had only one main category. But suppose you want to calculate the number of
products for each category regardless of whether it was the main category. Recall in

http://www.it-ebooks.info/

E-commerce aggregation example 131

the data model shown at the beginning of the chapter (figure 6.4) that each product
can have an array of category ids. The $unwind operator will then allow you to join
each product with each entry in the array, producing one document for each product
and category_id. You can then summarize that result by the category_id. The aggre-
gation command for this is shown in the next listing.

Listing 6.1 $unwind, which joins each product with its category id array

Pass only the array of category
db.products.aggregate ([IDs to the next step. The _id
1

{$project : {category ids:1 attribute is passed by default.
ind : ' t ids'},
{gunwin Scategory ids'} Create an output document for

{$group : { _id:'$category ids', every array entry in category_ids.

count:{$sum:1}}},

{$out : 'countsByCategory'} Sout writes aggregation

N results to the named
collection countsByCategory.

The first operator in your aggregation pipeline, $project, limits attributes that will
be passed to the next step in the pipeline and is often important for pipelines with
the $unwind operator. Because $unwind will produce one output document for each
entry in the array, you want to limit how much data is being output. If the rest of the
document is large and the array includes a large number of entries, you’ll end up
with a huge result being passed on to the next step in the pipeline. Before MongoDB
v2.6, this could cause your command to fail, but even with MongoDB v2.6 and later,
large documents will slow down your pipeline. If a stage requires more than 100 MB
of RAM, you’ll also have to use a disk to store the stage output, further slowing down
the pipeline.

The last operator in the pipeline, $out, saves the results to the collection named
countsByCategory. Here’s an example of the output saved in countsByCategory:

> db.countsByCategory.findOne ()
{ " id" : ObjectId("6a5b1476238d3b4dd5000049"), "count" : 2 }

Once you've loaded this new collection, countsByCategory, you can then process
each row in the collection to add the category name if needed. The next chapter will
show you how to update a collection.

You’ve seen how you can use the aggregation framework to produce various sum-
maries based on products and categories. The previous section also introduced two
key operators for the aggregation pipeline: $group and $unwind. You’ve also seen the
$out operator, which can be used to save the results of your aggregation. Now, let’s
take a look at a few summaries that might be useful for analyzing information about
users and orders. We’ll also introduce a few more aggregation capabilities and show
you examples.

http://www.it-ebooks.info/

132

6.2.2

CHAPTER 6 Aggregation

User and order

When the first edition of this book was written, the aggregation framework, first intro-
duced in MongoDB v2.2, hadn’t yet been released. The first edition used the MongoDB
map-reduce function in two examples, grouping reviews by users and summarizing
sales by month. The example grouping reviews by user showed how many reviews each
reviewer had and how many helpful votes each reviewer had on average. Here’s what
this looks like in the aggregation framework, which provides a much simpler and
more intuitive approach:

db.reviews.aggregate ([

{$group
{ id : 'Suser id',
count : {$sum : 1},
avg_helpful : {$avg : '$helpful votes'}}

1)

The result from this call looks like this:

{ " id" : ObjectId("4c4bl476238d3b4dd5000003"),

"count" : 1, "avg helpful" : 10 }

{ " id" : ObjectId("4c4bl476238d3b4dd5000002"),
"count" : 2, "avg helpful" : 4 }

{ "_id" : ObjectId("4c4bl476238d3b4dd5000001"),
"count" : 2, "avg helpful" : 5 }

SUMMARIZING SALES BY YEAR AND MONTH

The following is an example that summarizes orders by month and year for orders
beginning in 2010. You can see what this looks like using MongoDB map-reduce in sec-
tion 6.6.2, which requires 18 lines of code to generate the same summary. Here’s how
it looks in the aggregation framework:

db.orders.aggregate ([
{$match: {purchase data: {$gte: new Date (2010, 0, 1)}}},
{$group: {
_id: {year : {$year :'$purchase data'},
month: {$month :'$purchase data'}},
count: {$sum:1},
total: {$sum:'$sub total'}}},
{$sort: { id:-1}}
1)

Running this command, you’d see something like the results shown here:

{ v id" : { "year" : 2014, "month" : 11 },
"count" : 1, "total" : 4897 }

{ " id" : { "year" : 2014, "month" : 10 },
"count" : 2, "total" : 11093 }

{ v id" : { "year" : 2014, "month" : 9 },

"count" : 1, "total" : 4897 }

http://www.it-ebooks.info/

E-commerce aggregation example 133

In this example, you’re using the $match operator to select only orders on or after Jan-
uary 1, 2010. Note that in JavaScript, January is month 0, and your match therefore
looks for dates on or after Date (2010, 0,1) . The matching function $gte should look
familiar, as it was introduced in the previous chapter, in section 5.1.2.

For the $group operator, you’re using a compound key to group the orders by year
and month. Although compound keys are less frequently used in a typical collection,
they often become useful in the aggregation framework. In this case, the compound
key is composed of two attributes: year and month. You've also used the $year and
$month functions to extract the year and month from your purchase date. You're
counting the number of orders, $sum:1, as well as summing the order totals, $sum:
$sub_total.

The final operation in the pipeline then sorts the result from most recent to oldest
month. The values passed to the $sort operation should also look familiar to you:
they’re the same ones used in the MongoDB query sort () function. Note that the
order of the fields in the compound key field, id does matter. If you’d placed the month
before the year within the group for _id, the sort would’ve sorted first by month, and
then by year, which would’ve looked very strange, unless you were trying to determine
trends by month across years.

Now that you’re familiar with the basics of the aggregation framework, let’s take a
look at an even more complex query.

FINDING BEST MANHATTAN CUSTOMERS

In section 5.1.2, you found all customers in Upper Manhattan. Now let’s extend that
query to find the highest spenders in Upper Manhattan. This pipeline is summarized
in figure 6.5. Notice that the $match is the first step in the pipeline, greatly reducing
the number of documents your pipeline has to process.

Order —»|

Smatch $group Smatch $sort
orders shipped sum customer by desending Targeted
to Upper orders by total greater customer order customer
Manhattan customer than $100 total

Figure 6.5 Selecting targeted customers

The query includes these steps:

$match—Find orders shipped to Upper Manhattan.

$group—Sum the order amounts for each customer.

$match—Select those customers with order totals greater than $100.

$sort—Sort the result by descending customer order total.

http://www.it-ebooks.info/

134

CHAPTER 6 Aggregation

Let’s develop this pipeline using an approach that may make it easy to develop and
test our pipelines in general. First we’ll define the parameters for each of the steps:

upperManhattanOrders = {'shipping address.zip': {$gte: 10019, $1lt: 10040}};

sumByUserId = { id: '$user_id',
total: {$sum:'$sub total'}, };

orderTotallLarge = {total: {$gt:10000}};

sortTotalDesc = {total: -1};

These commands define the parameters you’ll be passing to each of the steps of the
aggregation pipeline. This makes the overall pipeline easier to understand, because
an array of nested JSON objects can be difficult to decipher. Given these definitions,
the entire pipeline call would appear as shown here:

db.orders.aggregate ([
{$match: upperManhattanOrders},
{$group: sumByUserId},
{$match: orderTotalLarge},
{$sort: sortTotalDesc}

1)

You can now easily test the individual steps in this process by including one or more of
the steps to verify that they run as expected. For example, let’s run just the part of the
pipeline that summed all customers:

db.orders.aggregate ([
{$group: sumByUserlId},
{$match: orderTotallLarge},
{$1imit: 10}

1)

This code would show you a list of 10 users using the following format:

{ " id" : ObjectId("4c4b1476238d3b4dd5000002"), "total" : 19588 }

Let’s say you decide to keep the count of the number of orders. To do so, modify the
sumByuserId value:

sumByUserId = { id: '$user_ id',

total: {$sum:'$sub total'},
count: {$sum: 1}};

Rerunning the previous aggregate command, you’ll see the following:

{ " id" : ObjectId("4c4bl476238d3b4dd5000002"),
"total" : 19588, '"count" : 4 }

http://www.it-ebooks.info/

6.3

Aggregation pipeline operators 135

Building an aggregation pipeline this way allows you to easily develop, iterate, and test
your pipeline and also makes it much easier to understand. Once you’re satisfied with
the result, you can add the $out operator to save the results to a new collection and
thus make the results easily accessible by various applications:

db.orders.aggregate ([

{$match: upperManhattanOrders},
$group: sumByUserId},
$match: orderTotallarge},
$sort: sortTotalDesc},
Sout: ‘targetedCustomers‘}

{
{
{
{
1)

You’ve now seen how the aggregation framework can take you far beyond the limits of
your original database design and allow you to extend what you learned in the previ-
ous chapter on queries to explore and aggregate your data. You’ve learned about the
aggregation pipeline and the key operators in that pipeline, including $group and
$unwind. Next we’ll look in detail at each of the aggregation operators and explain
how to use them. As we mentioned earlier, much of this will be familiar if you’ve read
the previous chapter.

Aggregation pipeline operators
The aggregation framework supports 10 operators:

= S$project—Specify document fields to be processed.

» sgroup—Group documents by a specified key.

= S$match—Select documents to be processed, similar to find (...) .

» $limit—Limit the number of documents passed to the next step.

m $skip—Skip a specified number of documents and don’t pass them to the
next step.

= Sunwind—Expand an array, generating one output document for each array
entry.

m $sort—Sort documents.

= $geoNear—Select documents near a geospatial location.

= Sout—Write the results of the pipeline to a collection (new in v2.6).

m $redact—Control access to certain data (new in v2.6).

The following sections describe using these operators in detail. Two of the operators,
$geoNear and sredact, are used less often by most applications and won’t be covered
in this chapter. You can read more about them here: http://docs.mongodb.org/
manual/reference/operator/aggregation/.

http://docs.mongodb.org/manual/reference/operator/aggregation/
http://docs.mongodb.org/manual/reference/operator/aggregation/
http://www.it-ebooks.info/

136

6.3.1

6.3.2

CHAPTER 6 Aggregation

Sproject

The $project operator contains all of the functionality available in the query projec-
tion option covered in chapter 5 and more. The following is a query based on the
example in section 5.1.2 for reading the user’s first and last name:

db.users. findOne (
{username: 'kbanker', Projection object
hashed password: 'bdlcfal94c3a603e7186780824b04419'}, J that returns first
{first name:1, last name:1} name and last name

You can code the previous query as shown here using the same find criteria and pro-
jection objects as in the previous example:

db.users.aggregate ([
{$match: {username: 'kbanker',
hashed password: 'bdlcfal94c3a603e7186780824b04419'}},

{$project: {first name:1, last name:1}}
p _ _ . .
Project pipeline operator

that returns first name
and last name

1)

In addition to using the same features as those previously covered for the query pro-
jection option, you can use a large number of document reshaping functions. Because
there are so many of these, and they can also be used for defining the _id of a $group
operator, they’re covered in a section 6.4, which focuses on reshaping documents.

Sgroup

The sgroup operator is the main operator used by most aggregation pipelines. This is
the operator that handles the aggregation of data from multiple documents, provid-
ing you with summary statistics using functions such as min, max, and average. For
those familiar with SQL, the $group function is equivalent to the SQL GROUP BY clause.
The complete list of $group aggregation functions is shown in table 6.2.

You tell the $group operator how to group documents by defining the id field.
The $group operator then groups the input documents by the specified _id field, pro-
viding aggregated information for each group of documents. The following example
was shown in 6.2.2, where you summarized sales by month and year:

> db.orders.aggregate ([
{$match: {purchase data: {$gte: new Date (2010, 0, 1)}}},
{$group: {
_id: {year : {$year :'Spurchase data'},
month: {$month :'$purchase data'}},
count: {$sum:1},
total: {$sum:'$sub total'}}},
{$sort: { id:-1}}
1)
{ v id" : { "year" : 2014, "month" : 11 },
"count" : 1, "total" : 4897 }

http://www.it-ebooks.info/

Aggregation pipeline operators 137

{ » iav : { "year" 2014, "month" 8 },
"count" 2, "total" 11093 }

{ » ia" : { "year" 2014, "month" 4},
"count" 1, "total" 4897 }

When defining the _id field for the group, you can use one or more existing fields, or
you can use one of the document reshaping functions covered in section 6.4. This
example illustrates the use of two reshaping functions: $year and $month. Only the
_id field definition can use reshaping functions. The remaining fields in the $group
output documents are limited to being defined using the $group functions shown in
table 6.2.

Table 6.2 $group functions

$group functions

SaddToSet Creates an array of unique values for the group.

sfirst The first value in a group. Makes sense only if preceded by a $sort.

Slast Last value in a group. Makes sense only if preceded by a $sort.

Smax Maximum value of a field for a group.

Smin Minimum value of a field for a group.

Savg Average value for a field.

Spush Returns an array of all values for the group. Doesn’t eliminate duplicate values.
Ssum Sum of all values in a group.

Although most of the functions are self-explanatory, two are less obvious: $push and
$addToSet. The following example creates a list of customers, each with an array of
products ordered by that customer. The array of products is created using the $push
function:

db.orders.aggregate ([
{$project: {user id:1, line items:1}},

{$unwind: '$line items'}, $push function
{$group: { id: {user id:'Suser_ id'}, QJ adds object to
purchasedItems: {$push: '$line items'}}} purchasedltems array
1) .toArray () ;

The previous example would create something like the output shown here:

[

"_id" : {
"user id" : ObjectId("4c4bl1476238d3b4dd5000002")

b

http://www.it-ebooks.info/

138

6.3.3

"purchasedItems"

{

CHAPTER 6 Aggregation

"_id" : ObjectId("4c4bl476238d3b4dd5003981"),
"sku" : "9092",

"Extra Large Wheel Barrow",
"quantity"

"name"

"pricing"

1,

{

"retail" : 5897,

"sale

4897

"_id" : ObjectId("4c4bl476238d3b4dd5003981"),
"Sku" : ll9o92ll’

"Extra Large Wheel Barrow",
"quantity"

"name"

"pricing"

1,

{

"retail" : 5897,

"sale

4897

$addToSet VS. $push

Looking at the group functions, you may wonder about the difference between
$addToSet and $push. The elements in a set are guaranteed to be unique. A given
value doesn’t appear twice in the set, and this is enforced by $addToSet. An array
like one created by the $Spush operator doesn’t require each element to be unique.
Therefore, the same element may appear more than once in an array created
by Spush.

Let’s continue with some operators that should look more familiar.

Smatch, Ssort, Sskip, Slimit

These four pipeline operators are covered together because they work identically to
the query functions covered in chapter 5. With these operators, you can select certain
documents, sort the documents, skip a specified number of documents, and limit the
size of the number of documents processed.

Comparing these operators to the query language covered in chapter 5, you’ll see
that the parameters are almost identical. Here’s an example based on the paging
query shown in section 5.1.1:

page_number = 1

product = db.products.findOne ({'slug': 'wheelbarrow-9092'})

reviews = db.reviews.find ({'product id': product[' id']}).
skip ((page number - 1) * 12).
limit(12).
sort ({'helpful votes': -1})

http://www.it-ebooks.info/

6.34

6.3.5

Aggregation pipeline operators

The identical query in the aggregation framework would look like this:

reviews2 = db.reviews.aggregate ([
{$match: {'product id': product[' id']}}
{$skip : (page number - 1) * 12},
{$limit: 12},
{$sort: {'helpful votes': -1}}

1) .toArray () ;

139

As you can see, functionality and input parameters for the two versions are identical.

One exception to this is the £ind () $where function, which allows you to select docu-
ments using a JavaScript expression. The swhere can’t be used with the aggregation

framework $match operator.

Sunwind

You saw the $unwind operator in section 6.2.1 when we discussed faster joins. This

operator expands an array by generating one output document for every entry in an

array. The fields from the main document, as well as the fields from each array entry,

are put into the output document. This example shows the categories for a product

before and after a Sunwind:

> db.products.findOne ({}, {category ids:1})
{
"_id" : ObjectId("4c4b1476238d3b4dd5003981"),
"category ids" : [
ObjectId("6a5b1476238d3b4dd5000048"),
ObjectId("6a5b1476238d3b4dd5000049")

> db.products.aggregate ([
{$project : {category ids:1}},
{$unwind : '$category ids'},
{$1limit : 2}
. 1)
{ " id" : ObjectId("4c4bl1476238d3b4dd5003981"),
"category ids" : ObjectId("6a5bl476238d3b4dd5000048") }
{ "_id" : ObjectId("4c4b1476238d3b4dd5003981"),
"category ids" : ObjectId("6a5bl476238d3b4dd5000049") }

Now let’s look at an operator new in MongoDB v2.6: $out.

Sout

In section 6.2.2 you created a pipeline to find the best Manhattan customers. We’ll use
that example again here, but this time the final output of the pipeline is saved in the
collection targetedCustomers using the $out operator. The sout operator must be

the last operator in your pipeline:

db.orders.aggregate ([
{$match: upperManhattanOrders},
{$group: sumByUserId},

http://www.it-ebooks.info/

140

6.4

CHAPTER 6 Aggregation

{$match: orderTotallLarge},

{$sort: sortTotalDesc},

{$out: 'targetedCustomers'}
1)

The result of the pipeline creates a new collection or, if the collection already exists,
completely replaces the contents of the collection, targetedCustomers in this case,
keeping any existing indexes. Be careful what name you use for the Sout operation or
you could inadvertently wipe out an existing collection. For example, what would hap-
pen if by mistake you used the name users for the $out collection name?

The loaded results must comply with any constraints the collection has. For exam-
ple, all collection documents must have a unique _id. If for some reason the pipeline
fails, either before or during the Sout operation, the existing collection remains
unchanged. Keep this in mind if you’re using this approach to produce the equivalent
of a SQL materialized view.

Materialized views MongoDB style

Most relational databases provide a capability known as a materialized view. Materi-
alized views are a way of providing pregenerated results in an efficient and easy-to-
use manner. By pregenerating this information, you save the time and overhead that
would be required to produce the result. You also make it easier for other applica-
tions to use this preprocessed information. The failsafe nature of the Sout operation
is critical if you use it to generate the equivalent of a materialized view. If the regen-
eration of the new collection fails for any reason, you leave the previous version
intact, an important characteristic if you expect a number of other applications to be
dependent on this information. It's better that the collection be a bit out of date than
missing entirely.

You’ve now seen all of the main aggregation pipeline operators. Let’s return to a pre-
viously mentioned subject: reshaping documents.

Reshaping documents

The MongoDB aggregation pipeline contains a number of functions you can use to
reshape a document and thus produce an output document that contains fields not in
the original input document. You’ll typically use these functions with the $project
operator, but you can also use them when defining the _id for the $group operator.

The simplest reshaping function is renaming a field to create a new field, but you
can also reshape a document by altering or creating a new structure. For example,
going back to a prior example where you read a user’s first and last name, if you
wanted to create a subobject called name with two fields, first and last, you could
use this code:

http://www.it-ebooks.info/

Reshaping documents 141

db.users.aggregate ([
{$match: {username: 'kbanker'}},
{$project: {name: {first:'$first name',
last:'$last _name'}}
}

1)

The results from running this code look like this:

{ "_id" : ObjectId("4c4b1476238d3b4dd5000001"),
"name" : { "first" : "Kyle",
"last" : "Banker" }

In addition to renaming or restructuring existing document fields, you can create new
fields using a variety of reshaping functions. The reshaping function descriptions are
divided into groups based on the type of function they perform: string, arithmetic,
date, logical, sets, and a few others that have been grouped into a miscellaneous cate-
gory. Next, we’ll take a closer look at each group of functions, starting with those that
perform string manipulations.

Aggregation framework reshaping functions

There are a number of functions—more in each release, it seems—that allow you to
perform a variety of operations on the input document fields to produce new fields.
In this section we’ll provide an overview of the various types of operators, along with
an idea of what some of the more complex functions can accomplish. For the latest
list of available functions, see the MongoDB documentation at http://docs.mongodb
.org/manual/reference/operator/aggregation/group/ .

6.4.1 String functions

The string functions shown in table 6.3 allow you to manipulate strings.

Table 6.3 String functions

Strings

Sconcat Concatenates two or more strings into a single string
$strcasecmp | Case-insensitive string comparison that returns a number
Ssubstr Creates a substring of a string

StoLower Converts a string to all lowercase

StoUpper Converts a string to all uppercase

http://docs.mongodb.org/manual/reference/operator/aggregation/group/
http://docs.mongodb.org/manual/reference/operator/aggregation/group/
http://www.it-ebooks.info/

142

6.4.2

6.4.3

CHAPTER 6 Aggregation

This example uses three functions, $concat, $substr, and $toUpper:

db.users.aggregate ([Concatenate first
{$match: {username: 'kbanker'}}, and last name with
{$project: a space in between
{name: {$concat:['$first name', ' ', 'S$last name'l},
firstInitial: {$substr: ['$first name',0,1]}, Set firstlnitial
usernameUpperCase: {$toUpper: '$username'} to the first
} Change the character in

} username to
1) uppercase.

the first name.

The results from running this code look like this:

{ " id" : ObjectId("4c4b1476238d3b4dd5000001"),
"name" : "Kyle Banker",
"firstInitial" : "K",
"usernameUpperCase" : "KBANKER"

Most of the string functions should look familiar.
Next we’ll take a look at the arithmetic-related functions.

Arithmetic functions

Arithmetic functions include the standard list of arithmetic operators shown in

table 6.4.

Table 6.4 Arithmetic functions

Arithmetic
Sadd Adds array numbers
sdivide Divides the first number by the second number
Smod Divides remainder of the first number by the second number
Smultiply Multiplies an array of numbers
Ssubtract Subtracts the second number from the first number

In general, arithmetic functions allow you to perform basic arithmetic on numbers,
such as add, subtract, divide, and multiply.
Next let’s take a look at some of the date-related functions.

Date functions

The date functions shown in table 6.5 create a new field by extracting part of an exist-
ing date time field, or by calculating another aspect of a date such as day of year, day
of month, or day of week.

http://www.it-ebooks.info/

Reshaping documents 143

Table 6.5 Date functions

Dates
SdayOfYear The day of the year, 1 to 366
$dayOfMonth The day of month, 1 to 31
$dayOfWeek The day of week, 1 to 7, where 1 is Sunday
Syear The year portion of a date
Smonth The month portion of a date, 1 to 12
Sweek The week of the year, O to 53
Shour The hours portion of a date, O to 23
Sminute The minutes portion of a date, O to 59
Ssecond The seconds portion of a date, O to 59 (60 for leap seconds)
Smillisecond The milliseconds portion of a date, O to 999

You already saw one example of using $year and Smonth in section 6.2.2 that dealt
with summarizing sales by month and year.

The rest of the date functions are straightforward, so let’s move on to a detailed
look at the logical functions.

6.4.4 Logical functions

The logical functions, shown in table 6.6, should look familiar. Most are similar to the
find query operators summarized in chapter 5, section 5.2.

Table 6.6 Logical functions

Logical
Sand true if all of the values in an array are true.
Scmp Returns a number from the comparison of two values, 0 if they're equal.
$cond if.. then.. else conditional logic.
Seq Are two values equal?
sgt Is value 1 greater than value 2?
Sgte Is value 1 greater than or equal value 2?
$ifNull Converts a null value/expression to a specified value.
slt Is value 1 less than value 2?
Slte Is value 1 less than or equal value 27?

http://www.it-ebooks.info/

144

6.4.5

CHAPTER 6 Aggregation

Table 6.6 Logical functions (continued)

Logical
Sne Is value 1 not equal to value 2?
Snot Returns opposite condition of value: false if value is true, true if value
is false.
Sor true if any of the values in an array are true.

The $cond function is different from most of the functions you’ve seen and allows
complex if, then, else conditional logic. It’s similar to the ternary operator (?) found
in many languages. For example x ? y : z, which, given a condition x, will evaluate to
the value y if the condition x is true and otherwise evaluate to the value z.

Next up are set functions, which allow you to compare sets of values with each
other in various ways.

Set Operators

Set operators, summarized in table 6.7, allow you to compare the contents of two
arrays. With set operators, you can compare two arrays to see if they’re exactly the
same, what elements they have in common, or what elements are in one but not the
other. If you need to use any of these functions, the easiest way to see how they work is
to visit the MongoDB documentation at http://docs.mongodb.org/manual/reference/
operator/aggregation-set/.

Table 6.7 Set functions

Sets

SsetEquals true if two sets have exactly the same elements
SsetIntersection Returns an array with the common elements in two sets
SsetDifference Returns elements of the first set that aren’t in the second set
$setUnion Returns a set that’s the combination of two sets
SsetIsSubset true if the second set is a subset of the first set: all elements in the

second are also in the first
SanyElementTrue true if any element of a set is true
SallElementsTrue true if all elements of a set are true

Here’s one example using the $setUnion function. Given that you have the follow-
ing products:
{ " id" : ObjectId("4c4bl476238d3b4dd5003981"),

"productName" : "Extra Large Wheel Barrow",
"tags" : ["tools", "gardening", "soil" 1}

http://docs.mongodb.org/manual/reference/operator/aggregation-set/
http://docs.mongodb.org/manual/reference/operator/aggregation-set/
http://www.it-ebooks.info/

6.4.6

Reshaping documents 145

{ " id" : ObjectId("4c4bl476238d3b4dd5003982"),
"productName" : "Rubberized Work Glove, Black",
"tags" : ["gardening" 1}

If you union the tags in these products, you’ll get the array named testSetl as

shown here:

testSetl =

['tools']

db.products.aggregate ([
{$project:
{productName: '$name',
tags:1,
setUnion: {S$setUnion:['Stags', testSetl]},

1)

The results will contain tags as shown here:

{ "oid ObjectId("4c4bl1476238d3b4dd5003981"),
"productName" : "Extra Large Wheel Barrow",
"tags" ["tools™", ||gardeningn , "soil"], QJ Union ?f tools and .
"setUnion" : ["gardening", "tools","soil"] gardening, tools, soil
}
{ "oid ObjectId("4c4b1476238d3b4dd5003982"),
"productName" : "Rubberized Work Glove, Black",
"tags" [gardening ", QJ Union of tools
"setUnion" : ["tools", "gardening"] and gardening

We’re almost done with the various document reshaping functions, but there’s still

one more category to cover: the infamous “miscellaneous” category, where we group

everything that didn’t fit a previous category.

Miscellaneous functions

The last group, miscellaneous functions, are summarized in table 6.8. These functions
perform a variety of functions, so we’ll cover them one at a time. The $meta function
relates to text searches and won’t be covered in this chapter. You can read more about

text searches in chapter 9.

Table 6.8 Miscellaneous functions

Miscellaneous

Smeta
Ssize
Smap
Slet

Sliteral

Accesses text search-related information. See chapter 9 on text search
Returns the size of an array

Applies an expression to each member of an array

Defines variables used within the scope of an expression

Returns the value of an expression without evaluating it

http://www.it-ebooks.info/

146

6.5

CHAPTER 6 Aggregation

The $size function returns the size of an array. This function can be useful if, for exam-
ple, you want to see whether an array contains any elements or is empty. The $literal
function allows you to avoid problems with initializing field values to 0, 1, or §.

The $let function allows you to use temporarily defined variables without having
to use multiple $project stages. This function can be useful if you have a complex
series of functions or calculations you need to perform.

The $map function lets you process an array and generate a new array by per-
forming one or more functions on each element in the array. Smap can be useful if
you want to reshape the contents of an array without using the $unwind to first flat-
ten the array.

That wraps up our overview of reshaping documents. Next, we’ll cover some per-
formance considerations.

Understanding aggregation pipeline performance

In this section you’ll see how to improve the performance of your pipeline, under-
stand why a pipeline might be slow, and also learn how to overcome some of the limits
on intermediate and final output size, constraints that have been removed starting
with MongoDB v2.6.

Here are some key considerations that can have a major impact on the perfor-
mance of your aggregation pipeline:

= Try to reduce the number and size of documents as early as possible in your
pipeline.

= Indexes can only be used by $match and $sort operations and can greatly
speed up these operations.

= You can’t use an index after your pipeline uses an operator other than $match
or $sort.

= If you use sharding (a common practice for extremely large collections), the
$match and $project operators will be run on individual shards. Once you use
any other operator, the remaining pipeline will be run on the primary shard.

Throughout this book you’ve been encouraged to use indexes as much as possible. In
chapter 8 “Indexing and Query Optimization,” you’ll cover this topic in detail. But of
these four key performance points, two of them mention indexes, so hopefully you
now have the idea that indexes can greatly speed up selective searching and sorting of
large collections.

There are still cases, especially when using the aggregation framework, where you’re
going to have to crunch through huge amounts of data, and indexing may not be an
option. An example of this was when you calculated sales by year and month in sec-
tion 6.2.2. Processing large amounts of data is fine, as long as a user isn’t left waiting
for a web page to display while you're crunching the data. When you do have to show
summarized data—on a web page, for example—you always have the option to pre-
generate the data during off hours and save it to a collection using $out.

http://www.it-ebooks.info/

6.5.1

6.5.2

Understanding aggregation pipeline performance 147

That said, let’s move on to learning how to tell if your query is in fact using an
index via the aggregation framework’s version of the explain() function.

Aggregation pipeline options
Until now, we’ve only shown the aggregate () function when it’s passed an array of
pipeline operations. Starting with MongoDB v2.6, there’s a second parameter you can

pass to the aggregate () function that you can use to specify options for the aggrega-
tion call. The options available include the following:

» explain()—Runs the pipeline and returns only pipeline process details
= allowDiskUse—Uses disk for intermediate results
= cursor—Specifies initial batch size

The options are passed using this format

db.collection.aggregate (pipeline,additionalOptions)

where pipeline is the array of pipeline operations you’ve seen in previous examples
and additionalOptions is an optional JSON object you can pass to the aggregate ()
function. The format of the additionalOptions parameter is as follows:

{explain:true, allowDiskUse:true, cursor: {batchSize: n} }

Let’s take a closer look at each of the options one at a time, starting with the
explain () function.

The aggregation framework’s explain() function

The MongoDB explain() function, similar to the EXPLAIN function you might have
seen in SQL, describes query paths and allows developers to diagnose slow operations
by determining indexes that a query has used. You were first introduced to the
explain () function when we discussed the £ind () query function in chapter 2. We’ve
duplicated listing 2.2 in the next listing, which demonstrates how an index can
improve the performance of a find () query function.

Listing 6.2 explain () output for an indexed query

> db.numbers.find ({num: {"$gt": 19995 }}) .explain("executionStats")

{

"queryPlanner" :
"plannerVersion" : 1,
"namespace" : "tutorial.numbers",
"indexFilterSet" : false,
"parsedQuery" : {
"num" {

"Sgt" : 19995

}
b

http://www.it-ebooks.info/

148

Four
documents
returned

CHAPTER 6 Aggregation

"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"num" : 1

}, Using num_1
"indexName" : "num_ 1", index

"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"num" : [
"(19995.0, inf.0]"

1
"rejectedPlans" : []
1
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 4,
"executionTimeMillis" : 0,
"totalKeysExamined" : 4, Oanour

"totalDocsExamined" : 4, documents

"executionStages" : { scanned
"stage" : "FETCH",
"nReturned" : 4,
"executionTimeMillisEstimate" : 0,
"works" : 5,
"advanced" : 4,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 4,
"alreadyHasObj" : O,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 4,
"executionTimeMillisEstimate" : 0,
"works" : 4,
"advanced" : 4,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"num" : 1

Much
faster!

9 Using num_1
"indexName" : "num 1", index

http://www.it-ebooks.info/

Understanding aggregation pipeline performance 149

"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {

"num" : [

"(19995.0, inf.o]"

b

"keysExamined" : 4,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0,
"matchTested" : 0
1
}
b
"serverInfo" : {
"host" : "rMacBook.local",
"port" : 27017,
"version" : "3.0.6",
"gitVersion" : "nogitversion"
oo

The explain() function for the aggregation framework is a bit different from the
explain() used in the find () query function but it provides similar capabilities. As
you might expect, for an aggregation pipeline you’ll receive explain output for each
operation in the pipeline, because each step in the pipeline is almost a call unto itself
(see the following listing).

Listing 6.3 Example explain () output for aggregation framework

> countsByRating = db.reviews.aggregate ([
{$match : {'product id': product[' id'l}},

$match
{$group : { _id:'Srating’, first
... count: {$sum:1}}}
... 1,{explain:true}) explain
{ option true
"stages" : [
{
"Scursor" : {
"query" : {
"product_id" : ObjectId("4c4b1476238d3b4dd5003981")
}
"fields" : {
"rating" : 1,
"id" ;0
}
"plan" : {
‘cursor" : "BtreeCursor ", Uses BTreeCursor, an
n " . .
isMultiKey" : false, index-based cursor
"scanAndOrder" : false,

"indexBounds" : {

http://www.it-ebooks.info/

150

CHAPTER 6 Aggregation

Range used is "product_id" . [
for single [

product ObjectId("4c4b1476238d3b4dd5003981"),
ObjectId("4c4b1476238d3b4dd5003981")

]
b

"allPlans" : [

1

"$group" : {
"_id" : "$rating",
"count" : {
"$sum" : |
"Sconst" : 1
}

1,
nok" i 1

}

Although the aggregation framework explain output shown in this listing isn’t as
extensive as the output that comes from find () .explain ()shown in listing 6.2, it still
provides some critical information. For example, it shows whether an index is used
and the range scanned within the index. This will give you an idea of how well the
index was able to limit the query.

Aggregation explain() a work in progress?

The explain () function is new in MongoDB v2.6. Given the lack of details compared
tothe find () .explain () output, it could be improved in the near future. As explained
in the online MongoDB documentation at http://docs.mongodb.org/manual/reference/
method/db.collection.aggregate/#example-aggregate-method-explain-option, “The
intended readers of the explain output document are humans, and not machines, and
the output format is subject to change between releases.” Because the documenta-
tion states that the format may change between releases, don’t be surprised if the
output you see begins to look closer to the find () .explain() output by the time
you read this. But the £ind () .explain () function has been further improved in Mon-
goDB v3.0 and includes even more detailed output than the £find () .explain() func-
tion in MongoDB v2.6, and it supports three modes of operation: "queryPlanner",
"executionStats", and "allPlansExecution".

Now let’s look at another option that solves a problem that previously limited the size
of the data you could process.

http://docs.mongodb.org/manual/reference/method/db.collection.aggregate/#example-aggregate-method-explain-option
http://docs.mongodb.org/manual/reference/method/db.collection.aggregate/#example-aggregate-method-explain-option
http://www.it-ebooks.info/

6.5.3

6.5.4

Understanding aggregation pipeline performance 151

As you already know, depending on the exact version of your MongoDB server,
your output of the explain () function may vary.

allowDiskUse option

Eventually, if you begin working with large enough collections, you’ll see an error sim-
ilar to this:

assert: command failed: {

"errmsg" : "exception: Exceeded memory limit for S$group,

but didn't allow external sort. Pass allowDiskUse:true to opt in.",
"code" : 16945,

"ok" : 0

} : aggregate failed

Even more frustrating, this error will probably happen after a long wait, during which
your aggregation pipeline has been processing millions of documents, only to fail.
What’s happening in this case is that the pipeline has intermediate results that exceed
the 100 MB of RAM limit allowed by MongoDB for pipeline stages. The fix is simple
and is even specified in the error message: Pass allowDiskUse:true to opt in.

Let’s see an example with your summary of sales by month, a pipeline that would
need this option because your site will have huge sales volumes:

db.orders.aggregate ([
{$match: {purchase data: {$gte: new Date (2010, 0, 1)}}}, Use a $match

{$group: { first to reduce
_id: {year : {$year :'Spurchase data'}, documents to
month: {$month :'$purchase data'}}, process.
count: {$sum:1},
total: {$sum:'$sub total'}}}

{$sort: {_id:-1}} Allow MongoDB
1, {allowDiskUse:true}) ; to use the disk for
intermediate storage.

Generally speaking, using the allowDiskUse option may slow down your pipeline,
so we recommend that you use it only when needed. As mentioned earlier, you
should also try to limit the size of your pipeline intermediate and final document
counts and sizes by using smatch to select which documents to process and $project
to select which fields to process. But if you’re running large pipelines that may at
some future date encounter the problem, sometimes it’s better to be safe and use it
justin case.
Now for the last option available in the aggregation pipeline: cursor.

Aggregation cursor option

Before MongoDB v2.6, the result of your pipeline was a single document with a limit of
16 MB. Starting with v2.6, the default is to return a cursor if you’re accessing MongoDB
via the Mongo shell. But if you're running the pipeline from a program, to avoid

http://www.it-ebooks.info/

152

6.6

CHAPTER 6 Aggregation

“breaking” existing programs the default is unchanged and still returns a single docu-
ment limited to 16 MB. In programs, you can access the new cursor capability by cod-
ing something like that shown here to return the result as a cursor:

countsByRating = db.reviews.aggregate ([
{$match : {'product id': product[' id'l}},
{$group : { _id:'Srating’,

count: {$sum:1}}} <F4J Return a

1,{cursor:{}}) cursor.

The cursor returned by the aggregation pipeline supports the following calls:

® cursor.hasNext ()—Determine whether there’s a next document in the results.

m cursor.next ()—Return the next document in the results.

m cursor.toArray ()—Return the entire result as an array.

m cursor.forEach ()—Execute a function for each row in the results.

m cursor.map () —Execute a function for each row in the results and return an
array of function return values.

® cursor.itcount ()—Return a count of items (for testing only).

m cursor.pretty () —Display an array of formatted results.

Keep in mind that the purpose of the cursor is to allow you to stream large volumes of
data. It can allow you to process a large result set while accessing only a few of the out
put documents at one time, thus reducing the memory needed to contain the results
being processed at any one time. In addition, if all you need are a few of the docu-
ments, a cursor can allow you to limit how many documents will be returned from
the server. With the methods toArray () and pretty (), you lose those benefits and
all the results are read into memory immediately.

Similarly, itcount () will read all the documents and have them sent to the cli-
ent, but it’ll then throw away the results and return just a count. If all your applica-
tion requires is a count, you can use the $group pipeline operator to count the
output documents without having to send each one to your program—a much more
efficient process.

Now let’s wrap up by looking at alternatives to the pipeline for performing
aggregations.

Other aggregation capabilities

Although the aggregation pipeline is now considered the preferred method for aggre-
gating data in MongoDB, a few alternatives are available. Some are much simpler, such
as the .count () function. Another, more complex alternative is the older MongoDB
map-reduce function.

Let’s start with the simpler alternatives first.

http://www.it-ebooks.info/

Other aggregation capabilities 153

6.6.1 .count() and .distinct()

You’ve already seen the .count () function earlier in section 6.2.1. Here’s an excerpt
from code in that section:

product = db.products.findOne ({'slug': 'wheelbarrow-9092'}) QJ Countreviews
reviews count = db.reviews.count ({'product id': product[' id']}) for a product

Now let’s see an example of using the distinct () function. The following would
return an array of the zip codes that we’ve shipped orders to:

db.orders.distinct ('shipping address.zip')

The size of the results of the distinct () function is limited to 16 MB, the current
maximum size for a MongoDB document.

Next, let’s take a look at one of the early attempts at providing aggregation: map-
reduce.

6.6.2 map-reduce

map-reduce was MongoDB’s first attempt at providing a flexible aggregation capabil-
ity. With map-reduce, you have the ability to use JavaScript in defining your entire
process. This provides a great deal of flexibility but generally performs much slower
than the aggregation framework.! In addition, coding a map-reduce process is much
more complex and less intuitive than the aggregation pipelines we’ve been build-
ing. Let’s see an example of how a previous aggregation framework query would
appear in map-reduce.

NOTE For background on map-reduce as explained by two Google research-
ers, see the original paper on the MapReduce programming model at http://
static.googleusercontent.com/media/research.google.com/en/us/archive/
mapreduce-osdi04.pdf.

In section 6.2.2, we showed you an example aggregation pipeline that provided sales
summary information:

db.orders.aggregate ([

{"$match": {"purchase data":{"Sgte" : new Date (2010, 0, 1)}}},
{"$group": {
" id": {"year" : {"$year" :"Spurchase data"},
"month" : {"$month" : "$purchase data"}},
"count": {"$sum":1},

"total": {"$sum":"$sub total"}}},
{"$sortm: {" id":-1}}1);

! Although JavaScript performance has been improving in MongoDB, there are still some key reasons why map-
reduce is still significantly slower than the aggregation framework. For a good synopsis of these issue see the
wonderful write-up by William Zola in StackOverflow at http://stackoverflow.com/questions/12678631 /map-
reduce-performance-in-mongodb-2-2-2-4-and-2-6,/12680165#12680165.

http://stackoverflow.com/questions/12678631/map-reduce-performance-in-mongodb-2-2-2-4-and-2-6/12680165#12680165
http://stackoverflow.com/questions/12678631/map-reduce-performance-in-mongodb-2-2-2-4-and-2-6/12680165#12680165
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://www.it-ebooks.info/

154

CHAPTER 6 Aggregation

Let’s create a similar result using map-reduce. The first step, as the name implies, is to
write a map function. This function is applied to each document in the collection and,
in the process, fulfills two purposes: it defines the keys that you’re grouping on, and it
packages all the data you’ll need for your calculation. To see this process in action,
look closely at the following function:

map = function() {
var shipping month = (this.purchase_data.getMonth()+1) +
'-' + this.purchase data.getFullYear() ;

var tmpItems = 0;
this.line items.forEach(function(item) {
tmpItems += item.quantity;

I3

emit (shipping month, {order total: this.sub total,
items total: tmpItems});

}i

First, know that the variable this always refers to a document being iterated over—
orders, in this case. In the function’s first line, you get an integer value specifying the
month the order was created. You then call emit (), a special method that every map
function must invoke. The first argument to emit () is the key to group by, and the sec-
ond is usually a document containing values to be reduced. In this case, you're group-
ing by month, and you’re going to reduce over each order’s subtotal and item count.
The corresponding reduce function should make this clearer:

reduce = function(key, values)
var result = { order total: 0, items total: 0 };
values.forEach (function (value) {
result.order_total += value.order_ total;
result.items total += value.items_total;

I3

return (result);

}i

The reduce function will be passed a key and an array of one or more values. Your
job in writing a reduce function is to make sure those values are aggregated together
in the desired way and then returned as a single value. Because of map-reduce’s itera-
tive nature, reduce may be invoked more than once, and your code must take this
into account. In addition, if only one value is emitted by the map function for a partic-
ular key, the reduce function won’t be called at all. As a result, the structure returned
by the reduce function must be identical to the structure emitted by the map func-
tion. Look closely at the example map and reduce functions and you’ll see that this is
the case.

ADDING A QUERY FILTER AND SAVING OUTPUT
The shell’s map-reduce method requires a map and a reduce function as arguments.
But this example adds two more. The first is a query filter that limits the documents

http://www.it-ebooks.info/

Other aggregation capabilities 155

involved in the aggregation to orders made since the beginning of 2010. The second
argument is the name of the output collection:

filter = {purchase data: {$gte: new Date(2010, 0, 1)}};
db.orders.mapReduce (map, reduce, {query: filter, out: 'totals'});

The process, as illustrated in figure 6.6, includes these steps:

(%Y

filter will select only certain orders.
map then emits a key-value pair, usually one output for each input, but it can
emit none or many as well.

w

reduce is passed a key with an array of values emitted by map, usually one array
for each key, but it may be passed the same key multiple times with different
arrays of values.

Filter

Reduce =) Output
—b Documents

VooV

=

On or after Emit CoIIect and
1/1/2010 Key-Value Pairs Condense Data

Figure 6.6 map-reduce process

One important point illustrated in figure 6.6 is that if the map function produces a sin-
gle result for a given key, the reduce step is skipped. This is critical to understanding
why you can’t change the structure of the value output by the map output during the
reduce step.

In the example, the results are stored in a collection called totals, and you can
query this collection as you would any other. The following listing displays the results
of querying one of these collections. The _id field holds your grouping key, the year,
and the month, and the value field references the reduced totals.

Listing 6.4 Querying the map-reduce output collection

db.totals.find()

>

{ " id" : "11-2014", "value" : {"order total" : 4897, "items_total" : 1 } }
{ » id" : "4-2014", "value" : {"order total" : 4897, "items total" : 1 } }
{ » id" . "8-2014", "value" : {"order total" : 11093, "items total" : 4 } }

The examples here should give you some sense of MongoDB’s aggregation capabilities
in practice. Compare this to the aggregation framework version of the equivalent pro-
cess and you’ll see why map-reduce is no longer the preferred method for this type of
functionality.

But there may be some cases where you require the additional flexibility that
JavaScript provides with map-reduce. We won’t cover the topic further in this book,

http://www.it-ebooks.info/

156

6.7

CHAPTER 6 Aggregation

but you can find references and examples for map-reduce on the MongoDB website at
http://docs.mongodb.org/manual/core/map-reduce/.

map-reduce—A good first try

At the first MongoDB World conference held in New York City in 2014, a group of
MongoDB engineers presented results from benchmarks comparing different server
configurations for processing a collection in the multi-terabyte range. An engineer pre-
sented a benchmark for the aggregation framework but none for map-reduce. When
asked about this, the engineer replied that map-reduce was no longer the recom-
mended option for aggregation and that it was “a good first try.”

Although map-reduce provides the flexibility of JavaScript it's limited in being single
threaded and interpreted. The Aggregation Framework, on the other hand, is executed
as native C++ and multithreaded. Although map-reduce isn’t going away, future
enhancements will be limited to the Aggregation Framework.

Summary

This chapter has covered quite a bit of material. The $group operator provides the key
functionality for the aggregation framework: the ability to aggregate data from multi-
ple documents into a single document. Along with sunwind and $project, the aggre-
gation framework provides you with the ability to generate summary data that’s up to
the minute or to process large amounts of data offline and even save the results as a
new collection using the $out command.

Queries and aggregations make up a critical part of the MongoDB interface. So
once you’ve read this chapter, put the query and aggregation mechanisms to the test.
If you’re ever unsure of how a particular combination of query operators will serve
you, the MongoDB shell is always a ready test bed. So try practicing some of the key
features of the aggregation framework, such as selecting documents via the $match
operator, or restructuring documents using $project, and of course grouping and
summarizing data using $group.

We’ll use MongoDB queries pretty consistently from now on, and the next chapter
is a good reminder of that. We’ll tackle the usual document CRUD operations: create,
read, update, and delete. Because queries play a key role in most updates, you can
look forward to yet more exploration of the query language elaborated here. You’ll
also learn how updating documents, especially in a database that’s designed for high
volumes of updates, requires more capabilities than you may be familiar with if you’ve
done similar work on a relational database.

http://docs.mongodb.org/manual/core/map-reduce/
http://www.it-ebooks.info/

Updates,
atomic operations,
and deletes

This chapter covers

m Updating documents
® Processing documents atomically

m Applying complex updates to a real-world
example

m Using update operators
m Deleting documents

To update is to write to existing documents. Doing this effectively requires a thor-
ough understanding of the kinds of document structures available and of the
query expressions made possible by MongoDB. Having studied the e-commerce
data model in the last two chapters, you should have a good sense of the ways in
which schemas are designed and queried. We’ll use all of this knowledge in our
study of updates.

Specifically, we’ll look more closely at why we model the category hierarchy in
such a denormalized way, and how MongoDB’s updates make that structure reason-
able. We’ll explore inventory management and solve a few tricky concurrency
issues in the process. You'll get to know a host of new update operators, learn some
tricks that take advantage of the atomicity of update operations, and experience

157

http://www.it-ebooks.info/

158

7.1

CHAPTER 7 Updates, atomic operations, and deletes

the power of the findAndModify command. In this case atomicity refers to MongoDB’s
ability to search for a document and update it, with the guarantee that no other
operation will interfere, a powerful property. After numerous examples, there will
be a section devoted to the nuts and bolts of each update operator, which will expand
on the examples to give you the full range of options for how you update. We’ll also
discuss how to delete data in MongoDB, and conclude with some notes on concur-
rency and optimization.

Most of the examples in this chapter are written for the JavaScript shell. The sec-
tion where we discuss atomic document processing, though, requires a good bit more
application-level logic, so for that section we’ll switch over to Ruby.

By the end of the chapter, you’ll have been exposed to the full range of MongoDB’s
CRUD operations, and you’ll be well on your way to designing applications that best
take advantage of MongoDB’s interface and data model.

A brief tour of document updates

If you need to update a document in MongoDB, you have two ways of going about it.
You can either replace the document altogether, or you can use update operators to
modify specific fields within the document. As a way of setting the stage for the more
detailed examples to come, we’ll begin this chapter with a simple demonstration of
these two techniques. We’ll then provide reasons for preferring one over the other.

To start, recall the sample user document we developed in chapter 4. The docu-
ment includes a user’s first and last names, email address, and shipping addresses.
Here’s a simplified example:

{

~id: ObjectId("4c4bl1476238d3b4dd5000001"),
username: "kbanker",
email: "kylebanker@gmail.com",
first name: "Kyle",
last_name: "Banker",
hashed_password: "bdlcfal94c3a603e7186780824b04419",
addresses: [
{

name: "work",

street: "1 E. 23rd Street",

city: "New York",

state: "NY",

zip: 10010

You’ll undoubtedly need to update an email address from time to time, so let’s begin
with that.

Please note that your ObjectId values might be a little different. Make sure that
you’re using valid ones and, if needed, manually add documents that will help you

http://www.it-ebooks.info/

711

7.12

A brief tour of document updates 159

follow the commands of this chapter. Alternatively, you can use the following method
to find a valid document, get its ObjectId, and use it elsewhere:

doc = db.users.findOne ({username: "kbanker"})
user_id = doc._id

Modify by replacement

To replace the document altogether, you first query for the document, modify it on
the client side, and then issue the update with the modified document. Here’s how
that looks in the JavaScript shell:

user_id = ObjectId("4c4b1476238d3b4dd5003981")
doc = db.users.findOne ({_id: user id})
doc['email'] = 'mongodb-user@mongodb.com'
print ('updating ' + user_id)

db.users.update ({_id: user id}, doc)

With the user’s _id at hand, you first query for the document. Next you modify the
document locally, in this case changing the email attribute. Then you pass the modi-
fied document to the update method. The final line says, “Find the document in the
users collection with the given id, and replace that document with the one we’ve
provided.” The thing to remember is that the update operation replaces the entire
document, which is why it must be fetched first. If multiple users update the same doc-
ument, the last write will be the one that will be stored.

Modify by operator

That’s how you modify by replacement; now let’s look at modification by operator:

user id = ObjectId("4c4bl476238d3b4dd5000001")
db.users.update ({_id: user id},
{$set: {email: 'mongodb-user2@mongodb.com'}})

The example uses $set, one of several special update operators, to modify the email
address in a single request to the server. In this case, the update request is much
more targeted: find the given user document and set its email field to mongodb-
user2@mongodb. com.

Syntax note: updates vs. queries

Users new to MongoDB sometimes have difficulty distinguishing between the update
and query syntaxes. Targeted updates always begin with the update operator, and
this operator is almost always a verb-like construct (set, push, and so on). Take the
$addToSet operator, for example:

db.products.update ({}, {$addToSet: {tags: 'Green'}})

http://www.it-ebooks.info/

160

7.13

7.1.4

CHAPTER 7 Updates, atomic operations, and deletes

(continued)

If you add a query selector to this update, note that the query operator is semantically
adjectival (less than, equal to, and so on) and comes after the field name to query
on (price, in this case):

db.products.update ({price: {$lte: 10}},
{$addToset: {tags: 'cheap'}})

This last query example only updates documents with a price ? 10 where it adds
‘cheap' to their tags.

Update operators use the prefix notation whereas query operators usually use the
infix notation, meaning that saddToSet in the update operator comes first, and $1te
in the query operator is within the hash in the price field.

Both methods compared

How about another example? This time you want to increment the number of reviews
on a product. Here’s how you’d do that as a document replacement:

product _id = ObjectId("4c4bl476238d3b4dd5003982")

doc = db.products.findOne ({_id: product id})

doc['total reviews'] += 1 // add 1 to the value in total reviews
db.products.update ({_id: product id}, doc)

And here’s the targeted approach:

db.products.update ({_id: product id}, {$inc: {total reviews: 1}})

The replacement approach, as before, fetches the user document from the server,
modifies it, and then resends it. The update statement here is similar to the one you
used to update the email address. By contrast, the targeted update uses a different
update operator, $inc, to increment the value in total_reviews.

Deciding: replacement vs. operators

Now that you’ve seen a couple of updates in action, can you think of some reasons
why you might use one method over the other? Which one do you find more intuitive?
Which do you think is better for performance? What happens when multiple threads
are updating simultaneously—are they isolated from one another?

Modification by replacement is the more generic approach. Imagine that your appli-
cation presents an HTML form for modifying user information. With document replace-
ment, data from the form post, once validated, can be passed right to MongoDB; the
code to perform the update is the same regardless of which user attributes are modi-
fied. For instance, if you were going to build a MongoDB object mapper that needed

http://www.it-ebooks.info/

A brief tour of document updates 161

to generalize updates, then updates by replacement would probably make for a sensi-
ble default.!

But targeted modifications generally yield better performance. For one thing,
there’s no need for the initial round-trip to the server to fetch the document to mod-
ify. And, just as important, the document specifying the update is generally small. If
you’re updating via replacement and your documents average 200 KB in size, that’s
200 KB received and sent to the server per update! Recall chapter 5 when you used
projections to fetch only part of a document. That isn’t an option if you need to
replace the document without losing information. Contrast that with the way updates
are specified using $set and $push in the previous examples; the documents specify-
ing these updates can be less than 100 bytes each, regardless of the size of the docu-
ment being modified. For this reason, the use of targeted updates frequently means
less time spent serializing and transmitting data.

In addition, targeted operations allow you to update documents atomically. For
instance, if you need to increment a counter, updates via replacement are far from
ideal. What if the document changes in between when you read and write it? The only
way to make your updates atomic is to employ some sort of optimistic locking. With
targeted updates, you can use $inc to modify a counter atomically. This means that
even with a large number of concurrent updates, each $inc will be applied in isola-
tion, all or nothing.2

Optimistic locking

Optimistic locking, or optimistic concurrency control, is a technique for ensuring a
clean update to a record without having to lock it. The easiest way to understand this
technique is to think of a wiki. It’s possible to have more than one user editing a wiki
page at the same time. But you never want a situation where a user is editing and
updating an out-of-date version of the page. Thus, an optimistic locking protocol is
used. When users try to save their changes, a timestamp is included in the attempted
update. If that timestamp is older than the latest saved version of the page, the user’s
update can’t go through. But if no one has saved any edits to the page, the update
is allowed. This strategy allows multiple users to edit at the same time, which is
much better than the alternative concurrency strategy of requiring each user to take
out a lock to edit any one page.

With pessimistic locking, a record is locked from the time it's first accessed in a
transaction until the transaction is finished, making it inaccessible to other transac-
tions during that time.

L' This is the strategy employed by most MongoDB object mappers, and it’s easy to understand why. If users are
given the ability to model entities of arbitrary complexity, then issuing an update via replacement is much
easier than calculating the ideal combination of special update operators to employ.

The MongoDB documentation uses the term atomic updates to signify what we’re calling targeted updates. This
new terminology is an attempt to clarify the use of the word atomic. In fact, all updates issued to the core server
occur atomically, isolated on a per-document basis. The update operators are called atomic because they
make it possible to query and update a document in a single operation.

http://www.it-ebooks.info/

162

7.2

7.2.1

CHAPTER 7 Updates, atomic operations, and deletes

Now that you understand the kinds of available updates, you’ll be able to appreciate
the strategies we’ll introduce in the next section. There, we’ll return to the e-commerce
data model to answer some of the more difficult questions about operating on that data
in production.

E-commerce updates

It’s easy to provide stock examples for updating this or that attribute in a MongoDB
document. But with a production data model and a real application, complications
will arise, and the update for any given attribute might not be a simple one-liner. In
the following sections, we’ll use the e-commerce data model you saw in the last two
chapters to provide a representative sample of the kinds of updates you’d expect to
make in a production e-commerce site. You may find certain updates intuitive and
others not so much. But overall, you’ll develop a better understanding of the schema
developed in chapter 4 and an improved understanding of the features and limita-
tions of MongoDB’s update language.

Products and categories

Here you’ll see a couple of examples of targeted updates in action, first looking at
how you calculate average product ratings and then at the more complicated task of
maintaining the category hierarchy.

AVERAGE PRODUCT RATINGS

Products are amenable to numerous update strategies. Assuming that administrators
are provided with an interface for editing product information, the easiest update
involves fetching the current product document, merging that data with the user’s
edits, and issuing a document replacement. At other times, you may only need to
update a couple of values, where a targeted update is clearly the way to go. This is the
case with average product ratings. Because users need to sort product listings based
on average product rating, you store that rating in the product document itself and
update the value whenever a review is added or removed.

Here’s one way of issuing this update in JavaScript:

product_id = ObjectId("4c4bl476238d3b4dd5003981")
count = 0
total = 0
db.reviews.find ({product id: product id}, {rating: 4}).forEach/(
function (review) {
total += review.rating
count++
1)
average = total / count
db.products.update ({_id: product_ id},
{$set: {total reviews: count, average review: average}})

http://www.it-ebooks.info/

E-commerce updates 163

This code aggregates and produces the rating field from each product review and
then produces an average. You also use the fact that you’re iterating over each rating
to count the total ratings for the product. This saves an extra database call to the
count function. With the total number of reviews and their average rating, the code
issues a targeted update, using $set.

If you don’t want to hardcode an ObjectId, you can find a specific ObjectId as fol-
lows and use it afterwards:

product_id = db.products.findOne ({sku: '9092'}, {' id': 1})

Performance-conscious users may balk at the idea of re-aggregating all product
reviews for each update. Much of this depends on the ratio of reads to writes; it’s likely
that more users will see product reviews than write their own, so it makes sense to
re-aggregate on a write. The method provided here, though conservative, will likely be
acceptable for most situations, but other strategies are possible. For instance, you
could store an extra field on the product document that caches the review ratings
total, making it possible to compute the average incrementally. After inserting a new
review, you'd first query for the product to get the current total number of reviews
and the ratings total. Then you’d calculate the average and issue an update using a
selector like the following:

db.products.update ({_id: product_id},

$set: {
average_review: average,
ratings_total: total

}
$inc: {
total reviews: 1

}
3]

This example uses the $inc operator, which increments the field passed in by the
given value—1, in this case.

Only by benchmarking against a system with representative data can you say whether
this approach is worthwhile. But the example shows that MongoDB frequently pro-
vides more than one valid path. The requirements of the application will help you
decide which is best.

THE CATEGORY HIERARCHY

With many databases, there’s no easy way to represent a category hierarchy. This is
true of MongoDB, although the document structure does help the situation some-
what. Documents encourage a strategy that optimizes for reads because each category
can contain a list of its denormalized ancestors. The one tricky requirement is keep-
ing all the ancestor lists up to date. Let’s look at an example to see how this is done.

http://www.it-ebooks.info/

164

CHAPTER 7 Updates, atomic operations, and deletes

First you need a generic method for updating the ancestor list for any given cate-
gory. Here’s one possible solution:

var generate ancestors = function(id, parent id) {
ancestor list = []
var cursor = db.categories.find({_ id: parent id})
while (cursor.size() > 0) {
parent = cursor.next ()

ancestor list.push(parent)
parent_id = parent.parent_id
cursor = db.categories.find({_ id: parent_id})

}

db.categories.update ({_id: _id}, {$set: {ancestors: ancestor list}})

This method works by walking backward up the category hierarchy, making successive
queries to each node’s parent_id attribute until reaching the root node (where
parent_id is null). All the while, it builds an in-order list of ancestors, storing that
result in the ancestor list array. Finally, it updates the category’s ancestors attri-
bute using $set.

Now that you have that basic building block, let’s look at the process of inserting a
new category. Imagine you have a simple category hierarchy that looks like the one in
figure 7.1.

Home
Outdoors
Tools Seedlings Planters Lawn care Figure 7.1 An initial
category hierarchy

Suppose you want to add a new category called Gardening and place it under the
Home category. You insert the new category document and then run your method to
generate its ancestors:

parent_id = ObjectId("8b87fb1476238d3b4dd50003")
category = {
parent id: parent id,
slug: "gardening",
name: "Gardening",
description: "All gardening implements, tools, seeds, and soil."
}
db.categories.save (category)
generate ancestors(category. id, parent id)

http://www.it-ebooks.info/

E-commerce updates 165

Home
Outdoors Gardening
Tools Seedlings Planters Lawn care Figure 7.2 Adding a
Gardening category

Note that save () puts the ID created for it into the original document. The ID is then
used in the call to generate ancestors (). Figure 7.2 displays the updated tree.

That’s easy enough. But what if you now want to place the Outdoors category
underneath Gardening? This is potentially complicated because it alters the ancestor
lists of a number of categories. You can start by changing the parent id of Outdoors
to the _id of Gardening. This turns out to be not too difficult provided that you
already have both an outdoors_id and a gardening_id available:

db.categories.update ({_id: outdoors id}, {$set: {parent id: gardening id}})

Because you’ve effectively moved the Outdoors category, all the descendants of Out-
doors are going to have invalid ancestor lists. You can rectify this by querying for all
categories with Outdoors in their ancestor lists and then regenerating those lists.
MongoDB’s power to query into arrays makes this trivial:

db.categories.find ({'ancestors.id': outdoors_id}) .forEach (
function (category) {
generate ancestors (category. id, outdoors_id)

3]

That’s how you handle an update to a category’s parent id attribute, and you can see
the resulting category arrangement in figure 7.3.

But what if you update a category name? If you change the name of Outdoors to
The Great Outdoors, you also have to change Outdoors wherever it appears in the
ancestor lists of other categories. You may be justified in thinking, “See? This is where
denormalization comes to bite you,” but it should make you feel better to know that
you can perform this update without recalculating any ancestor list. Here’s how:

doc = db.categories.findOne({ id: outdoors id})
doc.name = "The Great Outdoors"
db.categories.update ({_id: outdoors id}, doc)
db.categories.update (

{rancestors. id': outdoors_id},

{$set: {'ancestors.s$': doc}},

{multi: true})

http://www.it-ebooks.info/

166

CHAPTER 7 Updates, atomic operations, and deletes

Home
Gardening
Outdoors
/
Tools Seedlings Planters Lawn care Figure 7.3 The category
tree in its final state

You first grab the Outdoors document, alter the name attribute locally, and then update
via replacement. Now you use the updated Outdoors document to replace its occur-
rences in the various ancestor lists. The multi parameter {multi: true} is easy to
understand; it enables multi-updates causing the update to affect all documents match-
ing the selector—without {multi: true} an update will only affect the first matching
document. Here, you want to update each category that has the Outdoors category in
its ancestor list.

The positional operator is more subtle. Consider that you have no way of knowing
where in a given category’s ancestor list the Outdoors category will appear. You need a
way for the update operator to dynamically target the position of the Outdoors cate-
gory in the array for any document. Enter the positional operator. This operator (here
the $ in ancestors.$) substitutes the array index matched by the query selector with
itself, and thus enables the update.

Here’s another example of this technique. Say you want to change a field of a user
address (the example document shown in section 7.1) that has been labeled as
“work.” You can accomplish this with a query like the following:

db.users.update ({
~id: ObjectId("4c4bl1476238d3b4dd5000001"),
'addresses.name' : 'work'},
{$set: {'addresses.$.street': '155 E 31st St.'}})

Because of the need to update individual subdocuments within arrays, you’ll always
want to keep the positional operator at hand. In general, these techniques for updat-
ing the category hierarchy will be applicable whenever you’re dealing with arrays of
subdocuments.

http://www.it-ebooks.info/

7.2.2

E-commerce updates 167

Reviews

Not all reviews are created equal, which is why this application allows users to vote on
them. These votes are elementary; they indicate that the given review is helpful.
You’ve modeled reviews so that they cache the total number of helpful votes and keep
a list of each voter’s ID. The relevant section of each review document looks like this:

{
helpful votes: 3,
voter ids: [
ObjectId("4c4b1476238d3b4dd5000041"),
ObjectId("7a4£0376238d3b4dd5000003"),
ObjectId("92c21476238d3b4dd5000032")

You can record user votes using targeted updates. The strategy is to use the $push
operator to add the voter’s ID to the list and the $inc operator to increment the total
number of votes, both in the same JavaScript console update operation:

db.reviews.update ({_id: ObjectId("4c4b1476238d3b4dd5000041")},
$push: {
voter ids: ObjectId("4c4bl1476238d3b4dd5000001")
1
$inc: {
helpful votes: 1
1
}

This is almost correct. But you need to ensure that the update happens only if the vot-
ing user hasn’t yet voted on this review, so you modify the query selector to match only
when the voter_ids array doesn’t contain the ID you’re about to add. You can easily
accomplish this using the $ne query operator:

query selector = {
_id: ObjectId("4c4bl1476238d3b4dd5000041"),
voter ids:
Sne: ObjectId("4c4bl1476238d3b4dd5000001")

}

}
db.reviews.update (query selector, ({
$push: {
voter_ids: ObjectId("4c4bl1476238d3b4dd5000001")
b
$inc : {

helpful votes: 1

}
h

This is an especially powerful demonstration of MongoDB’s update mechanism and
how it can be used with a document-oriented schema. Voting, in this case, is both

http://www.it-ebooks.info/

168

7.2.3

CHAPTER 7 Updates, atomic operations, and deletes

atomic and efficient. The update is atomic because selection and modification occur
in the same query. The atomicity ensures that, even in a high-concurrency environ-
ment, it will be impossible for any one user to vote more than once. The efficiency lies
in the fact that the test for voter membership and the updates to the counter and the
voter list all occur in the same request to the server.

Now, if you do end up using this technique to record votes, it’s especially impor-
tant that any other updates to the review document also be targeted—updating by
replacement could result in an inconsistency. Imagine, for instance, that a user updates
the content of their review and that this update occurs via replacement. When updat-
ing by replacement, you first query for the document you want to update. But between
the time that you query for the review and replace it, it’s possible that a different user
might vote on the review. This is called a race condition. This sequence of events is illus-
trated in figure 7.4.

Review documents

{:text => "Awesome", {:text => "Awesome", {:text => "Incredible!",
:votes => 3} :votes => 4} :votes => 3}

T | T2 | T3
Processes | |
Process 1 at T1 Process 2 at T2 Process 1 at T3
queries for a review updates votes on review replaces review

Figure 7.4 When a review is updated concurrently via targeted and replacement updates, data can
be lost.

It should be clear that the document replacement at T3 will overwrite the votes update
happening at T2. It’s possible to avoid this by using the optimistic locking technique
described earlier, but doing so requires additional application code to implement and
it’s probably easier to ensure that all updates in this case are targeted.

Orders

The atomicity and efficiency of updates that you saw in reviews can also be applied to
orders. Specifically, you're going to see the MongoDB calls needed to implement an
add_to_cart function using a targeted update. This is a three-step process. First, you
construct the product document that you’ll store in the order’s line-item array. Then
you issue a targeted update, indicating that this is to be an upsert—an update that will
insert a new document if the document to be updated doesn’t exist. (We’ll describe
upserts in detail in the next section.) The upsert will create a new order object if it

http://www.it-ebooks.info/

E-commerce updates 169

doesn’t yet exist, seamlessly handling both initial and subsequent additions to the
shopping cart.?
Let’s begin by constructing a sample document to add to the cart:

cart_item = {
_id: ObjectId("4c4b1476238d3b4dd5003981"),
slug: "wheel-barrow-9092",
sku: "9092",
name: "Extra Large Wheel Barrow",
pricing: {
retail: 5897,
sale: 4897

You’ll most likely build this document by querying the products collection and then
extracting whichever fields need to be preserved as a line item. The product’s id,
sku, slug, name, and price fields should suffice. Next you’ll ensure that there’s an
order for the customer with a status of 'CART' using the parameter {upsert: true}.
This operation will also increment the order sub_total using the $inc operator:

selector = {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART'

}

update = {
$inc: {
sub_total: cart_item['pricing'] ['sale']

}
}

db.orders.update (selector, update, {upsert: true})

INITIAL UPSERT TO CREATE ORDER DOCUMENT
To make the code clearer, you’re constructing the query selector and the update doc-

ument separately. The update document increments the order subtotal by the sale
price of the cart item. Of course, the first time a user executes the add_to_cart func-
tion, no shopping cart will exist. That’s why you use an upsert here. The upsert will
construct the document implied by the query selector including the update. There-
fore, the initial upsert will produce an order document like this:

{

user id: ObjectId("4c4bl1476238d3b4dd5000001"),
state: 'CART',
subtotal: 9794

* We're using the terms shopping cart and order interchangeably because they’re both represented using the
same document. They’re formally differentiated only by the document’s state field (a document with a state
of CART is a shopping cart).

http://www.it-ebooks.info/

170

CHAPTER 7 Updates, atomic operations, and deletes

You then perform an update of the order document to add the line item if it’s not
already on the order:

selector = {user_id: ObjectId("4c4b1476238d3b4dd5000001"),
state: 'CART',
'line items. id':
{'$ne': cart_item. id}

}

update = {'$push': {'line items': cart item}}
db.orders.update (selector, update)

ANOTHER UPDATE FOR QUANTITIES

Next you’ll issue another targeted update to ensure that the item quantities are cor-
rect. You need this update to handle the case where the user clicks Add to Cart on an
item that’s already in the cart. In this case the previous update won’t add a new item to
the cart, but you’ll still need to adjust the quantity:

selector = {

user _id: ObjectId("4c4bl476238d3b4dd5000001"),

state: 'CART',

'line items. id': ObjectId("4c4bl476238d3b4dd5003981")
}
update = {

$inc: {

'line_items.$.quantity': 1

}

}

db.orders.update (selector, update)

We use the $inc operator to update the quantity on the individual line item. The
update is facilitated by the positional operator, $, introduced previously. Thus, after
the user clicks Add to Cart twice on the wheelbarrow product, the cart should look
like this:

{

user _id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART',
line items: [
{
~id: ObjectId("4c4bl476238d3b4dd5003981"),
quantity: 2,
slug: "wheel-barrow-9092",
sku: "9p92",
name: "Extra Large Wheel Barrow",
pricing: {
retail: 5897,
sale: 4897
1
}
1,
subtotal: 9794

http://www.it-ebooks.info/

Atomic document processing 171

There are now two wheelbarrows in the cart, and the subtotal reflects that.

There are still more operations you’ll need in order to fully implement a shopping
cart. Most of these, such as removing an item from the cart or clearing a cart alto-
gether, can be implemented with one or more targeted updates. If that’s not obvious,
the upcoming subsection describing each query operator should make it clear. As
for the actual order processing, that can be handled by advancing the order docu-
ment through a series of states and applying each state’s processing logic. We’ll dem-
onstrate this in the next section, where we explain atomic document processing and
the findAndModify command.

7.3 Atomic document processing

One tool you won’t want to do without is MongoDB’s findandModify command.*
This command allows you to atomically update a document and return it in the
same round-trip. An atomic update is one where no other operation can interrupt
or interleave itself with the update. What if another user tries to change the docu-
ment after you find it but before you modify it? The find might no longer apply. An
atomic update prevents this case; all other operations must wait for the atomic update
to finish.

Every update in MongoDB is atomic, but the difference with findAndModify is that
it also atomically returns the document to you. Why is this useful? If you fetch and
then update a document (or update then fetch it), there can be changes made to the
document by another MongoDB user in between those operations. Thus it’s impossi-
ble to know the true state of the document you updated, before or after the update,
even though the update is atomic, unless you use findAndModify. The other option is
to use the optimistic locking mentioned in section 7.1, but that would require addi-
tional application logic to implement.

This atomic update capability is a big deal because of what it enables. For instance,
you can use findAndModify to build job queues and state machines. You can then use
these primitive constructs to implement basic transactional semantics, which greatly
expand the range of applications you can build using MongoDB. With these transac-
tion-like features, you can construct an entire e-commerce site on MongoDB—not
just the product content, but the checkout mechanism and the inventory manage-
ment as well.

To demonstrate, we’ll look at two examples of the findAndModify command in
action. First, we’ll show how to handle basic state transitions on the shopping cart.
Then we’ll look at a slightly more involved example of managing a limited inventory.

* The way this command is identified can vary by environment. The shell helper is invoked camel case as
db.orders.findAndModify, whereas Ruby uses underscores: find _and_modify. To confuse the issue
even more, the core server knows the command as £ indandmodify. You'll use this final form if you ever need
to issue the command manually.

http://www.it-ebooks.info/

172

CHAPTER 7 Updates, atomic operations, and deletes

Totals Credit card
Checkout recalculated authorization

@®@—| CART PRE-AUTHORIZE AUTHORIZING PRE-SHIPPING @
t

Totals changed

Authorization failed

Figure 7.5 Order state transitions

7.3.1

Order state transitions

All state transitions have two parts: a query ensuring a valid initial state, and an update
that effects the change of state. Let’s skip forward a few steps in the order process and
assume that the user is about to click the Pay Now button to authorize the purchase. If
you're going to authorize the user’s credit card synchronously on the application side,
you need to ensure these four things:

You authorize for the amount that the user sees on the checkout screen.

The cart’s contents never change while in the process of authorization.

Errors in the authorization process return the cart to its previous state.

A WO N B

If the credit card is successfully authorized, the payment information is posted
to the order, and that order’s state is transitioned to PRE-SHIPPING.

The state transitions that you’ll use are shown in figure 7.5.

PREPARE THE ORDER FOR CHECKOUT

The first step is to get the order into the new PRE-AUTHORIZE state. You use f£ind-
AndModify to find the user’s current order object and ensure that the object is in a
CART state:

newDoc = db.orders.findAndModify ({
query: {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
state: 'CART'
s
update: {
$set: |
state: 'PRE-AUTHORIZE'
}
¥
'new': true

3]

If successful, findAndModify will return the modified order object to newDoc.® Once
the order is in the PRE-AUTHORIZE state, the user won’t be able to edit the cart’s

® By default, the £indAndModify command returns the document as it appears prior to the update. To return
the modified document, you must specify 'new' : true as in this example.

http://www.it-ebooks.info/

Atomic document processing 173

contents. This is because all updates to the cart always ensure a state of CART. find-
AndModify is useful here because you want to know the state of the document exactly
when you changed its state to PRE-AUTHORIZE. What would happen to the total cal-
culations if another thread was also attempting to move the user through the check-
out process?

VERIFY THE ORDER AND AUTHORIZE

Now, in the preauthorization state, you take the returned order object and recalculate
the various totals. Once you have those totals, you issue a new findAndModify that
only transitions the document’s state to AUTHORIZING if the new totals match the old
totals. Here’s what that findAndModify looks like:

oldDoc = db.orders.findAndModify ({
query: {
user id: ObjectId("4c4bl476238d3b4dd5000001"),
total: 99000,
state: "PRE-AUTHORIZE"

'
update: {
"$set': |
state: "AUTHORIZING"
1

}
H

If this second findAndModify fails, then you must return the order’s state to CART and
report the updated totals to the user. But if it succeeds, you know that the total to be
authorized is the same total that was presented to the user. This means you can move
on to the actual authorization API call. Thus, the application now issues a credit card
authorization request on the user’s credit card. If the credit card fails to authorize,
you record the failure and, as before, return the order to its CART state.

FINISHING THE ORDER

If the authorization is successful, you write the authorization information to the order
and transition it to the next state. The following strategy does both in the same find-
AndModify call. Here, the example uses a sample document representing the authori-
zation receipt, which is attached to the original order:

auth doc = {
ts: new Date()
cc: 3432003948293040,
id: 2923838291029384483949348,
gateway: "Authorize.net"
1
db.orders. findAndModify ({
query: {
user id: ObjectId("4c4bl1476238d3b4dd5000001"),
state: "AUTHORIZING"

b

http://www.it-ebooks.info/

174

7.3.2

CHAPTER 7 Updates, atomic operations, and deletes

update: {
$set: {
state: "PRE-SHIPPING",
authorization: auth doc

}
}
3]

It’s important to be aware of the MongoDB features that facilitate this transactional
process. There’s the ability to modify any one document atomically. There’s the guar-
antee of consistent reads along a single connection. And finally, there’s the document
structure itself, which allows these operations to fit within the single-document atom-
icity that MongoDB provides. In this case, that structure allows you to fit line items,
products, pricing, and user ownership into the same document, ensuring that you
only ever need to operate on that one document to advance the sale.

This ought to strike you as impressive. But it may lead you to wonder, as it did us,
whether any multi-object transaction-like behavior can be implemented with MongoDB.
The answer is a cautious affirmative and can be demonstrated by looking into another
e-commerce centerpiece: inventory management.

Inventory management

Not every e-commerce site needs strict inventory management. Most commodity items
can be replenished in enough time to allow any order to go through regardless of the
actual number of items on hand. In cases like these, managing inventory is easily han-
dled by managing expectations; as soon as only a few items remain in stock, adjust the
shipping estimates.

One-of-a-kind items present a different challenge. Imagine you’re selling concert
tickets with assigned seats or handmade works of art. These products can’t be hedged;
users will always need a guarantee that they can purchase the products they’'ve
selected. Here we’ll present a possible solution to this problem using MongoDB. This
will further illustrate the creative possibilities in the findAndModify command and the
judicious use of the document model. It will also show how to implement transac-
tional semantics across multiple documents. Although you’ll only see a few of the key
MongoDB calls used by this process, the full source code for the InventoryFetcher
class is included with this book.

The way you model inventory can be best understood by thinking about a real
store. If you're in a gardening store, you can see and feel the physical inventory;
dozens of shovels, rakes, and clippers may line the aisles. If you take a shovel and
place it in your cart, that’s one less shovel available for the other customers. As a cor-
ollary, no two customers can have the same shovel in their shopping carts at the
same time. You can use this simple principle to model inventory. For every physical
piece of inventory in your warehouse, you store a corresponding document in an

http://www.it-ebooks.info/

Atomic document processing 175

inventory collection. If there are 10 shovels in the warehouse, there are 10 shovel doc-
uments in the database. Each inventory item is linked to a product by sku, and each of
these items can be in one of four states: AVAILABLE (0), IN_CART (1), PRE_ORDER (2),
or PURCHASED (3).

Here’s a method that inserts three shovels, three rakes, and three sets of clippers as
available inventory. The examples in this section are in Ruby, since transactions
require more logic, so it’s useful to see a more concrete example of how an applica-
tion would implement them:

3.times do

$inventory.insert one({:sku => 'shovel', :state => AVAILABLE})

$inventory.insert_one({:sku => 'rake', :state => AVAILABLE})

$inventory.insert one({:sku => 'clippers', :state => AVAILABLE})
end

We’ll handle inventory management with a special inventory fetching class. We’ll
first look at how this fetcher works and then we’ll peel back the covers to reveal its
implementation.

INVENTORY FETCHER

The inventory fetcher can add arbitrary sets of products to a shopping cart. Here you
create a new order object and a new inventory fetcher. You then ask the fetcher to add
three shovels and one set of clippers to a given order by passing an order ID and two
documents specifying the products and quantities you want to the add to_cart
method. The fetcher hides the complexity of this operation, which is altering two col-
lections at once:

$orderfid = BSON: :0bjectId('561297¢c5530a69dbc9000000")
$orders.insert one ({

:_id => Sorder_id,

:username => 'kbanker',

:item_ids => []

3]

@fetcher = InventoryFetcher.new ({
:orders => Sorders,
:inventory => $inventory

3]

@fetcher.add_to_cart (@eorder_ id,
[
{:sku => "shovel", :quantity => 3},
{:sku => "clippers", :quantity => 1}
1)

$orders.find ({"_id" => $order id}).each do |order|
puts "\nHere's the order:"
p order

end

http://www.it-ebooks.info/

176 CHAPTER 7 Updates, atomic operations, and deletes

The add_to_cart method will raise an exception if it fails to add every item to a cart.
If it succeeds, the order should look like this:

{

" id" => BSON::0ObjectId('4cdf3668238d3b6e3200000a"'),
"username" => "kbanker",
"item_ids" => [

BSON: :ObjectId('4cdf3668238d3b6e32000001"),

BSON: :ObjectId('4cdf3668238d3b6e32000004"'),

BSON: :ObjectId('4cdf3668238d3b6e32000007"'),

BSON: :ObjectId('4cdf3668238d3b6e32000009")

]

The _id of each physical inventory item will be stored in the order document. You can
query for each of these items like this:

puts "\nHere's each item:"
order['item ids'].each do |item id]|
item = @inventory.find({" id" => item id}).each do |myitem|
p myitem
end
end

Looking at each of these items individually, you can see that each has a state of 1, cor-
responding to the IN_CART state. You should also notice that each item records the
time of the last state change with a timestamp. You can later use this timestamp to
expire items that have been in a cart for too long. For instance, you might give users
15 minutes to check out from the time they add products to their cart:

{

"7id" => BSON: :0bjectId('4cdf3668238d3b6e32000001"),
"sku"=>"sgshovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

" id"=>BSON: :ObjectId('4cdf3668238d3b6e32000004"'),
"sku"=>"sghovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

" id"=>BSON: :ObjectId('4cdf3668238d3b6e32000007"'),
"sku"=>"shovel",

"state"=>1,

"ts"=>"Sun Nov 14 01:07:52 UTC 2010"

INVENTORY MANAGEMENT
If this InventoryFetcher’s API makes any sense, you should have at least a few hunches
about how you’d implement inventory management. Unsurprisingly, the findAndModify

http://www.it-ebooks.info/

Atomic document processing 177

command resides at its core. The full source code for the InventoryFetcher is
included with the source code of this book. We’re not going to look at every line of
code, but we’ll highlight the three key methods that make it work.

First, when you pass a list of items to be added to your cart, the fetcher attempts to
transition each item from the state of AVAILABLE to IN_CART. If at any point this opera-
tion fails (if any one item can’t be added to the cart), the entire operation is rolled
back. Have a look at the add_to_cart method that you invoked earlier:

def add_to_cart (order_id, *items)
item selectors = []
items.each do |item|
item[:quantity] .times do
item selectors << {:sku => item[:skul}
end
end
transition state(order_id, item selectors,
{:from => AVAILABLE, :to => IN CART})
end

The *items syntax in the method arguments allows the user to pass in any number of
objects, which are placed in an array called items. This method doesn’t do much. It
takes the specification for items to add to the cart and expands the quantities so that
one item selector exists for each physical item that will be added to the cart. For
instance, this document, which says that you want to add two shovels

{:sku => "shovel", :quantity => 2}
becomes this:
[{:sku => "shovel"}, {:sku => "shovel"}]

You need a separate query selector for each item you want to add to your cart. Thus,
the method passes the array of item selectors to another method called transition
_state. For example, the previous code specifies that the state should be transitioned
from AVAILABLE to IN_CART:

def transition state(order id, selectors, opts={})
items transitioned = []
begin # use a begin/end block so we can do error recovery

for selector in selectors do
query = selector.merge ({:state => opts[:from]})
physical item = @inventory.find and modify ({
:query => query,
:update =>
"$set' => {
:state => opts[:to], # target state
:ts => Time.now.utc # get the current client time

http://www.it-ebooks.info/

178 CHAPTER 7 Updates, atomic operations, and deletes

if physical item.nil?
raise InventoryFetchFailure

end
items_transitioned << physical item[' id'] # push item into array
@orders.update one ({: id => order id}, {

"$push' => {
:item _ids => physical item['_id']
}

3]

end # of for loop

rescue Mongo::0OperationFailure, InventoryFetchFailure
rollback (order id, items_transitioned, opts[:from], opts[:tol)
raise InventoryFetchFailure, "Failed to add #{selectorl[:skul}"
end

return items transitioned.size
end

To transition state, each selector gets an extra condition, {:state => AVAILABLE}, and
the selector is then passed to findAndModify, which, if matched, sets a timestamp
and the item’s new state. The method then saves the list of items transitioned and
updates the order with the ID of the item just added.

GRACEFUL FAILURE

If the findAndModify command fails and returns nil, then you raise an Inventory-
FetchFailure exception. If the command fails because of networking errors, you res-
cue the inevitable Mongo: :OperationFailure exception. In both cases, you rescue by
rolling back all the items transitioned thus far and then raise an InventoryFetch-
Failure, which includes the SKU of the item that couldn’t be added. You can then res-
cue this exception on the application layer to fail gracefully for the user.

All that now remains is to examine the rollback code:

def rollback(order id, item ids, old_state, new_state)
@orders.update one ({"_id" => order id},
{"$pullall" => {:item ids => item ids}})

item ids.each do |id|
@inventory. find one and update ({
:query => {
"oid" => id,
:state => new_state
}
i
{
:update => {
"Sset" => {
:state => old_state,
:ts => Time.now.utc

http://www.it-ebooks.info/

74

74.1

Nuts and bolts: MongoDB updates and deletes 179

You use the $pullAll operator to remove all of the IDs just added to the order’s
item_ids array. You then iterate over the list of item IDs and transition each one back
to its old state. The $pullall operator as well as many other array update operators
are covered in further detail in section 7.4.2.

The transition state method can be used as the basis for other methods that
move items through their successive states. It wouldn’t be difficult to integrate this
into the order transition system that you built in the previous subsection, but that
must be left as an exercise for the reader.

One scenario ignored in this implementation is the case when it’s impossible to
roll back all the inventory items to their original state. This could occur if the Ruby
driver was unable to communicate with MongoDB, or if the process running the roll-
back halted before completing. This would leave inventory items in an IN_CART state,
but the orders collection wouldn’t have the inventory. In such cases managing transac-
tions becomes difficult. These could eventually be fixed, however, by the shopping
cart timeout mentioned earlier that removes items that have been in the shopping
cart longer than some specified period.

You may justifiably ask whether this system is robust enough for production. This
question can’t be answered easily without knowing more particulars, but what can
be stated assuredly is that MongoDB provides enough features to permit a usable
solution when you need transaction-like behavior. MongoDB was never intended to
support transactions with multiple collections, but it allows the user to emulate such
behavior with find_one_and_update and optimistic concurrency control. If you
find yourself attempting to manage transactions often, it may be worth rethinking
your schema or even using a different database. Not every application fits with
MongoDB, but if you carefully plan your schema you can often obviate your need
for such transactions.

Nuts and bolts: MongoDB updates and deletes

To understand updates in MongoDB, you need a holistic understanding of MongoDB’s
document model and query language, and the examples in the preceding sections are
great for helping with that. But here, as promised in this chapter’s introduction, we
get down to brass tacks. This mostly involves brief summaries of each feature of the
MongoDB update interface, but we also include several notes on performance. For
brevity’s sake, most of the upcoming examples will be in JavaScript.

Update types and options

As we’ve shown in our earlier examples, MongoDB supports both targeted updates and
updates via replacement. The former are defined by the use of one or more update
operators; the latter by a document that will be used to replace the document matched
by the update’s query selector.

Note that an update will fail if the update document is ambiguous. This is a com-
mon gotcha with MongoDB and an easy mistake to make given the syntax. Here, we’ve

http://www.it-ebooks.info/

180 CHAPTER 7 Updates, atomic operations, and deletes

combined an update operator, $addToSet, with replacement-style semantics, {name:
"Pitchfork"}:

db.products.update one ({}, {name: "Pitchfork", $addToSet: {tags: 'cheap'}})

If your intention is to change the document’s name, you must use the $set operator:

db.products.update one ({},
{$set: {name: "Pitchfork"}, $addToSet: {tags: 'cheap'}})

MULTIDOCUMENT UPDATES

An update will, by default, only update the first document matched by its query selec-
tor. To update all matching documents, you need to explicitly specify a multidocu-
ment update. In the shell, you can express this by adding the parameter multi: true.
Here’s how you’d add the cheap tags to all documents in the products collection:

db.products.update ({}, {$addToSet: {tags: 'cheap'}}, {multi: true})

Updates are atomic at a document level, which means that a statement that has to
update 10 documents might fail for some reason after updating the first 3 of them.
The application has to deal with such failures according to its policy.

With the Ruby driver (and most other drivers), you can express multidocument
updates in a similar manner:

@products.update one ({},
{'$addToSet' => {'tags' => 'cheap'}},
{:multi => true})

UPSERTS
It’s common to need to insert an item if it doesn’t exist but update it if it does. You can
handle this normally tricky-to-implement pattern using upserts. If the query selector
matches, the update takes place normally. But if no document matches the query
selector, a new document will be inserted. The new document’s attributes will be a log-
ical merging of the query selector and the targeted update document.’

Here’s a simple example of an upsert using the shell, setting the upsert: true
parameter to allow an upsert:

db.products.update ({slug: 'hammer'},
{$addToset: {tags: 'cheap'}}, {upsert: true})

And here’s an equivalent upsert in Ruby:

@products.update one({'slug' => 'hammer'},
{r$addToSet' => {'tags' => 'cheap'}}, {:upsert => true})

® Note that upserts don’t work with replacementstyle update documents.

http://www.it-ebooks.info/

Nuts and bolts: MongoDB updates and deletes 181

As you’d expect, upserts can insert or update only one document at a time. You’ll find
upserts incredibly valuable when you need to update atomically and when there’s uncer-
tainly about a document’s prior existence. For a practical example, see section 7.2.3,
which describes adding products to a cart.

7.4.2 Update operators

MongoDB supports a host of update operators. Here we provide brief examples of
each of them.

STANDARD UPDATE OPERATORS
This first set of operators is the most generic, and each works with almost any data type.

SINC
You use the $inc operator to increment or decrement a numeric value:

db.products.update ({slug: "shovel"}, {$inc: {review count: 1}})
db.users.update ({username: "moe"}, {$inc: {password retries: -1}})

You can also use $inc to add or subtract from numbers arbitrarily:
db.readings.update ({ id: 324}, {Sinc: {temp: 2.7435}})

$inc is as efficient as it is convenient. Because it rarely changes the size of a document,
an $inc usually occurs in-place on disk, thus affecting only the value pair specified.”
The previous statement is only true for the MMAPv1 storage engine. The WiredTiger
storage engine works differently as it uses a write-ahead transaction log in combina-
tion with checkpoints to ensure data persistence.

As demonstrated in the code for adding products to a shopping cart, $inc works
with upserts. For example, you can change the preceding update to an upsert like this:

db.readings.update ({ id: 324}, {Sinc: {temp: 2.7435}}, {upsert: true})

If no reading with an _id of 324 exists, a new document will be created with that _id
and a temp with the value of the $inc, 2.7435.

$SET AND SUNSET

If you need to set the value of a particular key in a document, you’ll want to use $set.
You can set a key to a value having any valid BSON type. This means that all of the fol-
lowing updates are possible:

db.readings.update ({ id: 324}, {$set: {temp: 97.6}})

db.readings.update ({_id: 325}, {$set: {temp: {f: 212, c: 100}}})
db.readings.update ({_id: 326}, {$set: {temps: [97.6, 98.4, 99.1]1}})

If the key being set already exists, then its value will be overwritten; otherwise, a new
key will be created.

7 Exceptions to this rule arise when the numeric type changes. If the $inc results in a 32-bit integer being con-
verted to a 64-bit integer, then the entire BSON document will have to be rewritten in-place.

http://www.it-ebooks.info/

182

CHAPTER 7 Updates, atomic operations, and deletes

$unset removes the provided key from a document. Here’s how to remove the
temp key from the reading document:

db.readings.update ({_id: 324}, {$unset: {temp: 1}})

You can also use $unset on embedded documents and on arrays. In both cases, you
specify the inner object using dot notation. If you have these two documents in your
collection

{ id: 325, 'temp': {f: 212, c: 100}}
{ id: 326, temps: [97.6, 98.4, 99.1]}

then you can remove the Fahrenheit reading in the first document and the “zeroth”
element in the second document like this:

db.readings.update ({_id: 325}, {$unset: {'temp.f': 1}})
db.readings.update ({_id: 326}, {$pop: {temps: -1}})

This dot notation for accessing subdocuments and array elements can also be used
with $set.

Using $unset with arrays

Note that using sunset on individual array elements may not work exactly as you want
it to. Instead of removing the element altogether, it merely sets that element’s value
to null. To completely remove an array element, see the $pull and $pop operators:

db.readings.update ({_id: 325}, {Sunset: {'temp.f': 1}})
db.readings.update ({ id: 326}, {$unset: {'temps.0': 1}})

SRENAME
If you need to change the name of a key, use $rename:

db.readings.update ({_id: 324}, {$rename: {'temp': 'temperature'}})
You can also rename a subdocument:
db.readings.update ({_id: 325}, {$rename: {'temp.f': 'temp.fahrenheit'}})

$SETONINSERT

During an upsert, you sometimes need to be careful not to overwrite data that you
care about. In this case it would be useful to specify that you only want to modify a
field when the document is new, and you perform an insert, not when an update
occurs. This is where the $setOnInsert operator comes in:

db.products.update ({slug: 'hammer'}, ({
$inc: {
quantity: 1

b

http://www.it-ebooks.info/

Nuts and bolts: MongoDB updates and deletes 183

$setOnInsert: {
state: 'AVAILABLE'

}, {upsert: true})

You want to increment the quantity for a certain inventory item without interfering
with state, which has a default value of 'AVAILABLE'. If an insert is performed, then
gty will be set to 1, and state will be set to its default value. If an update is performed,
then only the increment to gty occurs. The $setOnInsert operator was added in
MongoDB v2.4 to handle this case.

ARRAY UPDATE OPERATORS
The centrality of arrays in MongoDB’s document model should be apparent. Naturally,
MongoDB provides a handful of update operators that apply exclusively to arrays.

$PUSH, $PUSHALL, AND SEACH

If you need to append values to an array, $push is your friend. By default, it will add a
single element to the end of an array. For example, adding a new tag to the shovel
product is easy enough:

db.products.update ({slug: 'shovel'}, {$push: {tags: 'tools'}})

If you need to add a few tags in the same update, you can use $each in conjunction
with $push:

db.products.update ({slug: 'shovel'},
{$push: {tags: {$each: ['tools', 'dirt', 'garden']}}})

Note you can push values of any type onto an array, not just scalars. For an example,
see the code in section 7.3.2 that pushed a product onto the shopping cart’s line
items array.

Prior to MongoDB version 2.4, you pushed multiple values onto an array by using
the $pushAll operator. This approach is still possible in 2.4 and later versions, but it’s
considered deprecated and should be avoided if possible because $pushAll may be
removed completely in the future. A $pushAll operation can be run like this:

db.products.update ({slug: 'shovel'},
{$pushall: {'tags': ['tools', 'dirt', 'garden']}})

$SLICE

The $slice operator was added in MongoDB v2.4 to make it easier to manage arrays
of values with frequent updates. It’s useful when you want to push values onto an array
but don’t want the array to grow too big. It must be used in conjunction with the
$push and $each operators, and it allows you to truncate the resulting array to a cer-
tain size, removing older versions first. The argument passed to $slice is an integer
that must be less than or equal to zero. The value of this argument is -1 times the num-
ber of items that should remain in the array after the update.

http://www.it-ebooks.info/

184

CHAPTER 7 Updates, atomic operations, and deletes

These semantics can be confusing, so let’s look at a concrete example. Suppose
you want to update a document that looks like this:

{
_id: 326,
temps: [92, 93, 94]

}

You update this document with this command:

db.temps.update ({_id: 326}, {
$push: {
temps: {
Seach: [95, 96],
Sslice: -4
}
}
1

Beautiful syntax. Here you pass -4 to the $slice operator. After the update, your doc-
ument looks like this:

{
_id: 326,
temps: [93, 94, 95, 96]

}

After pushing values onto the array, you remove values from the beginning until only
four are left. If you’d passed -1 to the $slice operator, the resulting array would be
[96]. If you’d passed 0, it would have been [1, an empty array. Note also that starting
with MongoDB 2.6 you can pass a positive number as well. If a positive number is
passed to $slice, it'll remove values from the end of the array instead of the begin-
ning. In the previous example, if you used $slice: 4 your result would’ve been
temps: [92, 93, 94, 95].

$SORT

Like sslice, the $sort operator was added in MongoDB v2.4 to help with updating
arrays. When you use $push and s$slice, you sometimes want to order the documents
before slicing them off from the start of the array. Consider this document:

{
_id: 300,
temps: [
{ day: 6, temp: 90 },
{ day: 5, temp: 95 }
]
}

You have an array of subdocuments. When you push a subdocument onto this array
and slice it, you first want to make sure it’s ordered by day, so you retain the higher
day values. You can accomplish this with the following update:

http://www.it-ebooks.info/

Nuts and bolts: MongoDB updates and deletes 185

db.temps.update ({_id: 300}, {
$push: {
temps: {
Seach: [
{ day: 7, temp: 92 }
1,
$slice: -2,
$sort: {
day: 1
1
}
1
}

When this update runs, you first sort the temps array on day so that the lowest value is
at the beginning. Then you slice the array down to two values. The result is the two
subdocuments with the higher day values:
{
_id: 300,
temps: [
{ day: 6, temp: 90 },
{ day: 7, temp: 92 }
]
}

Used in this context, the $sort operator requires a $push, an S$each, and a $slice.
Though useful, this definitely handles a corner case, and you may not find yourself
using the $sort update operator often.

$ADDTOSET AND $EACH

$addToSet also appends a value to an array, but it does so in a more discerning way:
the value is added only if it doesn’t already exist in the array. Thus, if your shovel has
already been tagged as a tool, then the following update won’t modify the document
at all:

db.products.update ({slug: 'shovel'}, {$addToSet: {'tags': 'tools'}})

If you need to add more than one value to an array uniquely in the same operation,
you must use $addToSet with the $each operator. Here’s how that looks:

db.products.update ({slug: 'shovel'},
{$addToSet: {tags: {Seach: ['tools',6 'dirt', 'steel'l}}})

Only those values in $each that don’t already exist in tags will be appended. Note that
$each can only be used with the $addToSet and $push operators.

$PoP

The most elementary way to remove an item from an array is with the $pop operator.
If spush appends an item to an array, a subsequent spop will remove that last item
pushed. Though it’s frequently used with $push, you can use $pop on its own. If your

http://www.it-ebooks.info/

186

CHAPTER 7 Updates, atomic operations, and deletes

tags array contains the values ['tools', 'dirt', 'garden', 'steel'], then the fol-
lowing $pop will remove the steel tag:

db.products.update ({slug: 'shovel'}, {$pop: {'tags': 1}})

Like $unset, Spop’s syntax is {Spop: {'elementToRemove': 1}}. But unlike $unset,
$pop takes a second possible value of -1 to remove the first element of the array.
Here’s how to remove the tools tag from the array:

db.products.update ({slug: 'shovel'}, {$pop: {'tags': -1}})

One possible point of frustration is that you can’t return the value that $pop removes
from the array. Thus, despite its name, $pop doesn’t work exactly like the stack opera-
tion you might have in mind.

$BIT
If you ever use bitwise operations in your application code, you may find yourself wish-
ing that you could use the same operations in an update. Bitwise operations are used
to perform logic on a value at the individual bit level. One common case (particularly
in C programming) is to use bitwise operations to pass flags through a variable. In
other words, if the fourth bit in an integer is 1, then some condition applies. There’s
often a clearer and more usable way to handle these operations, but this kind of stor-
age does keep size to a minimum and matches how existing systems work. MongoDB
includes the $bit operator to make bitwise OR and AND operations possible in updates.

Let’s look at an example of storing bit-sensitive values in MongoDB and manipulat-
ing them in an update. Unix file permissions are often stored in this way. If you run 1s
-1 in a Unix system, you’ll see flags like drwxr-xr-x. The first flag, d, indicates the file
is a directory. r denotes read permissions, w denotes write permissions, and x denotes
execute permissions. There are three blocks of these flags, denoting these permissions
for the user, the user’s group, and everyone, respectively. Thus the example given says
that the user has all permissions but others have only read and execute permissions.

A permission block is sometimes described with a single number, according to the
spacing of these flags in the binary system. The x value is 1, the w value is 2, and the r
value is 4. Thus you can use 7 to indicate a binary 111, or rwx. You can use 5 to indi-
cate a binary 101, or r-x. And you can use 3 to indicate a binary 011, or -wx.

Let’s store a variable in MongoDB that uses these characteristics. Start with the
document:

_id: 1e,
permissions: 4

}

The 4 in this case denotes binary 100, or r--. You can use a bitwise OR operation to
add write permissions:

db.permissions.update ({_id: 16}, {$bit: {permissions: {or: NumberInt(2)}}})

http://www.it-ebooks.info/

Nuts and bolts: MongoDB updates and deletes 187

In the JavaScript shell you must use NumberInt () because it uses doubles for number
by default. The resulting document contains a binary 100 ORed with a binary 010,
resulting in 110, which is decimal 6:
{

_id: 16,

permissions: 6

}

You can also use and instead of or, for a bit-wise AND operation. This is another corner-
case operator, which you might not use often but that can be useful in certain situations.

$PULL AND $PULLALL

$pull is $pop’s more sophisticated cousin. With $pull, you specify exactly which array
element to remove by value, not by position. Returning to the tags example, if you
need to remove the tag dirt, you don’t need to know where in the array it’s located;
you simply tell the $pull operator to remove it:

db.products.update ({slug: 'shovel'}, {$pull: {tags: 'dirt'}})

$pullall works similarly to $pushall, allowing you to provide a list of values to remove.
To remove both the tags dirt and garden, you can use $pullall like this:

db.products.update ({slug: 'shovel'},
{$pullall: {'tags': ['dirt', 'garden']}})

A powerful feature of $pull is the fact that you can pass in a query as an argument to
choose which elements are pulled. Consider the document:

{ id: 326, temps: [97.6, 98.4, 100.5, 99.1, 101.2]}

Suppose you want to remove temperatures greater than 100. A query to do so might
look like this:

db.readings.update ({_id: 326}, {$pull: {temps: {Sgt: 100}}})

This alters the document to the following:

{ id: 326, temps: [97.6, 98.4, 99.1]}

POSITIONAL UPDATES

It’s common to model data in MongoDB using an array of subdocuments, but it wasn’t
so easy to manipulate those subdocuments until the positional operator came along.
The positional operator allows you to update a subdocument in an array identified by
using dot notation in your query selector. For example, suppose you have an order
document that looks like this:

{

_id: ObjectId("6a5b1476238d3b4dd5000048"),
line items: [

http://www.it-ebooks.info/

188

74.3

CHAPTER 7 Updates, atomic operations, and deletes

{

~id: ObjectId("4c4bl1476238d3b4dd5003981"),
sku: "9092",
name: "Extra Large Wheelbarrow",
quantity: 1,
pricing: {
retail: 5897,
sale: 4897
1
¥
{

_id: ObjectId("4c4bl476238d3b4dd5003982"),
sku: "10027",
name: "Rubberized Work Glove, Black",
quantity: 2,
pricing: {

retail: 1499,

sale: 1299

You want to be able to set the quantity of the second line item, with the SKU of 10027,
to 5. The problem is that you don’t know where in the line items array this particu-
lar subdocument resides. You don’t even know whether it exists. You can use a simple
query selector and the positional operator to solve both these problems:

query = {
~id: ObjectId("6a5bl476238d3b4dd5000048"),
'line items.sku': "10027"

}

update = {
$set: {

'line_items.$.quantity': 5
}
}

db.orders.update (query, update)

The positional operator is the $ that you see in the line items.$.quantity string.
If the query selector matches, then the index of the document having a SKU of
10027 will replace the positional operator internally, thereby updating the correct
document.

If your data model includes subdocuments, you’ll find the positional operator use-
ful for performing nuanced document updates.

The findAndModify command

With so many fleshed-out examples of using the findAndModify command earlier in
this chapter, it only remains to enumerate its options when using it in the JavaScript
shell. Here’s an example of a simple findAndModify:

http://www.it-ebooks.info/

744

doc

3]

Nuts and bolts: MongoDB updates and deletes 189

db.orders.findAndModify ({
query: {

user_id: ObjectId("4c4bl1476238d3b4dd5000001"),
}
update:

$set: |

state: "AUTHORIZING"
}

}

There are a number of options for altering this command’s functionality. Of the fol-

lowing, the only options required are query and either update or remove:

query—A document query selector. Defaults to {}.

update—A document specifying an update. Defaults to {}.

remove—A Boolean value that, when true, removes the object and then returns
it. Defaults to false.

new—A Boolean that, if true, returns the modified document as it appears after
the update has been applied. Defaults to false, meaning the original docu-
ment is returned.

sort—A document specifying a sort direction. Because findAndModify will
modify only one document at a time, the sort option can be used to help con-
trol which matching document is processed. For example, you might sort by
{created at: -1} to process the most recently created matching document.
fields—If you only need to return a subset of fields, use this option to specify
them. This is especially helpful with larger documents. The fields are specified
as they’d be in any query. See the section on fields in chapter 5 for examples.
upsert—A Boolean that, when true, treats findAndModify as an upsert. If the
document sought doesn’t exist, it will be created. Note that if you want to
return the newly created document, you also need to specify {new: true}.

Deletes

You’ll be relieved to learn that removing documents poses few challenges. You can
remove an entire collection or you can pass a query selector to the remove method to
delete only a subset of a collection. Deleting all reviews is simple:

db.reviews.remove ({})

But it’s much more common to delete only the reviews of a particular user:

db.reviews.remove ({user id: ObjectId('4c4b1476238d3b4dd5000001') })

All calls to remove take an optional query specifier for selecting exactly which docu-
ments to delete. As far as the API goes, that’s all there is to say. But you’ll have a few
questions surrounding the concurrency and atomicity of these operations. We’ll explain
that in the next section.

http://www.it-ebooks.info/

190

74.5

CHAPTER 7 Updates, atomic operations, and deletes

Concurrency, atomicity, and isolation

It’s important to understand how concurrency works in MongoDB. Prior to MongoDB
v2.2, the locking strategy was rather coarse; a single global reader-writer lock reigned
over the entire mongod instance. What this meant that at any moment in time, MongoDB
permitted either one writer or multiple readers (but not both). In MongoDB v2.2 this
was changed to a database-level lock, meaning these semantics apply at the database
level rather than throughout the entire MongoDB instance; a database can have either
one writer or multiple readers. In MongoDB v3.0, the WiredTiger storage engine works
on the collection level and offers documentlevel locking. Other storage engines may
offer other characteristics.

The locking characteristics sound a lot worse than they are in practice because
quite a few concurrency optimizations exist around this lock. One is that the database
keeps an internal map of which documents are in RAM. For requests to read or write
documents not in RAM, the database yields to other operations until the document
can be paged into memory.

A second optimization is the yielding of write locks. The issue is that if any one
write takes a long time to complete, all other read and write operations will be
blocked for the duration of the original write. All inserts, updates, and removes take
a write lock. Inserts rarely take a long time to complete. But updates that affect, say,
an entire collection, as well as deletes that affect a lot of documents, can run long.
The current solution to this is to allow these long-running ops to yield periodically
for other readers and writers. When an operation yields, it pauses itself, releases its
lock, and resumes later.

Despite these optimizations, MongoDB’s locking can affect performance in work-
loads where there are both heavy reads and heavy writes. A good but naive way to
avoid trouble is to place heavily trafficked collections in separate databases, especially
when you're using the MMAPv] storage engine. But as mentioned earlier, the situation
with MongoDB v3.0 is a lot better because WiredTiger works on the collection level
instead of the database level.

When you’re updating and removing documents, this yielding behavior can be a
mixed blessing. It’s easy to imagine situations where you’d want all documents
updated or removed before any other operation takes place. For these cases, you can
use a special option called $isolated to keep the operation from yielding. You add
the $isolated operator to the query selector like this:

db.reviews.remove ({user id: ObjectId('4c4b1476238d3b4dd5000001"'),
$isolated: true})

The same can be applied to any multi-update. This forces the entire multi-update to
complete in isolation:

db.reviews.update ({$isolated: true}, {$set: {rating: 0}}, {multi: true})

http://www.it-ebooks.info/

74.6

Nuts and bolts: MongoDB updates and deletes 191

This update sets each review’s rating to 0. Because the operation happens in isolation,
the operation will never yield, ensuring a consistent view of the system at all times.

Note that if an operation using $isolated fails halfway through, there’s no
implicit rollback. Half the documents will have been updated while the other half will
still have their original value. Prior to MongoDB v2.2 the $isolated operator was
called $atomic, a name that was deprecated presumably because these operations
aren’t classically atomic in this failure scenario. This, combined with the fact that the
$isolated operator doesn’t work in sharded collections, means that you should use it
with care.

Update performance notes

The following information only applies to the MMAPv1 storage engine, which is cur-
rently the default storage engine. Chapter 10 talks about WiredTiger, which works dif-
ferently and more efficiently than MMAPvI. If you're curious about WiredTiger, you're
free to read chapter 10 right now!

Experience shows that having a basic mental model of how updates affect a docu-
ment on disk helps users design systems with better performance. The first thing you
should understand is the degree to which an update can be said to happen “in-place.”
Ideally, an update will affect the smallest portion of a BSON document on disk because
this leads to the greatest efficiency. But this isn’t always what happens.

There are essentially three kinds of updates to a document on disk. The first, and
most efficient, takes place when only a single value is updated and the size of the over-
all BSON document doesn’t change. This often happens with the $inc operator.
Because $inc is only incrementing an integer, the size of that value on disk won’t
change. If the integer represents an int, it’'ll always take up four bytes on disk; long
integers and doubles will require eight bytes. But altering the values of these numbers
doesn’t require any more space and, therefore, only that one value within the docu-
ment must be rewritten on disk.

The second kind of update changes the size or structure of a document. A
BSON document is literally represented as a byte array, and the first four bytes of
the document always store the document’s size. Thus, if you use the $push opera-
tor on a document, you're both increasing the overall document’s size and chang-
ing its structure. This requires that the entire document be rewritten on disk. This
isn’t going to be horribly inefficient, but it’s worth keeping in mind. But if you
have extremely large documents—say, around 4 MB—and you’re pushing values
onto arrays in those documents, that’s potentially a lot of work on the server side.
This means that if you intend to do a lot of updates, it’s best to keep your docu-
ments small.

The final kind of update is a consequence of rewriting a document. If a document
is enlarged and can no longer fit in its allocated space on disk, not only does it need to
be rewritten, but it must also be moved to a new space. This moving operation can be

http://www.it-ebooks.info/

192

7.5

CHAPTER 7 Updates, atomic operations, and deletes

potentially expensive if it occurs often. MongoDB attempts to mitigate this by dynami-
cally adjusting a padding factor on a per-collection basis. This means that if, within a
given collection, lots of updates are taking place that require documents to be relo-
cated, the internal padding factor will be increased. The padding factor is multiplied
by the size of each inserted document to get the amount of extra space to create
beyond the document itself. This may reduce the number of future document reloca-
tions. As of MongoDB 2.6, power of 2 is used to size the initial allocation of a new
document, which is more efficient than the method described in this paragraph.
Additionally, MongoDB 3.0 uses the power of 2 sizes allocation as the default record
allocation strategy for MMAPv1.
To see a given collection’s padding factor, run the collection stats command:

db.tweets.stats ()

{

"ns" : "twitter.tweets",
"count" : 53641,
"size" : 85794884,
"avgObjSize" : 1599.4273783113663,
"storageSize" : 100375552,
"numExtents" : 12,
"nindexes" : 3,
"lastExtentSize" : 21368832,
"paddingFactor" : 1.2,
"flags" : O,
"totalIndexSize" : 7946240,
"indexSizes" : {
" id " : 2236416,
"user.friends count_ 1" : 1564672,
"user.screen name_1 user.created at -1" : 4145152
1
"ok" : 1

This collection of tweets has a padding factor of 1.2, which indicates that when a 100-
byte document is inserted, MongoDB will allocate 120 bytes on disk. The default pad-
ding value is 1, which indicates that no extra space will be allocated.

Now, a brief word of warning. The considerations mentioned here apply especially
to deployments where the data size exceeds RAM or where an extreme write load is
expected. In these cases, rewriting or moving a document carries a particularly high
cost. As you scale your MongoDB applications, think carefully about the best way to
use update operations like $inc to avoid these costs.

Reviewing update operators

Table 7.1 lists the update operators we’ve discussed previously in this chapter.

http://www.it-ebooks.info/

7.6

Table 7.1 Operators

Summary 193

Operators
Sinc Increment fields by given values.
Sset Set fields to the given values.
Sunset Unset the passed-in fields.
Srename Rename fields to the given values.
SsetOnInsert In an upsert, set fields only when an insert occurs.
Sbit It performs a bitwise update of a field.
Array Operators
s Update the subdocument at the position discovered by the query selector.
Spush Add a value to an array.
SpushAll Add an array of values to an array. Deprecated in favor of Seach.
$addToSet Add a value to an array but do nothing if it’s a duplicate.
Spop Remove first or last item from an array.
Spull Remove values from an array that match a given query.
SpullAall Remove multiple values from an array.
Array Operator Modifiers
Seach Used with Spush and saddToSet to apply these operators to multiple values.
Sslice Used with $push and $each to slice the updated array down to a certain size.
Ssort Used with $push, Seach, and $slice to sort subdocuments in an array
before slicing.
Isolation Operators
Sisolated Don’t allow other operations to interleave with an update of multiple documents.
Summary

We’ve covered a lot in this chapter. The variety of updates may at first feel like a lot to
take in, but the power that these updates represent should be reassuring. The fact is

that MongoDB’s update language is as sophisticated as its query language. You can

update a simple document as easily as you can a complex, nested structure. When
needed, you can atomically update individual documents and, in combination with
findAndModify, build transactional workflows.

If you’ve finished this chapter and feel like you can apply the examples here on

your own, you’re well on your way to becoming a MongoDB guru.

http://www.it-ebooks.info/

http://www.it-ebooks.info/

Part 3

MongoDB mastery

Having read the first two parts of the book, you should understand Mon-
goDB quite well from a developer’s perspective. Now it’s time to switch roles. In
this final part of the book, we’ll look at MongoDB from the database administra-
tor’s perspective. This means we’ll cover all the things you need to know about
performance, deployments, fault tolerance, and scalability.

To get the best performance from MongoDB, you have to design efficient
queries and then ensure that they're properly indexed. This is what you’ll learn
in chapter 8. You’ll see why indexes are important, and you’ll learn how they’re
chosen and then traversed by the query optimizer. You'll also learn how to use
helpful tools like the query explainer and the profiler.

You’ll find that many of the queries you’re creating and optimizing have to
do with searching for text. To make this easier and more powerful, MongoDB has
some text search—specific features that we’ll cover in chapter 9. These features
will allow you to write queries that intelligently search for words and phrases sim-
ilar to your search term, among other things.

Chapter 10 is about the WiredTiger storage engine. Chapter 11 is devoted to
replication. You'll spend most of this chapter learning how replica sets work and
how to deploy them intelligently for high availability and automatic failover. In
addition, you’ll learn how to use replication to scale application reads and to
customize the durability of writes.

Horizontal scalability is the Holy Grail for modern database systems; MongoDB
scales horizontally by partitioning data in a process known as sharding. Chapter 12
presents sharding theory and practice, showing you when to use it, how to design
schemas around it, and how to deploy it.

http://www.it-ebooks.info/

196 PART 3 MongoDB mastery

The last chapter describes the niceties of deployment and administration. In chap-
ter 13 we’ll look at specific hardware and operating system recommendations. You’ll
then learn how to back up, monitor, and troubleshoot live MongoDB clusters.

http://www.it-ebooks.info/

Indexing and
query optimization

This chapter covers

Basic indexing concepts and theory
Practical advice for managing indexes

Using compound indexes for more complex
queries

Optimizing queries

All the MongoDB indexing options

Indexes are enormously important. With the right indexes in place, MongoDB can
use its hardware efficiently and serve your application’s queries quickly. But the
wrong indexes produce the opposite result: slow queries, slow writes, and poorly
utilized hardware. It stands to reason that anyone wanting to use MongoDB effec-
tively must understand indexing.

But for many developers, indexes are a topic shrouded in mystery. This need
not be the case. Once you've finished this chapter, you should have a good mental
model for thinking clearly about indexes. To introduce the concepts of indexing,
we’ll begin with a modest thought experiment. We’ll then explore some core
indexing concepts and provide an overview of the B-tree data structure underlying
MongoDB indexes.

197

http://www.it-ebooks.info/

198

8.1

811

CHAPTER 8 Indexing and query optimization

Then it’s on to indexing in practice. We’ll discuss unique, sparse, and multikey
indexes, and provide a number of pointers on index administration. Next, we’ll delve
into query optimization, describing how to use explain() and work harmoniously
with the query optimizer.

In versions 2.0, 2.4, 2.6, and 3.0, MongoDB gained more advanced indexing tech-
niques. Most queries only require indexes that match a field’s value or a range of val-
ues. But you may also want to run a query for words that are similar to a given word.
This requires a text index, which is covered in chapter 9. Or perhaps you’d like to use
a spatial index to find documents with latitude and longitude values near a given
point. This chapter is intended to give you a good understanding of indexing funda-
mentals so that you’ll be able to create indexes and use them effectively to optimize
your queries.

Indexing theory

We’ll proceed gradually, beginning with an extended analogy and ending with an
exposition of some of MongoDB’s key implementation details. Along the way, we’ll
define and provide examples of a number of important terms. If you’re not familiar
with compound-key indexes, virtual memory, and index data structures, you should
find this section helpful.

A thought experiment

To understand indexing, you need a picture in your head. Imagine a cookbook. And
not just any cookbook—a massive cookbook: 5,000 pages long with the most deli-
cious recipes for every occasion, cuisine, and season, with all the good ingredients
you might find at home. This is the cookbook to end them all. Let’s call it The Cook-
book Omega.

Although this might be the best of all possible cookbooks, there are two tiny
problems with The Cookbook Omega. The first is that the recipes are in random order.
On page 3,475 you have Australian Braised Duck, and on page 2 you’ll find Zacate-
can Tacos.

That would be manageable, were it not for the second problem: The Cookbook
Omega has no index.

Here’s the first question to ask yourself: with no index, how do you find the recipe
for Rosemary Potatoes in The Cookbook Omega? Your only choice is to scan through
every page of the book until you find the recipe. If the recipe is on page 3,973, that’s
how many pages you have to look through. In the worst case, where the recipe is on
the last page, you have to look at every single page.

That would be madness. The solution is to build an index.

A SIMPLE INDEX
There are several ways you can imagine searching for a recipe, but the recipe’s name
is probably a good place to start. If you create an alphabetical listing of each recipe

http://www.it-ebooks.info/

Indexing theory 199

name followed by its page number, you’ll have indexed the book by recipe name. A
few entries might look like this:

m Tibetan Yak Soufflé: 45
= Toasted Sesame Dumplings: 4,011
= Turkey a la King: 943

As long as you know the name of the recipe (or even the first few letters of that name),
you can use this index to quickly find any recipe in the book. If that’s the only way you
expect to search for recipes, your work is done.

But this is unrealistic because you can also imagine wanting to find recipes based
on, say, the ingredients you have in your pantry. Or perhaps you want to search by cui-
sine. For those cases, you need more indexes.

Here’s a second question: with only one index on the recipe name, how do you
find all the cauliflower recipes? Again, lacking the proper indexes, you’d have to scan
the entire book, all 5,000 pages. This is true for any search on ingredients or cuisine.

You need to build another index, this time on ingredients. In this index, you have
an alphabetical listing of ingredients, each pointing to all the page numbers of recipes
containing that ingredient. The most basic index on ingredients would look like this:

n Cashews: 3; 20; 42; 88; 103; 1,215...
» Cauliflower: 2; 47; 88; 89; 90; 275...
= Currants: 1,001; 1,050; 2,000; 2,133...

Is this the index you thought you were going to get? Is it even helpful?

A COMPOUND INDEX

This index is good if all you need is a list of recipes for a given ingredient. But if you
want to include any other information about the recipe in your search, you still have
some scanning to do—once you know the page numbers where cauliflower is refer-
enced, you then need to go to each of those pages to get the name of the recipe and
what type of cuisine it is. This is better than paging through the whole book, but you
can do better.

For example, imagine that you randomly discovered a great cauliflower recipe in
The Cookbook Omega several months ago but you’ve forgotten its name; you suspect that
you’ll recognize it when you see it. As of now, you have two indexes, one on recipe
name and the other on ingredients. Can you think of a way to use these two indexes in
combination to find your long-lost cauliflower recipe?

In fact, this is impossible. If you start with the index on recipe name, but don’t
remember the name of the recipe, then searching this index is little better than pag-
ing through the entire book. If you start with the index on ingredients, then you’ll
have a list of page numbers to check, but those page numbers can in no way be
plugged into the index on recipe name. Therefore, you can only use one index in this
case, and it happens that the one on ingredients is more helpful.

http://www.it-ebooks.info/

200

CHAPTER 8 Indexing and query optimization

One index per query

Users commonly believe that a query on two fields can be resolved using two sepa-
rate indexes on those fields. An algorithm exists for this: look up the page numbers
in each index matching each term, and then scan the intersection of those pages for
the individual recipes matching both terms. A number of pages won’t match, but
you'’ll still narrow down the total number of scanned items. Index intersection was
first supported by version 2.6 of MongoDB. Note that whether the use of a compound
index or the use of an index intersection is more efficient depends on the particular
query and the system. Also, keep in mind that the database will use a single index
per query if possible and that if you're going to be querying on more than one field

frequently, ensure that a compound index for those fields exists.

What can you do? Happily, there’s a solution to the long-lost cauliflower recipe, and its

answer lies in the use of compound indexes.
The two indexes you’ve created so far are
single-key indexes: they both order only one
key from each recipe. You’re going to build
yet another index for The Cookbook Omega, but
this time, instead of using one key per index,

Cashews

Cashew Marinade

you’ll use two. Indexes that use more than 1,215

one key like this are called compound indexes. Chicken with Cashews
This compound index uses both ingredi- 88

ents and recipe name, in that order. You’ll e R

notate the index like this: ingredient-name. HE

Part of this index would look like what you Carlifiowes

see in figure 8.1. Bacon Cauliflower Salad
The value of this index for a human is 875

obvious. You can now search by ingredient Lemon-baked Cauliflower

and probably find the recipe you want, even if 89

you remember only the initial part of the
name. For a machine, it’s still valuable for this
use case and will keep the database from hav-
ing to scan every recipe name listed for that
ingredient. This compound index would be

Spicy Cauliflower Cheese Soup
47

Currants

Creamed Scones with Currants

2,000
especially useful if, as with The Cookbook Omega, ¥ettaciiniwiih Glased Dick
there were several hundred (or thousand) 2,133
cauliflower recipes. Can you see why? Saffron Rice with Currants
1,050

One thing to notice: with compound
indexes, order matters. Imagine the reverse
compound index on name-ingredient. Would
this index be interchangeable with the com-
pound index we just explored?

Figure 8.1 A compound index inside a
cookbook

http://www.it-ebooks.info/

8.1.2

Indexing theory 201

Definitely not. With the new index, once you have the recipe name, your search is
already limited to a single recipe; a single page in your cookbook. If this index were
used on a search for the recipe Cashew Marinade and the ingredient Bananas, the
index could confirm that no such recipe exists. But this use case is the opposite one:
you know the ingredient, but not the recipe name.

The cookbook now has three indexes: one on recipe name, one on ingredient,
and one on ingredient-name. This means that you can safely eliminate the single-key
index on ingredient. Why? Because a search on a single ingredient can use the index
on ingredient-name. That is, if you know the ingredient, you can traverse this com-
pound index to get a list of all page numbers containing said ingredient. Look again
at the sample entries for this index to see why this is so.

INDEXING RULES
The goal of this section was to present an extended metaphor to provide you with a bet-
ter mental model of indexes. From this metaphor, you can derive a few simple concepts:

1 Indexes significantly reduce the amount of work required to fetch documents.
Without the proper indexes, the only way to satisfy a query is to scan all docu-
ments linearly until the query conditions are met. This frequently means scan-
ning entire collections.

2 Only one single-key index will be used to resolve a query.! For queries contain-
ing multiple keys (say, ingredient and recipe name), a compound index con-
taining those keys will best resolve the query.

3 An index on ingredient can and should be eliminated if you have a second
index on ingredient-name. More generally, if you have a compound index on
a-b, then a second index on a alone will be redundant, but not one on b.

4 The order of keys in a compound index matters.

Bear in mind that this cookbook analogy can be taken only so far. It’s a model for
understanding indexes, but it doesn’t fully correspond to the way MongoDB’s indexes
work. In the next section, we’ll elaborate on the rules of thumb just presented, and
we’ll explore indexing in MongoDB in detail.

Core indexing concepts

The preceding thought experiment hinted at a number of core indexing concepts.
Here and throughout the rest of the chapter, we’ll unpack those ideas.

SINGLE-KEY INDEXES

With a single-key index, each entry in the index corresponds to a single value from
each of the documents indexed. The default index on _id is a good example of a
single-key index. Because this field is indexed, each document’s _id also lives in an
index for fast retrieval by that field.

1

One exception is queries using the Sor operator. But as a general rule, this isn’t possible, or even desirable,

in MongoDB.

http://www.it-ebooks.info/

202

CHAPTER 8 Indexing and query optimization

COMPOUND-KEY INDEXES

Although when starting with MongoDB 2.6 you can use more than one index for a

query, it’s best if you use only a single index. But you often need to query on more

than one attribute, and you want such a query to be as efficient as possible. For exam-
ple, imagine that you’ve built two indexes on the products collection from this book’s
e-commerce example: one index on manufacturer and another on price. In this
case, you've created two entirely distinct data structures that, when traversed, are

ordered like the lists you see in figure 8.2.

Traversal
Ace Ox12 7999 OxFF
Acme OxFF 7500 Ox12
Acme OxA1 7500 OxEE
Acme Ox0B 7500 OxA1
Acme Ox1C 7499 Ox0B
Biz OxEE 7499 Ox1C

Manufacturers and disk locations

Figure 8.2 Single-key index traversal

Now, imagine your query looks like this:

db.products.find ({

'details.manufacturer': 'Acme',
'pricing.sale': {
$lt: 7500

}
3]

Sale prices and disk locations

This query says to find all Acme products costing less than $75.00. If you issue this query

with single-key indexes on manufacturer and
price, only one of them will be used. The
query optimizer will pick the more efficient of
the two, but neither will give you an ideal
result. To satisfy the query using these indexes,
you’d have to traverse each structure sepa-
rately and then grab the list of disk locations
that match and calculate their intersection.

A compound index is a single index where
each entry is composed of more than one key.
If you were to build a compound-key index on
manufacturer and price, the ordered repre-
sentation would look like figure 8.3.

Ace — 8000 Ox12
Acme — 7999 OxFF
Acme — 7500 OxA1
Acme — 7499 Ox0B
Acme — 7499 Ox1C
Biz — 8999 OxEE

Manufacturers and prices,

with disk locations

Traversal

Figure 8.3 Compound-key index traversal

http://www.it-ebooks.info/

Indexing theory 203

To fulfill your query, the query optimizer Traversal
only needs to find the first entry in the index
where manufacturer is Acme and price is 7999~ Aome OXFF
7500. From there, the results can be retrieved 7500 ~Ace OxEE
with a simple scan of the successive index | 7°00—Acme Ox12
entries, stopping when the value of the man- | 7500-Biz OxA1
ufacturer no longer equals Acme. 7499 — Acme Ox0B
There are two things you should notice |7499 - Acme oxiC

about the way this index and query work
together. The first is that the order of the P”C‘jvsit:r:j‘?si“la::;:g:]“srers'
index’s keys matters. If you’d declared a
compound index where price was the first

key and manufacturer the second, then your

Figure 8.4 A compound-key index with the
keys reversed

query would’ve been far less efficient. Can
you see why? Take a look at the structure of the entries in such an index in figure 8.4.

Keys must be compared in the order in which they appear. Unfortunately, this
index doesn’t provide an easy way to jump to all the Acme products, so the only way
to fulfill your query would be to look at every product whose price is less than
$75.00 and then select only those products made by Acme. To put this in perspec-
tive, imagine that your collection had a million products, all priced under $100.00
and evenly distributed by price. Under these circumstances, fulfilling your query
would require that you scan 750,000 index entries. By contrast, using the original
compound index, where manufacturer precedes price, the number of entries
scanned would be the same as the number of entries returned. This is because once
you’ve arrived at the entry for (Acme - 7500), it’s a simple, in-order scan to serve
the query.

The order of keys in a compound index matters. If that seems clear, the second
thing you should understand is why we’ve chosen the first ordering over the second.
This may be obvious from the diagrams, but there’s another way to look at the prob-
lem. Look again at the query: the two query terms specify different kinds of matches.
On manufacturer, you want to match the term exactly. But on price, you want to
match a range of values, beginning with 7500. As a general rule, a query where one
term demands an exact match and another specifies a range requires a compound
index where the range key comes second. We’ll revisit this idea in the section on
query optimization.

INDEX EFFICIENCY

Although indexes are essential for good query performance, each new index imposes
a small maintenance cost. Whenever you add a document to a collection, each index
on that collection must be modified to include the new document. If a particular col-
lection has 10 indexes, that makes 10 separate structures to modify on each insert, in
addition to writing the document itself. This holds for any write operation, whether

http://www.it-ebooks.info/

204

CHAPTER 8 Indexing and query optimization

you’re removing a document, relocating a document because the allocated space isn’t
enough, or updating a given document’s indexed keys.

For read-intensive applications, the cost of indexes is almost always justified. Just
realize that indexes do impose a cost and that they therefore must be chosen with
care. This means ensuring that all your indexes are used and that none are redun-
dant. You can do this in part by profiling your application’s queries; we’ll describe this
process later in the chapter.

But there’s a second consideration. Even with all the right indexes in place, it’s still
possible that those indexes won’t result in faster queries. This occurs when indexes
and a working data set don’t fit in RAM.

You may recall from chapter 1 that MongoDB tells the operating system to map all
data files to memory using the mmap () system call when the MMAPv1 default storage
engine is used. As you’ll learn in chapter 10, the WiredTiger storage engine works dif-
ferently. From this point on, the data files, which include all documents, collections,
and their indexes, are swapped in and out of RAM by the operating system in 4 KB
chunks called pages.? Whenever data from a given page is requested, the operating
system must ensure that the page is available in RAM. If it’s not, a kind of exception
known as a page fault is raised, and this tells the memory manager to load the page
from disk into RAM.

With sufficient RAM, all the data files in use will eventually be loaded into mem-
ory. Whenever that memory is altered, as in the case of a write, those changes will be
flushed to disk asynchronously by the OS. The write, however, will be fast because it
occurs directly in RAM; thus the number of disk accesses is reduced to a minimum.
But if the working data set can’t fit into RAM, page faults will start to creep up. This
means that the operating system will be going to disk frequently, greatly slowing
read and write operations. In the worst case, as data size becomes much larger than
available RAM, a situation can occur where for any read or write, data must be paged
to and from disk. This is known as thrashing, and it causes performance to take a
severe dive.

Fortunately, this situation is relatively easy to avoid. At a minimum, you need to make
sure that your indexes will fit in RAM. This is one reason why it’s important to avoid cre-
ating any unneeded indexes. With extra indexes in place, more RAM will be required
to maintain those indexes. Along the same lines, each index should have only the keys
it needs. A triple-key compound index might be necessary at times, but be aware that
it'll use more space than a simple single-key index. One example of where it might be
valuable to create an index with more than one or two fields is if you can create a cov-
ering index for a frequent query. A covering index is one where the entire query can be
satisfied from reading only the index, making queries very fast. Covering indexes are
discussed more at the end of section 8.3.

2 The 4 KB page size is standard but not universal.

http://www.it-ebooks.info/

8.13

Indexing theory 205

Bear in mind that indexes are stored separately in RAM from the data they index
and aren’t clustered. In a clustered index, the order of the index corresponds directly
to the order of the underlying data; if you index recipes by name in a clustered index,
then all of the recipes starting with A will be stored together, followed by B, C, and so
on. This isn’t the case in MongoDB. Every name in the recipe index is essentially
duplicated in the index, and the order of these names has no bearing on the order of
the data. This is important when you scan through a collection sorted with an index
because it means that every document fetched could be anywhere in the data set.
There’s no guaranteed locality with the previously fetched data.

Ideally, indexes and a working data set fit in RAM. But estimating how much RAM
this requires for any given deployment isn’t always easy. You can always discover total
index size by looking at the results of the stats command. The working set is the sub-
set of total data commonly queried and updated, which is different for every applica-
tion. Suppose you have a million users for which you have data. If only half of them
are active (thus half the user documents are queried), then your working set for the
user collection is half the total data size. If these documents are evenly distributed
throughout the entire data set, though, it’s likely that untouched user documents are
also being loaded into memory, which imposes a cost.

In chapter 10, we’ll revisit the concept of the working set, and we’ll look at spe-
cific ways to diagnose hardware-related performance issues. For now, be aware of
the potential costs of adding new indexes, and keep an eye on the ratio of index and
working set size to RAM. Doing so will help you to maintain good performance as
your data grows.

B-trees

As mentioned, MongoDB represents most indexes internally as B-trees. B-trees are
ubiquitous, having remained in popular use for database records and indexes since at
least the late 1970s.” If you've used other database systems, you may already be familiar
with the various aspects of using B-trees. This is good because it means you can effec-
tively transfer most of your knowledge of indexing. If you don’t know much about
B-trees, that’s okay, too; this section will present the concepts most relevant to your
work with MongoDB.

B-trees have two overarching traits that make them ideal for database indexes.
First, they facilitate a variety of queries, including exact matches, range conditions,
sorting, prefix matching, and index-only queries. Second, they’re able to remain bal-
anced in spite of the addition and removal of keys.

We’ll look at a simple representation of a B-tree and then discuss some principles
that you’ll want to keep in mind. Imagine that you have a collection of users and that

¥ The MMAPvI storage engine uses B-trees for its indexes only; collections are stored as doubly linked lists. As
you’ll see in chapter 10, the WiredTiger storage engine works a little differently despite the fact that it also
uses B-trees. But MMAPvI remains the default MongoDB storage engine.

http://www.it-ebooks.info/

206 CHAPTER 8 Indexing and query optimization

["Edwards", 21] | ["Perry", 18] | (Preallocated space) |

Bucket
["Adams", 17] ["Banks", 27] | (Preallocated space) | | ["Richards", 19] | ["Ryan", 20] | (Empty) ‘
Bucket Bucket
| ["Grant", 19] | ["Morton", 27] | (Preallocated space) |
Bucket

Figure 8.5 Sample B-tree structure

you’ve created a compound index on last name and age. An abstract representation of
the resulting B-tree might look something like figure 8.5.

A B-tree, as you might guess, is a tree-like data structure. Each node in the tree can
contain multiple keys. You can see in the example that the root node contains two
keys, each of which is in the form of a BSON object representing an indexed value
from the users collection. In reading the contents of the root node, you can see the
keys for two documents, indicating last names Edwards and Perry, with ages of 21 and
18, respectively. Each of these keys includes two pointers: one to the data file it
belongs to and another to the child node. Additionally, the node itself points to
another node with values less than the node’s smallest value.

In MongoDB’s B-tree implementation, a new node is allocated 8,192 bytes, which
means that in practice, each node may contain hundreds of keys. This depends on
the average index key size; in this case, that average key size might be around 30
bytes. The maximum key size since MongoDB v2.0 is 1024 bytes. Add to this a per-key
overhead of 18 bytes and a per-node overhead of 40 bytes, and this results in about
170 keys per node.* One thing to notice is that each node has some empty space (not
to scale).

This is relevant because users frequently want to know why index sizes are what
they are. You now know that each node is 8 KB, and you can estimate how many keys
will fit into each node. To calculate this, keep in mind that B-tree nodes are usually
intentionally kept around 60% full by default.

Given this information, you should now see why indexes aren’t free, in terms of
space or time required to update them. Use this information to help decide when to
create indexes on your collections and when to avoid them.

4 (8192 -40) / (30 +18) = 169.8

http://www.it-ebooks.info/

8.2

821

Indexing in practice 207

Indexing in practice
With most of the theory behind us, we’ll now look at some refinements on our con-

cept of indexing in MongoDB. We’ll then proceed to some of the details of index
administration.

Index types

MongoDB uses B-trees for indexes and allows you to apply several characteristics to
these indexes. This section should give you an overview of your options when creat-
ing indexes.

UNIQUE INDEXES
Often you want to ensure that a field in your document, such as _id or username, is
unique to that document. Unique indexes are a way to enforce this characteristic, and
in fact are used by MongoDB to ensure that id is a unique primary key.

To create a unique index, specify the unique option:

db.users.createIndex ({username: 1}, {unique: true})

Unique indexes enforce uniqueness across all their entries. If you try to insert a docu-
ment into this book’s sample application’s users collection with an already-indexed
username value, the insert will fail with the following exception:

E11000 duplicate key error index:
gardening.users.$username_ 1 dup key: { : "kbanker" }

If using a driver, this exception will be caught only if you perform the insert using
your driver’s safe mode, which is the default. You may have also encountered this
error if you attempted to insert two documents with the same _id—every MongoDB
collection has a unique index on this field because it’s the primary key.

If you need a unique index on a collection, it’s usually best to create the index
before inserting any data. If you create the index in advance, you guarantee the
uniqueness constraint from the start. When creating a unique index on a collection
that already contains data, you run the risk of failure because it’s possible that dupli-
cate keys may already exist in the collection. When duplicate keys exist, the index cre-
ation fails.

If you do find yourself needing to create a unique index on an established collec-
tion, you have a couple of options. The first is to repeatedly attempt to create the
unique index and use the failure messages to manually remove the documents with
duplicate keys. But if the data isn’t so important, you can also instruct the database to
drop documents with duplicate keys automatically using the dropDups option. For
example, if your users collection already contains data, and if you don’t care that doc-
uments with duplicate keys are removed, you can issue the index creation command
like this:

db.users.createIndex ({username: 1}, {unique: true, dropDups: true})

http://www.it-ebooks.info/

208

CHAPTER 8 Indexing and query optimization

Be careful using dropDups

Note that the choice of duplicate key documents to be preserved is arbitrary, so use
this feature with extreme care. Typically you’ll want to decide which duplicates to drop
instead of having MongoDB choose for you.

The dropDups option was removed starting with MongoDB 3.x and there’s no direct
replacement for the dropDups option. You can either create a new collection, create
the unique index on this new collection, and copy all the documents from the old col-
lection to the new one (while making sure that you’re ignoring duplicated key errors
during the process), or deal with duplicate key documents manually.

SPARSE INDEXES

Indexes are dense by default. This means that for every document in an indexed col-
lection, a corresponding entry exists in the index, even if the document lacks the
indexed key. For example, recall the products collection from your e-commerce data
model, and imagine that you’ve built an index on the product attribute category ids.
Now suppose that a few products haven’t been assigned to any categories. For each of
these category-less products, there will still exist a null entry in the category ids
index. You can query for those null values like this:

db.products.find ({category ids: null})

Here, when searching for all products lacking a category, the query optimizer will still
be able to use the index on category_ ids to locate the corresponding products.

But in two cases a dense index is undesirable. The first is when you want a unique
index on a field that doesn’t appear in every document in the collection. For instance,
you definitely want a unique index on every product’s sku field. But suppose that, for
some reason, products are entered into the system before a SKU is assigned. If you
have a unique index on sku and attempt to insert more than one product without a
SKU, the first insert will succeed, but all subsequent inserts will fail because there will
already be an entry in the index where sku is null. This is a case where a dense index
doesn’t serve your purpose. Instead you want a unique and sparse index.

In a sparse index, only those documents having some value for the indexed key will
appear. If you want to create a sparse index, all you have to do is specify {sparse:
true}. For example, you can create a unique sparse index on sku like this:

db.products.createIndex ({sku: 1}, {unique: true, sparse: true})

There’s another case where a sparse index is desirable: when a large number of docu-
ments in a collection don’t contain the indexed key. For example, suppose you
allowed anonymous reviews on your e-commerce site. In this case, half the reviews
might lack a user id field, and if that field were indexed, half the entries in that
index would be null. This would be inefficient for two reasons. First, it would increase

http://www.it-ebooks.info/

Indexing in practice 209

the size of the index. Second, it’d require updates to the index when adding and remov-
ing documents with null user_id fields.

If you rarely (or never) expect queries on anonymous reviews, you might elect to
build a sparse index on user_id. Again, setting the sparse option is simple:

db.reviews.createIndex ({user id: 1}, {sparse: true, unique: false})

Now only those reviews linked to a user via the user_id field will be indexed.

MULTIKEY INDEXES

In earlier chapters you saw several examples of indexing fields whose values are
arrays.” This is made possible by what’s known as a multikey index, which allows multi-
ple entries in the index to reference the same document. This makes sense if we look
at a simple example. Suppose you have a product document with a few tags like this:

{

name: "Wheelbarrow",
tags: ["tools", "gardening", "soil"]

}

If you create an index on tags, then each value in this document’s tags array will
appear in the index. This means that a query on any one of these array values can use
the index to locate the document. This is the idea behind a multikey index: multiple
index entries, or keys, end up referencing the same document.

Multikey indexes are always enabled in MongoDB, with a few exceptions, such as
with hashed indexes. Whenever an indexed field contains an array, each array value
will be given its own entry in the index.

The intelligent use of multikey indexes is essential to proper MongoDB schema
design. This should be evident from the examples presented in chapters 4 through 6;
several more examples are provided in the design patterns section of appendix B. But
creating, updating, or deleting multikey indexes is more expensive than creating,
updating, or deleting single-key indexes.

HASHED INDEXES

In the previous examples of B-tree indexes, we showed how MongoDB builds the
index tree out of the values being indexed. Thus, in an index of recipes, the “Apple
Pie” entry is near the “Artichoke Ravioli” entry. This may seem obvious and natural,
but MongoDB also supports hashed indexes where the entries are first passed through a
hash function.® This means the hashed values will determine the ordering, so these
recipes will likely not be near each other in the index.

5 Think of category IDs, for instance.

6 Recall that a hash function takes some input and maps it to an output value of fixed length. For a given input,
the hash output will always be consistent. A good hash function in this context will evenly distribute the output
values so that they appear to be random.

http://www.it-ebooks.info/

210

CHAPTER 8 Indexing and query optimization

Indexes of this kind can be created in MongoDB by passing 'hashed' as the index
sorting direction. For example:

db.recipes.createIndex ({recipe name: 'hashed'})

Because the indexed value is a hash of the original, these indexes carry some
restrictions:

= Equality queries will work much the same, but range queries aren’t supported.

= Multikey hashed indexes aren’t allowed.

= Floating-point values are cast to an integer before being hashed; thus, 4.2 and
4.3 will have the same value in a hashed index.

Given these restrictions and peculiarities, you may wonder why anyone would use a
hashed index. The answer lies in the fact that the entries in a hashed index are evenly
distributed. In other words, when you have a non-uniform distribution of key data,
then a hashed index will create uniformity if you can live with its restrictions. Recall
that “Apple Pie” and “Artichoke Ravioli” are no longer next to each other in the
hashed index; the data locality of the index has changed. This is useful in sharded col-
lections where the shard index determines which shard each document will be
assigned to. If your shard index is based on an increasing value, such as a MongoDB
OIDs,” then new documents created will only be inserted to a single shard—unless the
index is hashed.

Let’s dig into that statement. Unless explicitly set, a MongoDB document will use
an OID as its primary key. Here are a few sequentially generated OIDs:

5247ae72defd45aldabad%dad
5247ae73defd45aldabad%daa
5247ae73defd45aldaba9dab

Notice how similar the values are; the most significant bits are based on the time when
they were generated. When new documents are inserted with these IDs, their index
entries are likely to be near eachother. If the index using these IDs is being used to
decide which shard (and thus machine) a document should reside on, these docu-
ments are also likely to be inserted on to the same machine. This can be detrimental if
a collection is receiving heavy write load, because only a single machine is being used.
Hashed indexes solve this issue by distributing these documents evenly in a name-
space, and thus across shards and machines. To fully understand this example, wait
until you read chapter 12.

If you’re not familiar with sharding, it’s described in much greater detail in chap-
ter 11, and this example will make more sense once we describe sharding in detail.

7 MongoDB object IDs (OIDs) are the default ids used for MongoDB documents. We discussed them in more
detail in chapter 3, section 3.2.1.

http://www.it-ebooks.info/

8.22

Indexing in practice 211

For now, the important thing to remember is that hashed indexes change the locality
of index entries, which can be useful in sharded collections.

GEOSPATIAL INDEXES

Another useful query capability is to find documents “close” to a given location, based
on latitude and longitude values stored in each document. If you store a directory of
restaurants in a MongoDB collection, for example, users are probably most eager to
find restaurants located near their home. One answer to this is to run a query to find
every restaurant within a 10-mile radius. Executing this query requires an index that
can efficiently calculate geographic distances, including the curvature of the earth.
Geospatial indexes can handle this and other types of queries.

Index administration

We’ve discussed simple index administration, such as creating indexes, in this and in
previous chapters. When you use indexes in real-world applications, however, it’s use-
ful to understand this topic in greater depth. Here we’ll see index creation and dele-
tion in detail and address questions surrounding compaction and backups.

CREATING AND DELETING INDEXES

By now you’ve created quite a few indexes, so this should be easy. Simply call create-
Index () either in the shell or with your language of choice. Please note that in Mon-
goDB v3.0, ensureIndex (), which was previously used for creating indexes, has been
replaced by the createIndex () command and shouldn’t be used anymore. What you
may not know is that this method works by creating a document defining the new
index and putting it into the special system. indexes collection.

Though it’s usually easier to use a helper method to create an index, you can also
insert an index specification manually (this is what the helper methods do). You need
to be sure you’ve specified the minimum set of keys: ns, key, and name. ns is the
namespace, key is the field or combination of fields to index, and name is a name used
to refer to the index. Any additional options, like sparse, can also be specified here.
For example, let’s create a sparse index on the users collection:
use green

spec = {ns: "green.users", key: {'addresses.zip': 1}, name: ‘zip‘}
db.system.indexes.insert (spec, true)

If no errors are returned on insert, the index now exists, and you can query the sys-
tem. indexes collection to prove it:

db.system.indexes.find () .pretty ()

{

"ns" : "green.users",
n key "o {
"addresses.zip" : 1
¥
"name" . n Zip"
: ’

LEVAINNPR §

http://www.it-ebooks.info/

212

CHAPTER 8 Indexing and query optimization

The v field was added in MongoDB v2.0 to store the version of the index. This version
field allows for future changes in the internal index format but should be of little con-
cern to application developers.

To delete an index, you might think that all you need to do is remove the index
document from system. indexes, but this operation is prohibited. Instead, you must
delete indexes using the database command deleteIndexes. As with index creation,
there are helpers for deleting indexes, but if you want to run the command itself, you
can do that, too. The command takes as its argument a document containing the col-
lection name and either the name of the index to drop or * to drop all indexes. To
manually drop the index you created, issue the command like this:

use green
db.runCommand ({deleteIndexes: "users", index: "zip"})

In most cases, you’ll use the shell’s helpers to create and drop indexes:

use green
db.users.createIndex ({zip: 1})

You can then check the index specifications with the get IndexSpecs () method:

> db.users.getIndexes ()

[
{

IIVII : 1,
ukeyu . {
"oidr 21
"ns" : "green.users",
"name" : " ld n
llvll : 1,
"key" . {
"zip" : 1
"ns" : "green.users",
"name" : "zip 1"

Finally, you can drop the index using the dropIndex () method. Note that you must
supply the index’s name as specified in the spec:

use green
db.users.dropIndex("zip 1")

You can also supply your own name while creating an index using the name parameter.
Those are the basics of creating and deleting indexes. For what to expect when an
index is created, read on.

http://www.it-ebooks.info/

Indexing in practice 213

BUILDING INDEXES

Most of the time, you’ll want to declare your indexes before putting your application
into production. This allows indexes to be built incrementally, as the data is inserted.
But there are two cases where you might choose to build an index after the fact. The
first case occurs when you need to import a lot of data before switching into produc-
tion. For instance, you might be migrating an application to MongoDB and need to
seed the database with user information from a data warehouse. You could create the
indexes on your user data in advance, but doing so after you’ve imported the data will
ensure an ideally balanced and compacted index from the start. It’'ll also minimize the
net time to build the index.

The second (and more obvious) case for creating indexes on existing data sets is
when you have to optimize for new queries. This occurs when you add or change func-
tionality in your application, and it happens more than you might think. Suppose you
allow users to log in using their username, so you index that field. Then you modify
your application to also allow your users to log in using their email; now you probably
need a second index on the email field. Watch out for cases like these because they
require rethinking your indexing.

Regardless of why you’re creating new indexes, the process isn’t always pleasing.
For large data sets, building an index can take hours, even days. But you can monitor
the progress of an index build from the MongoDB logs. Let’s take an example from a
data set that we’ll use in the next section. First, you declare an index to be built:

db.values.createIndex({open: 1, close: 1})

Be careful declaring indexes

Because it's so easy to declare indexes, it’s also easy to inadvertently trigger an
index build. If the data set is large enough, the build will take a long time. And in a
production situation, this can be a nightmare because there’s no easy way to Kill an
index build. If this ever happens, you may have to fail over to a backup or secondary.
The most prudent advice is to treat an index build as a kind of database migration.

The index builds in two steps. In the first step, the values to be indexed are sorted. A
sorted data set makes for a much more efficient insertion into the B-tree. If you look
at the MongoDB server log, you’ll see the progress printed for long index builds. Note
that the progress of the sort is indicated by the ratio of the number of documents
sorted to the total number of documents:

[connl] building new index on { open: 1.0, close: 1.0 } for stocks.values
1000000/4308303 23%
2000000/4308303 46%
3000000/4308303 69%
4000000/4308303 92%
Tue Jan 4 09:59:13 [connl] external sort used : 5 files in 55 secs

http://www.it-ebooks.info/

214

CHAPTER 8 Indexing and query optimization

For step two, the sorted values are inserted into the index. Progress is indicated in the
same way, and when complete, the time it took to complete the index build is indi-
cated as the insert time into system. indexes:

1200300/4308303 27%

2227900/4308303
2837100/4308303
3278100/4308303
3783300/4308303
4075500/4308303
Tue Jan 4 10:00:16
Tue Jan 4 10:00:16
Tue Jan 4 10:00:16

51%

65%

76%

87%

94%

[connl] done building bottom layer, going to commit
[connl] done for 4308303 records 118.942secs
[connl] insert stocks.system.indexes 118942ms

In addition to examining the MongoDB log, you can check the index build progress
by running the shell’s currentOp () method. This command’s output varies from ver-
sion to version, but it will probably look something like the next listing.®

Listing 8.1 Checking the index build process with the shell currentOP () method

> db.currentOp ()

{

"inprog" : [
{ Operation ID
"opid" : 83695,
"active" : true,
"secs_running" : 55, Shows this is using
"op" : "insert", indexes in the query
"ns" : "stocks.system.indexes",
"insert" : {
vt 1, Stocks
"key" : { database
n desc n
b
"ns" : "stocks.values",
"name" : "desc_1"
|
"client™ : "127.0.0.1:56391",
"desc" : "connl2",
"threadId" "0x10£20c000", .
N) " Locks associated
connectionId 12, ith th G
"ocks" : { wi e operation
nAn nwt,
"AStOCkS" il
¥
"waitingForLock" : false,
"msg" : "index: (1/3) external sort Index: (1/3)

External Sort Progress: 3999999/4308303 92%",

8 Note that if you've started the index build from the MongoDB shell, you’ll have to open a new instance of the
shell to run currentOp concurrently. For more about db. currentOp (), see chapter 10.

http://www.it-ebooks.info/

Indexing in practice 215

"progress" : {
"done" : 3999999,
"total" : 4308303
b
"numYields" : O,
"lockStats" : {
"timeLockedMicros" : {},
"timeAcquiringMicros" : {
"r" : NumberLong(0),
"w" : NumberLong (723)

The msg field describes the build’s progress. Note also the locks element, which indi-
cates that the index build takes a write lock on the stocks database. This means that
no other client can read or write from the database at this time. If you’re running in
production, this is obviously a bad thing, and it’s the reason why long index builds can
be so vexing. Let’s explore two possible solutions to this problem.

BACKGROUND INDEXING
If you’re running in production and can’t afford to halt access to the database, you
can specify that an index be built in the background. Although the index build will
still take a write lock, the job will yield to allow other readers and writers to access the
database. If your application typically exerts a heavy load on MongoDB, a background
index build will degrade performance, but this may be acceptable under certain cir-
cumstances. For example, if you know that the index can be built within a time win-
dow where application traffic is at a minimum, background indexing in this case
might be a good choice.

To build an index in the background, specify {background: true} when you declare
the index. The previous index can be built in the background like this:

db.values.createIndex({open: 1, close: 1}, {background: true})

OFFLINE INDEXING

Building an index in the background may still put an unacceptable amount of load on
a production server. If this is the case, you may need to index the data offline. This will
usually involve taking a replica node offline, building the index on that node by itself,
and then allowing the node to catch up with the master replica. Once it’s caught up,
you can promote the node to primary and then take another secondary offline and
build its version of the index. This tactic presumes that your replication oplog is large
enough to prevent the offline node from becoming stale during the index build.
Chapter 10 covers replication in detail and should help you plan for a migration such
as this.

http://www.it-ebooks.info/

216

83

CHAPTER 8 Indexing and query optimization

BACKUPS
Because indexes are hard to build, you may want to back them up. Unfortunately,
not all backup methods include indexes. For instance, you might be tempted to use
mongodump and mongorestore, but these utilities preserve collections and index decla-
rations only. This means that when you run mongorestore, all the indexes declared
for any collections you’ve backed up will be re-created. As always, if your data set is
large, the time it takes to build these indexes may be unacceptable.

Consequently, if you want your backups to include indexes, you’ll want to opt for
backing up the MongoDB data files themselves. More details about this, as well as gen-
eral instructions for backups, can be found in chapter 13.

DEFRAGMENTING

If your application heavily updates existing data or performs a lot of large deletions,
you may end up with a highly fragmented index. B-trees will coalesce on their own
somewhat, but this isn’t always sufficient to offset a high delete volume. The primary
symptom of a fragmented index is an index size much larger than you’d expect for
the given data size. This fragmented state can result in indexes using more RAM than
necessary. In these cases, you may want to consider rebuilding one or more indexes.
You can do this by dropping and re-creating individual indexes or by running the
reIndex command, which will rebuild all indexes for a given collection:

db.values.relIndex () ;

Be careful about reindexing: the command will take out a write lock for the duration
of the rebuild, temporarily rendering your MongoDB instance unusable. Reindexing
is best done offline, as described earlier for building indexes on a secondary. Note
that the compact command, discussed in chapter 10, will also rebuild indexes for the
collection on which it’s run.

We’ve discussed how to create and manage your indexes, but despite this knowl-
edge, you may still find yourself in a situation where your queries aren’t fast enough.
This can occur as you add data, traffic, or new queries. Let’s learn how to identify
these queries that could be faster and improve the situation.

Query optimization

Query optimization is the process of identifying slow queries, discovering why they’re
slow, and then taking steps to speed them up. In this section, we’ll look at each step of
the query optimization process in turn so that by the time you finish reading, you’ll
have a framework for addressing problematic queries on any MongoDB installation.
Before diving in, we must warn you that the techniques presented here can’t be
used to solve every query performance problem. The causes of slow queries vary too
much. Poor application design, inappropriate data models, and insufficient physical
hardware are all common culprits, and their remedies require a significant time
investment. Here we’ll look at ways to optimize queries by restructuring the queries

http://www.it-ebooks.info/

83.1

Query optimization 217

themselves and by building the most useful indexes. We’ll also describe other avenues
for investigation when these techniques fail to deliver.

Identifying slow queries

If your MongoDB-based application feels sluggish, it’s time to start profiling your que-
ries. Any disciplined approach to application design should include a query audit, and
MongoDB makes this easy. Though the requirements vary per application, it’s safe to
assume that for most apps, queries shouldn’t take much longer than 100 ms. The
MongoDB logger has this assumption ingrained because it prints a warning whenever
any operation, including a query, takes longer than 100 ms. The logs, therefore, are
the first place you should look for slow queries.

It’s unlikely that any of the data sets we’ve worked with up until now have been
large enough to generate queries lasting longer than 100 ms. For the following exam-
ples, we’ll use a data set consisting of daily NASDAQ summaries. If you want to follow
along, you’ll need to have this data locally. To import it, first download the archive
using http://mng.bz/ii49. Then unzip the file to a temporary folder. You’ll see the fol-
lowing output:
$ unzip stocks.zip
Archive: stocks.zip

creating: dump/stocks/

inflating: dump/stocks/system.indexes.bson
inflating: dump/stocks/values.bson

Finally, after starting the mongod process if necessary, restore the dump like this:

$ mongorestore -d stocks dump/stocks

This process may take a few minutes. You may also receive some warning messages at
the beginning and end of the process. Don’t worry about those.

The stocks data set is large and easy to work with. For a certain subset of the NASDAQ
stock exchange’s symbols, there’s a document for each day’s high, low, close, and vol-
ume for a 25-year period beginning in 1983. Given the number and size of the docu-
ments in this collection, it’s easy to generate one of the log warnings. Try querying for
the first occurrence of Google’s stock price:

use stocks
db.values.find ({"stock symbol": "GOOG"}) .sort ({date: -1}).limit (1)

You’ll notice that this takes some time to run, and if you check the MongoDB log,
you’ll see the expected slow query warning. Here’s a sample of the output to expect
from MongoDB v2.6:

Mon Sep 30 21:48:58.066 [conn20] query stocks.values query: { query: {
stock symbol: "GOOG" }, orderby: { date: -1.0 } }
ntoreturn:1 ntoskip:0 nscanned:4308303 scanAndOrder:1 keyUpdates:0
numYields: 3 locks(micros) r:4399440
nreturned:1 reslen:194 4011lms

http://mng.bz/ii49
http://www.it-ebooks.info/

218

CHAPTER 8 Indexing and query optimization

A similar log message from MongoDB v3.0 using another collection has the follow-
ing format:

2015-09-11T21:17:15.414+0300 I COMMAND [conn99] command green.sScmd command:

insert { insert: "system.indexes", documents: [{ _id:
ObjectId('55£31aab9a50479be0a7dcd7'), ns: "green.users", key: {
addresses.zip: 1.0 }, name: "zip" }], ordered: false } keyUpdates:0

writeConflicts:0 numYields:0 reslen:40 locks:{ Global: { acquireCount: { r:
1, w: 1 } }, MMAPVlJournal: { acquireCount: { w: 9 } }, Database: {
acquireCount: { W: 1 } }, Collection: { acquireCount: { W: 1 } }, Metadata: {
acquireCount: { W: 5 } } } 102ms

There’s a lot of information here, and we’ll go over the meaning of all of it when we
discuss explain(). For now, if you read the message carefully, you should be able to
extract the most important parts: that it’s a query on stocks.values; that the query
selector consists of a match on stock symbol and that a sort is being performed; and,
maybe most significantly, that the query takes a whopping four seconds (4011 ms).
The exact time may vary quite a bit depending on the speed of your computer.

Warnings like this must be addressed. They’re so critical that it’s worth your while
to occasionally search for them in your MongoDB logs. This can be accomplished eas-
ily with grep:

grep -E '[0-9]+ms' mongod.log

If 100 ms is too high a threshold, you can lower it with the --slowms server option
when you start MongoDB. If you define slow as taking longer than 50 ms, then start
mongod with --slowms 50.

Of course, using grep to search through logs isn’t very systematic. You can use the
MongoDB logs to check for slow queries, but the procedure is rather coarse and
should be reserved as a kind of sanity check in a staging or production environment.
To identify slow queries before they become a problem, you want a precision tool.
MongoDB’s built-in query profiler is exactly that.

USING THE PROFILER

For identifying slow queries, you can’t beat the built-in profiler. Profiling is dis-
abled by default, so let’s get started by enabling it. From the MongoDB shell, enter
the following:

use stocks
db.setProfilingLevel (2)

First you select the database you want to profile; profiling is always scoped to a particu-
lar database. Then you set the profiling level to 2. This is the most verbose level; it
directs the profiler to log every read and write. A couple of other options are available.
To log only slow (100 ms) operations, set the profiling level to 1. To disable the query
profiler altogether, set it to 0. And to log only operations taking longer than a certain

http://www.it-ebooks.info/

Query optimization 219

threshold in milliseconds, pass the number of milliseconds as the second argument
like this:

use stocks
db.setProfilingLevel (1, 50)

Once you've enabled the profiler, it’s time to issue some queries. Let’s run another
query on the stocks database. Try finding the highest closing price in the data set:

db.values.find ({}) .sort ({close: -1}).limit (1)

PROFILING RESULTS
The profiling results are stored in a special capped collection called system.profile
which is located in the database where you executed the setProfilingLevel com-
mand. Recall that capped collections are fixed in size and that data is written to them
in a circular way so that once the collection reaches its max size, new documents over-
write the oldest documents. The system.profile collection is allocated 128 KB, thus
ensuring that the profile data never consumes much in the way of resources.

You can query system.profile as you would any capped collection. For instance,
you can find all queries that took longer than 150 ms like this:

db.system.profile.find ({millis: {$gt: 150}})

Because capped collections maintain natural insertion order, you can use the $natu-
ral operator to sort so that the most recent results are displayed first:

db.system.profile.find () .sort ({$natural: -1}).1limit (5).pretty()

Returning to the query you just issued, you should see an entry in the result set that
looks something like this:

{ "op" : "query",
"ns" : "stocks.values", Name of
"query" : { QT collection
"query" : { },
"orderby" : {
"close" : -1
1
¥
"ntoreturn" : 1,
"ntoskip" : 0,
"nscanned" : 4308303, Number of scanned
"scanAndOrder" : true, <F4W documents
"keyUpdates" : 0,
"numYield" : 3,
"lockStats" : {
"timeLockedMicros" : {
"r" : NumberLong (12868747),
"w" : NumberLong (0)

b

http://www.it-ebooks.info/

220

CHAPTER 8 Indexing and query optimization

"timeAcquiringMicros" : {
"r" : NumberLong (1838271),
"w" : NumberLong (5) Number of returned
1 documents
b
"nreturned" : 1, <}J Response time
"responseLength" : 194, in milliseconds
"millis" : 11030,
"ts" : ISODate("2013-09-30T06:44:40.988Z"),
"client" : "127.0.0.1",
"allUsers" : [1,
"user" : ""

Another expensive query: this one took about 11 seconds! In addition to the time it
took to complete, you get all same information about the query that you saw in the
MongoDB log’s slow query warning, which is enough to start the deeper investigation
that we’ll cover in the next section.

But before moving on, a few more words about profiling strategy are in order:

= A good way to use the profiler is to start it with a coarse setting and work down-
ward. First ensure that no queries take longer than 100 ms, then move down to
75 ms, and so on.

= While the profiler is enabled, you’ll want to put your application through its
paces; this means testing all of your application’s reads and writes.

= To be thorough, those reads and writes should be executed under real condi-
tions, where the data sizes, query load, and hardware are representative of the
application’s production environment.

The query profiler is useful, but to get the most out of it, you need to be methodical.
Better to be surprised with a few slow queries in development than in production,
where the remedies are much more costly.

For reference, the following output presents a profiling entry from MongoDB
v3.0.6:

> db.system.profile.find () .1limit (1) .pretty ()
{
llopll : llqueryll .
"ns" : "products.system.profile",
"query" : {

).

"ntoreturn" : 0,
"ntoskip" : 0,
"mgcanned" : O,
"nscannedObjects" : 0,
"keyUpdates" : O,
"writeConflicts" : 0,
"numYield" : O,

http://www.it-ebooks.info/

832

Query optimization 221

"locks" : {
"Global" : {
"acquireCount" :
"r" : NumberLong(2)
}
b
"MMAPV1Journal" : {
"acquireCount" : {
"r" : NumberLong (1)
1
¥
"Database" : {
"acquireCount" :
"r" : NumberLong (1)
1
b
"Collection" : ({
"acquireCount" : {
"R" : NumberLong (1)
}
1
b
"nreturned" : 0,
"responseLength" : 20,
"millis" : 1,
"execStats" : {
"stage" : "COLLSCAN",
"filter" : {
"Sand" : [1]
b
"nReturned" : 0,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 0,
"needTime" : 1,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"igEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 0
b
"ts" : ISODate("2015-09-11T18:52:08.847z2"),
"client" : "127.0.0.1",
"allUsers" : [1,
"user" : "

Examining slow queries

Finding slow queries is easy with MongoDB’s profiler. Discovering why these queries
are slow is trickier and may require some detective work. As mentioned, the causes of
slow queries are manifold. If you’re lucky, resolving a slow query may be as easy as

http://www.it-ebooks.info/

222 CHAPTER 8 Indexing and query optimization

adding an index. In more difficult cases, you might have to rearrange indexes, restruc-
ture the data model, or upgrade hardware. But you should always look at the simplest
case first, and that’s what we’re going to do here.

In the simplest case, a lack of indexes, inappropriate indexes, or less-than-ideal
queries will be the root of the problem. You can find out for sure by running an
explain on the offending queries. Let’s explore how to do that now.

USING AND UNDERSTANDING EXPLAIN()

MongoDB’s explain command provides detailed information about a given query’s
path. Let’s dive right in and see what information can be gleaned from running an
explain on the last query you ran in the previous section. To run explain from the
shell, you only need to attach the explain () method call:

db.values.find ({}) .sort ({close: -1}).1limit (1) .explain()

{

"cursor" : "BasicCursor",

"isMultiKey" : false, N:mbez
o1, returne

"nscannedObjects" : 4308303,

"nscanned" f 4308303, Number
nscannedObjectsAllPlans : 4308303, scanned

"nscannedAllPlans" : 4308303,
"scanAndOrder" : true,
"indexOnly" : false,
"nYields" : 4,

"nChunksSkips" : 0,

"millis" : 10927,
"indexBounds" : { },

"server" : "localhost:27017"

The millis field indicates that this query takes about 11 seconds,’ and there’s an obvi-
ous reason for this. Look at the nscanned value: this shows that the query engine had
to scan 4,308,303 documents to fulfill the query. Now, quickly run a count on the val-
ues collection:

db.values.count ()
4308303

The number of documents scanned is the same as the total number of documents in
the collection, so you’ve performed a complete collection scan. If your query were
expected to return every document in the collection, this wouldn’t be a bad thing. But
you’re returning one document, as indicated by the explain value n, so this is prob-
lematic. Furthermore, a full collection scan will only get more expensive if more docu-
ments are added. Generally speaking, you want the values of n and nscanned to be as

9 If this doesn’t seem like much, consider the case where a user is waiting on a web page to load because of a
database query in the background. In that context, 11 seconds is an eternity.

http://www.it-ebooks.info/

Query optimization 223

close together as possible. When doing a collection scan, this is almost never the case.
The cursor field tells you that you've been using a BasicCursor, which only confirms
that you’re scanning the collection itself and not an index. If you had used an index,
the value would’ve been BTreeCursor.

A second datum here further explains the slowness of the query: the scanAndOrder
field. This indicator appears when the query optimizer can’t use an index to return a
sorted result set. Therefore, in this case, not only does the query engine have to scan
the collection, it also has to sort the result set manually.

The previous output from the explain() command is from an older MongoDB
version. Here’s a sample output from the explain() command using a MongoDB
v3.0.6 server:

> db.inventory.find ({}) .sort ({"quantity": -1}).limit(1).
explain ("executionStats")
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.inventory",
"indexFilterSet" : false,
"parsedQuery" : {

"Sand" : []

}

"winningPlan" : {
"stage" : "SORT",
"sortPattern" : {

"quantity" : -1
b
"limitAmount" : 1,
"inputStage" : {

"stage" : "COLLSCAN",

"filter" : {

"Sand" : [1]
b

"direction" : "forward"

b
"rejectedPlans" : []

}

"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : O,
"totalKeysExamined" : O,
"totalDocsExamined" : 11,
"executionStages" : {

"stage" : "SORT",

"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 16,

"advanced" : 1,

"needTime" : 13,

"needFetch" : 0,

http://www.it-ebooks.info/

224

CHAPTER 8 Indexing and query optimization

"saveState" : 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"sortPattern" : {
"quantity" : -1
1
"memUsage" : 72,
"memLimit" : 33554432,
"limitAmount" : 1,
"inputStage" : {
"stage" : "COLLSCAN",
"filter" : {
"Sand" : []
}
"nReturned" : 11,
"executionTimeMillisEstimate" : 0,
"works" : 13,
"advanced" : 11,
"needTime" : 1,
"needFetch" : 0,
"saveState" : 0,
"restoreState" : O,
"isEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 11
}
}
}
"serverInfo" : {
"host" : "rMacBook.local",
"port" : 27017,
"version" : "3.0.6",
"gitVersion" : "nogitversion"

nok" i 1

The explain() command displays more information when used with the execution-
Stats option.

ADD AN INDEX AND RETRY
The poor performance is unacceptable, but fortunately the fix is simple. All you need

to do is build an index on the close field. Go ahead and do that now:
db.values.createIndex ({close: 1})

Note that building the index may take a few minutes. Once built, try the query again:

db.values.find ({}) .sort ({close: -1}).1limit (1) .explain()

{

"cursor" : "BtreeCursor close 1 reverse",
"isMultiKey" : false,

http://www.it-ebooks.info/

Query optimization 225

"nvo: o1,
"nscannedObjects" : 1,
"nscanned" : 1,
"nscannedObjectsAllPlans" : 1,
"nscannedAllPlans" : 1,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : O,
"nChunkSkips" : 0,
"millis" : O,
"indexBounds" : {
"name" : [
[
{
"S$SmaxElement" : 1
b
{

"$SminElement" : 1

}

]
b

"server" : "localhost:27017"

What a difference! The query now takes less than a millisecond to process. You can see
from the cursor field that you’re using a BtreeCursor on the index named close_1
and that you’re iterating over the index in reverse order. In the indexBounds field,
you see the special values $maxElement and $minElement. These indicate that the
query spans the entire index. In this case, the query optimizer walks the rightmost
edge of the B-tree until it reaches the maximum key and then works its way backward.
Because you've specified a limit of 1, the query is complete once the maxElement is
found. And of course, the index keeps the entries in order, so there’s no longer a
need for the manual sort indicated by scanAndOrder.

Similarly, the MongoDB v3.0.6 output shows the improvement in the execution
time and the number of documents that where examined:

> db.inventory.find ({}) .sort ({"quantity": -
1}).1limit (1) .explain("executionStats")
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.inventory",
"indexFilterSet" : false,
"parsedQuery" : {
"Sand" : []

1

"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : O,
"inputStage" : {

"stage" : "FETCH",

http://www.it-ebooks.info/

226 CHAPTER 8 Indexing and query optimization

"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"quantity" : 1
1
"indexName" : "quantity 1",
"isMultiKey" : false,
"direction" : "backward",
"indexBounds" : {
"quantity" : [

" [MaxKey, MinKeyl"

1
"rejectedPlans" : []
)
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : O,
"totalKeysExamined" : 1,
"totalDocsExamined" : 1,
"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"limitAmount" : O,
"inputStage" : {
"stage" : "FETCH",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 1,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0
"restoreState" : 0,
"isEOF" : O,
"invalidates" : 0,
"docsExamined" : 1,
"alreadyHasObj" : O,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 1,

’

"executionTimeMillisEstimate" : 0,

http://www.it-ebooks.info/

b

"serverInfo"

nok"

Query optimization

"works" : 1,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 0,
"invalidates" : 0,
"keyPattern" : {
"quantity" : 1

b

"indexName" : "quantity 1",

"isMultiKey" : false,
"direction" : "backward",
"indexBounds" : {
"quantity" : [
" [MaxKey, MinKey]"

b

"keysExamined" : 1,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0,
"matchTested" : 0

{

"rMacBook.local",
27017,

"3.0.6",

"gitVersion" : "nogitversion"

227

The reason for showing the output from both 2.x and 3.0 MongoDB versions is for you

to have it as a reference.

USING AN INDEXED KEY

You'll see slightly different output if you use the indexed key in your query selector.

Take a look at the explain plan for a query selecting closing values greater than 500:

> db.values.find({close:

{

"cursor"
"isMultiKey"

npn

"nscannedObjects"
"nscanned"

"BtreeCursor close 1",
false,

309,

"nscannedObjectsAllPlans" : 309,
"nscannedAllPlans" : 3009,

"scanAndOrder"

false,

{$gt: 500}}) .explain()

http://www.it-ebooks.info/

228 CHAPTER 8 Indexing and query optimization

"indexOnly" : false,
"nYields" : O,
"nChunkSkips" : 0,
"millis" : 1,
"indexBounds" : {
"close" : [
[
500,
1.7976931348623157e+308

]
b

"server" : "localhost:27017"

You're still scanning the same number of documents that you’re returning (n and
nscanned are the same), which is ideal. But note the difference in the way the index
boundaries are specified. Instead of the $maxElement and $minElement keys, the
boundaries are actual values. The lower bound is 500 and the upper bound is effec-
tively infinite. These values must share the same class of data type that you're querying
on; you're querying on a number, which means the index bounds are numeric. If you
were to query on a string range instead, the boundaries would be strings.'

As usual, output from a similar query using MongoDB v3.0 will be presented here:

> db.inventory.find ({"quantity":{sgt:
150}}) .1imit (1) .explain("executionStats")
{

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.inventory",
"indexFilterSet" : false,
"parsedQuery" : {
"quantity" : {
"sSgt" : 150
}
¥
"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : 0,
"inputStage" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"quantity" : 1
e
"indexName" : "quantity 1",
"isMultiKey" : false,
"direction" : "forward",

10 If this isn’t making any sense, recall that a given index can contain keys of multiple data types. Thus, query
results will always be limited by the data type used in the query.

http://www.it-ebooks.info/

Query optimization 229

"indexBounds" : {
"quantity" : [
"(150.0, inf.o0]"

¥
"rejectedPlans" : []
¢
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : O,
"totalKeysExamined" : 1,
"totalDocsExamined" : 1,
"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0
"restoreState" : O,
"isEOF" : 1,
"invalidates" : O,
"limitAmount" : O,
"inputStage" : {
"stage" : "FETCH",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,

’

"works" : 1,

"advanced" : 1,

"needTime" : O,

"needFetch" : 0,

"saveState" 0,

"restoreState" : 0,

"isEOF" : 0,

"invalidates" : 0,

"docsExamined" : 1,

"alreadyHasObj" : 0,

"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 1,
"advanced" : 1,
"needTime" : 0,
"needFetch" : 0,
"saveState" 0
"restoreState" : 0,
"isEOF" : 0,
"invalidates" : 0,

1

http://www.it-ebooks.info/

230

CHAPTER 8 Indexing and query optimization

"keyPattern" : {
"quantity" : 1
}
"indexName" : "quantity 1",
"igMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"quantity" : [

"(150.0, inf.o0]"
1
}

"keysExamined" : 1,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : O,
"matchTested" : 0
}
}
}
1
"serverInfo" : {
"host" : "rMacBook.local",
"port" : 27017,
"version" : "3.0.6",
"gitVersion" : "nogitversion"
1
"ok" : 1

Before continuing, try running explain() on a few queries of your own using all
MongoDB versions you have, and pay attention to the difference between n and
nscanned, as well as the difference between totalDocsExamined and nReturned. Opti-
mizing a query in MongoDB v2.x usually means making nscanned as small as possible,
but every result must be scanned, so nscanned will never be lower than n, the number of
results a query returns. In MongoDB v3.0 the nReturned value indicates the number
of documents a query matches and returns. The value of totalDocsExamined indi-
cates the number of documents that MongoDB scanned. Lastly, totalKeysExamined
shows the number of index entries that MongoDB scanned.

MoNGoDB’S QUERY OPTIMIZER
The query optimizer is the piece of software that determines which index, if any, will
most efficiently serve a given query. To select an ideal index for your queries, the
query optimizer uses a fairly simple set of rules:
1 Avoid scanAndOrder. If the query includes a sort, attempt to sort using an
index.
2 Satisfy all fields with useful indexing constraints—attempt to use indexes for the
fields in the query selector.
3 If the query implies a range or includes a sort, choose an index where that last
key used can help satisfy the range or sort.

http://www.it-ebooks.info/

Query optimization 231

If all of these conditions can be met for any one index, that index will be considered
optimal and will be used. If more than one index qualifies as optimal, one of the opti-
mal indexes will be chosen arbitrarily. There’s a lesson here: if you can build optimal
indexes for your queries, you make the query optimizer’s job a lot easier. Strive for
that if you can.

Let’s look at a query that satisfies an index (and the query optimizer) perfectly. Go
back to the stock symbol data set. Now imagine you want to issue the following query,
which fetches all of Google’s closing values greater than 200:

db.values.find({stock symbol: "GOOG", close: {$gt: 200}})

If you use .explain() with this query, you'll see that n is 730 but nscanned is 5299.
The previously created index on close helps, but the optimal index for this query
includes both keys and places the close key last to allow for the range query:

db.values.createIndex ({stock symbol: 1, close: 1})

You’ll see that if you run the query, both keys are used, and the index bounds are as
expected:

db.values.find ({stock symbol: "GOOG", close: {Sgt: 200}}).explain()
{
"cursor" : "BtreeCursor stock symbol 1 close 1",
"isMultiKey" : false,
"n" : 730,
"nscannedObjects" : 730,
"ngcanned" : 730,
"nscannedObjectsAllPlans" : 730,
"nscannedAllPlans" : 730,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : O,
"nChunkSkips" : 0,
"millis" : 2,
"indexBounds" : {
"stock symbol" : [
[
"GOOoG",
"GOOG"
1
1,
"close" : [
[
200,
1.7976931348623157e+308

]
b

"server" : "localhost:27017"

http://www.it-ebooks.info/

232

CHAPTER 8 Indexing and query optimization

This is the optimal explain output for this query: the values of n and nscanned are the
same. But now consider the case where no one index perfectly serves the query. For
example, imagine that you don’t have an index on {stock_symbol: 1, close: 1} but
instead, you have a separate index on each of those fields. Using the shorthand get -
IndexKeys () to list indexes, you’d see this:

db.values.getIndexKeys ()

n idll 1
b
{
"close" : 1
b
{
"stock_symbol" : 1

Because your query includes both the stock_symbol and close keys, there’s no obvi-
ous index to use. This is where the query optimizer comes in, and the heuristic is
more straightforward than you might imagine. It’s based purely on the value of
nscanned. In other words, the optimizer chooses the index that requires scanning the
least number of index entries. When the query is first run, the optimizer creates a
query plan for each index that might efficiently satisfy the query. The optimizer then
1."! Usually, the plan that finishes with the lowest value for
nscanned is declared the winner; but in rare occasions, the optimizer may select the
full collection scan as the winning plan for a given query. The optimizer then halts any
long-running plans and saves the winner for future use.
The following output is from MongoDB v3.0 using a much smaller collection:

runs each plan in paralle

> db.inventory.£find ({"quantity": 500,

"type":"toys"}).limit (1) .explain("executionStats")
{

"queryPlanner" : {

"plannerVersion" : 1,

"namespace" : "tutorial.inventory",

"indexFilterSet" : false,

"parsedQuery" : {

"Sand" : [
{
"quantity" : {
"Seqg" : 500

}
}

! Technically, the plans are interleaved.

http://www.it-ebooks.info/

optimization 233
Query op

"type" : {
"Seq" : "toys"

1
"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : O,
"inputStage" : {
"stage" : "KEEP_MUTATIONS",
"inputStage" : {
"stage" : "FETCH",
"filter" : {
"type" : |
"Seqg" : "toys"

1
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"quantity" : 1
.
"indexName" : "quantity 1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"quantity" : [
"[500.0, 500.0]1"

b
"rejectedPlans" : []
¥
"executionStats" : {

"executionSuccess" : true,

"nReturned" : 1,

"executionTimeMillis" : 1,

"totalKeysExamined" : 2,

"totalDocsExamined" : 2,

"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 3,
"advanced" : 1,
"needTime" : 1,
"needFetch" : 0,
"saveState" 0,
"restoreState" : O,
"isEOF" : 1,

http://www.it-ebooks.info/

234 CHAPTER 8 Indexing and query optimization

"invalidates" : 0,
"limitAmount" : 0,
"inputStage" : {
"stage" : "KEEP_MUTATIONS",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : 1,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 0,
"invalidates" : 0,
"inputStage" : {
"stage" : "FETCH",
"filter" :
"type" : {
"Seg" : "toys"

}
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : 1,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 2,
"alreadyHasObj" : O,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 2,
"executionTimeMillisEstimate"
"works" : 2,
"advanced" : 2,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"quantity" : 1
1
"indexName" : "quantity 1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"quantity" : [
"[500.0, 500.0]"

http://www.it-ebooks.info/

optimization 235
Query op

b

"keysExamined" : 2,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : O,
"matchTested" : 0
}
}
1
1
}
"serverInfo" : {
"host" : "rMacBook.local",
"port" : 27017,
"version" : "3.0.6",
"gitVersion" : "nogitversion"
b
"ok" : 1

The aforementioned query examined two documents to return the desired docu-
ment. Now it’s time to create another index that combines two fields:

> db.inventory.createIndex({ quantity: 1, type: 1 })

{

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 2,

"numIndexesAfter" : 3,

"ok" : 1

Now you’re going to rerun the previous query:

> db.inventory.find ({"quantity": 500,

{

"type":"toys"}).limit (1) .explain("executionStats")

"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "tutorial.inventory",
"indexFilterSet" : false,
"parsedQuery" : {

"sand" : [

{

"quantity" : {
"seg" : 500

}

b

{
"type" : {

n $eqv| . "tOyS n

}

http://www.it-ebooks.info/

236 CHAPTER 8 Indexing and query optimization

"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : O,
"inputStage" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"quantity" : 1,
"type" : 1
1
"indexName" : "quantity 1 type 1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"quantity" : [
"[500.0, 500.0]"
1,
"type" : [
"[\"toys\", \"toys\"I"

b
"rejectedPlans" : [
{
"stage" : "LIMIT",
"limitAmount" : 1,
"inputStage" : {
"stage" : "KEEP_MUTATIONS",
"inputStage" : {
"stage" : "FETCH",
"filter" : {
"typer : {
"$eq" : "toys"
}

1
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"quantity" : 1
}
"indexName" : "quantity 1",
"igMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"quantity" : [
"[500.0, 500.0]"

http://www.it-ebooks.info/

Query optimization 237

b
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 1,
"totalKeysExamined" : 1,
"totalDocsExamined" : 1,
"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 2,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"limitAmount" : 0,
"inputStage" : {
"stage" : "FETCH",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 1,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0,
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 1,
"alreadyHasObj" : 0,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 1,
"executionTimeMillisEstimate" : 0,
"works" : 1,
"advanced" : 1,
"needTime" : O,
"needFetch" : 0,
"saveState" 0
"restoreState" : 0,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"quantity" : 1,
"type" : 1

’

b

"indexName" : "quantity 1 type 1",
"isMultiKey" : false,

"direction" : "forward",
"indexBounds" : {

http://www.it-ebooks.info/

238 CHAPTER 8 Indexing and query optimization

"quantity" : [
"[500.0, 500.0]"
1,
"type" : [
"[\"toys\", \"toys\"l"
1
b

"keysExamined" : 1,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : O,
"matchTested" : 0
}
}
}
¥
"serverInfo" : {
"host" : "rMacBook.local",
"port" : 27017,
"version" : "3.0.6",
"gitVersion" : "nogitversion"
¥
"ok" : 1

This time only one document was examined to return one document. This means that
the new index helped the process.

SHOWING THE QUERY PLANS AND HINT()

You can see this process in action by issuing your query and running explain (). First,
drop the compound index on {stock symbol: 1, close: 1} and build separate
indexes on each of these keys:

db.values.dropIndex("stock symbol 1 close 1")
db.values.createIndex ({stock symbol: 1})
db.values.createIndex ({close: 1})

Then pass true to the explain() method, which will include the list of plans the
query optimizer attempts. You can see the output in listing 8.2. When using MongoDB
v3.0 the possible modes are queryPlanner, executionStats, and allPlansExecution.
For backwards compatibility with earlier versions of cursor.explain(), MongoDB
v3.0 interprets true as allPlansExecution and false as queryPlanner.

Listing 8.2 Viewing query plans with explain (true)

db.values.find ({stock symbol: "GOOG", close: {S$gt: 200}}).explain(true)

{

"cursor" : "BtreeCursor stock_symbol 1",
"isMultiKey" : false,
"n" : 730,

"nscannedObjects" : 894,

http://www.it-ebooks.info/

optimization 239
Query op

"nscanned" : 894, Scanned
"nscannedObjectsAllPlans" : 1097, documents
"ngscannedAllPlans" : 1097,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : O,
"nChunkSkips" : 0, <F4J Query time
"millis" : 4,
"indexBounds" : { Since this is querying
"stock_symbol" . [I on equality ...
"GOOG",
n n
] 6006 ... the index bounds
. are identical
b
"allPlans" : [! Array of attempted
{ query plans
"cursor" : "BtreeCursor close_ 1",
"hto. 0 ,
"nscannedObjects" : 102,
"ngcanned" : 102,
"indexBounds" : {
"close" : [
[
200,

1.7976931348623157e+308

}
¥
{
"cursor" : "BtreeCursor stock symbol 1",
"n" : 730,
"nscannedObjects" : 894,
"nscanned" : 894,
"indexBounds" : {
"stock symbol" : [
[
"GOOG",
"GOOG"
1
]
}
1
{
"cursor" : "BasicCursor",
"n" : 0,
"nscannedObjects" : 101,
"ngcanned" : 101,
"indexBounds" : { }
}

1,
"server" : "localhost:27017"

http://www.it-ebooks.info/

240

CHAPTER 8 Indexing and query optimization

You’ll see right away that the query plan chooses the index on {stock_symbol: 1} to
fulfill the query. Lower down, the allPlans key points to a list that includes two addi-
tional query plans: one for the index on {close: 1}, and the other a collection scan
with a BasicCursor. MongoDB v3.0 calls this list rejectedPlans.

It’s understandable why the optimizer rejects the collection scan, but it might be
less clear why the index on {close: 1} doesn’t satisfy. You can use hint () to find out.
hint () forces the query optimizer to use a particular index:

query = {stock symbol: "GOOG", close: {$gt: 200}}
db.values.find(query) .hint ({close: 1}).explain()

{

"cursor" : "BtreeCursor close 1",
"isMultiKey" : false,
"n" : 730,
"nscannedObjects" : 5299,
"nscanned" : 5299,
"nscannedObjectsAllPlans" : 5299,
"nscannedAllPlans" : 5299,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : O,
"nChunkSkips" : 0,
"millis" : 22,
"indexBounds" : {

"close" : [

[
200,

1.7976931348623157e+308

]
b

"server" : "localhost:27017"

Look at the value for nscanned: 5,299. This is much greater than the 894 entries
scanned previously, and the time it takes to complete the query bears this out.

Running the same query using MongoDB v3.0 and interpreting its output is left as
an exercise for the reader.

QUERY PLAN CACHE
All that’s left to understand is how the query optimizer caches and expires its choice
of query plan. After all, you wouldn’t want the optimizer running all those plans in
parallel on each query.

When a successful plan is discovered, the query pattern, the value for nscanned,
and the index spec are recorded. For the query we’ve been working with, the recorded
structure looks something like this:

{
pattern: {
stock_symbol: 'equality',
close: 'bound',

http://www.it-ebooks.info/

8.3.3

Query optimization 241

index: {
stock symbol: 1

b

nscanned: 894

}
}

The query pattern records the kind of match for each key. Here, you're requesting an
exact match on stock symbol (equality), and a range match on close (bound)."?
Whenever a new query matches this pattern, the index will be used.

But this shouldn’t hold forever, and it doesn’t. The optimizer automatically expires
a plan after any of the following events:

= 100 writes are made to the collection.

= Indexes are added or removed from the collection.

= A query using a cached query plan does a lot more work than expected. Here,
what qualifies as “a lot more work” is a value for nscanned exceeding the cached
nscanned value by at least a factor of 10.

In the last of these cases, the optimizer will immediately begin interleaving other
query plans in case a different index proves more efficient. As you spend time optimiz-
ing queries, you’ll likely notice several patterns of queries and indexes that work well
together. In the next section, we codify some of these patterns.

If you’re running MongoDB v3.0 you can find more information about query plan
cache methods at http:// docs.mongodb.org/manual/reference/method/js-plan-cache/.

Query patterns

Here we present several common query patterns and the indexes to use with them.
This section’s goal is to help you plan out how to pair your application’s queries with
MongoDB’s indexes.

SINGLE-KEY INDEXES

To review single-key indexes, recall the index you created for the stock values collec-
tion on closing numbers in section 8.3.2, {close: 1}. This index can be used in the
following scenarios.

EXACT MATCHES
An exact match. The index is used whether 0, 1, or many results are returned. An
exact match is used in this query, returning all entries with a closing value of 100:

db.values.find({close: 100})

SORTING
A sort on the indexed field. For example:

db.values.find ({}) .sort ({close: 1})

12 Tn case you’re interested, three kinds of range matches are stored: upper, lower, and upper-and-lower. The
query pattern also includes any sort specification.

http://docs.mongodb.org/manual/reference/method/js-plan-cache/
http://www.it-ebooks.info/

242

CHAPTER 8 Indexing and query optimization

In the case of a sort with no query selector, you’ll probably want to tack on a limit
unless you actually plan to iterate over the entire collection.

RANGE QUERIES
A range query with or without a sort on the same field. For example, all closing values
greater than or equal to 100:

db.values.find ({close: {$gte: 100}})

If you add a sort clause on the same key, the optimizer will still be able to use the
same index:

db.values.find ({close: {$gte: 100}}) .sort ({close: 1})

COMPOUND-KEY INDEXES

Compound-key indexes are a little more complicated, but their uses are analogous to
those of single-key indexes. The main thing to remember is that a compound-key
index can efficiently serve only a single range or sort per query. Let’s imagine a triple-
compound key index, again for stock values, on {close: 1, open: 1, date: 1}. Let’s
look at some possible scenarios.

EXACT MATCHES
An exact match on the first key, the first and second keys, or the first, second, and
third keys, in that order:

db.values.find ({close: 1})
db.values.find ({close: 1, open: 1})
db.values.find ({close: 1, open: 1, date: "1985-01-08"})

RANGE MATCHES

An exact match on any set of leftmost keys (including none), followed by either a
range or a sort using the next key to the right. Thus, all the following queries are ideal
for the triple-key index:

db.values.find ({}) .sort ({close: 1})
db.values.find ({close: {$gt: 1}})
db.values.find ({close: 100}).sort ({open: 1})
db.values.find({close: 100, open: {$gt: 1}})
({close: 1, open: 1.01, date: {$gt: "2005-01-01"}})
({

close: 1, open: 1.01}).sort ({date: 1})

db.values.find
db.values.find

COVERING INDEXES

If you’ve never heard of covering indexes, realize from the start that the term is some-
thing of a misnomer. A covering index isn’t, as the name would suggest, a kind of index
but rather a special use of an index. In particular, an index can be said to cover a
query if all the data required by the query resides in the index itself. Covered index
queries are also known as index-only queries because these queries are served without
having to reference the indexed documents themselves. This can result in increased
query performance.

http://www.it-ebooks.info/

8.4

Summary 243

Using a covering index in MongoDB is easy. Simply select a set of fields that reside
in a single index and exclude the id field (this field likely isn’t part of the index
you’re using). Here’s an example that uses the triple-compound index you created in
the previous section:

db.values.find({close: 1}, {open: 1, close: 1, date: 1, _id: 0})

In earlier versions of MongoDB, cursor.explain() returned the indexOnly field to
indicate whether the index covered a query and no actual collection data was used
to serve the query. In MongoDB v3.0, when an index covers a query, the explain result
has an IXSCAN stage that isn’t a descendant of a FETCH stage, and in the execution-
Stats, the value of totalDocsExamined is 0.

Summary

This chapter is hefty, as indexing is an admittedly rich subject. If some of the ideas are
unclear, that’s okay. You should at least come away with a few techniques for examin-
ing indexes and avoiding slow queries, and you should know enough to keep learning.

Query optimization is always application-specific, but our hope is that the ideas
and techniques provided here will help you tune your queries for the better. Empirical
approaches are always useful. Make a habit of profiling and explaining your queries.
In the process, you’ll continue learning about the hidden corners of the query opti-
mizer, and you’ll ensure efficient queries for your application.

As you write your own applications, here are some things to remember:

= Indexes are incredibly useful but carry a cost—they make writes slower.

= MongoDB generally uses only one index in a query, so queries on multiple
fields require compound indexes to be efficient.

= Order matters when you declare compound indexes.

= You should plan for, and avoid, expensive queries. Use MongoDB’s explain
command, its expensive query logs, and its profiler to discover queries that
should be optimized.

= MongoDB gives you several commands for building indexes, but these always
include a cost and may interfere with your application. This means you
should optimize your queries and create indexes early, before you have much
traffic or data.

= Optimize queries by reducing the number of documents scanned. The explain
command is immensely useful for discovering what a query is doing; use it as a
guide for optimization.

With the complexity involved in indexing and query optimization, plain old experi-
mentation may be your best teacher from here on out.

http://www.it-ebooks.info/

lext search

This chapter covers

Why text search is important

Text search basics

Defining MongoDB text search indexes
Using text search with MongoDB find ()
Using MongoDB text search with aggregation
Using text search with different languages

In chapters 5 and 6, which explored constructing queries and using aggregation,
you learned how to perform database queries using a fairly sophisticated query
language. For many applications, searches using these types of queries may be
sufficient. But when you’re dealing with large amounts of unstructured data, or
trying to support users finding the product they want to buy from a huge catalog
of possible products, this type of searching may not be enough. Website visitors
who have become accustomed to using Google or Amazon for searches expect
much more and have come to rely increasingly on more sophisticated search
technology.

In this chapter you’ll see how MongoDB can provide some of the capabilities
that more sophisticated text search engines provide—much more than the queries

244

http://www.it-ebooks.info/

9.1

Text searches—not just pattern matching 245

you’ve seen so far. These additional capabilities include indexing for fast word searches,
matching exact phrases, excluding documents with certain words or phrases, sup-
porting multiple languages, and scoring search result documents based on how
well they match a search string. Although MongoDB text search isn’t intended to
replace dedicated search engines, it may provide enough capabilities that you won’t
need one.

Let’s look at the various types of search capabilities dedicated search engines pro-
vide. In section 9.1.3 you’ll see the subset of those capabilities provided by MongoDB.

If you’ve got it, why not use it?

On a LinkedIn MongoDB group discussion, someone asked what the benefit was to
using MongoDB text search versus a dedicated search engine such as Elasticsearch.
Here’s the reply from Kelly Stirman, director of Products at MongoDB:

“In general Elasticsearch has a much richer set of features than MongoDB. This
makes sense—it is a dedicated search engine. Where MongoDB text search makes
sense is for very basic search requirements. If you're already storing your data in
MongoDB, text indexes add some overhead to your deployment, but in general it is
far simpler than deploying MongoDB and Elasticsearch side by side.”

NOTE You can read more about Elasticsearch in Elasticsearch in Action by
Radu Gheorghe et al (Manning Publications, 2015). You can also read a book
on another popular dedicated search engine also built on top of Apache
Lucene: Solr in Action, by Trey Grainger and Timothy Potter (Manning Publi-
cations, 2014).

Text searches—not just pattern matching

You probably perform some type of search on a daily basis, if not many times every day.
As a programmer, you may search the internet for help dealing with particularly vexing
programming bugs. You may then go home at night and search Amazon or another
website for products; you may have even used the custom search on Manning.com, sup-
ported by Google, to find this book.

If you go toManning.com, you'll see a “Search manning.com” text search box in
the upperright corner of the site. Type a keyword, such as “java,” into the text box and
click the Search button; you’ll see something like the display shown in figure 9.1.

Note that since the search is run against live data, your exact results may vary. Per-
haps the book Java 8 in Action, newly published at the time this chapter was written,
will be replaced with Java 9, 10, or even 11.

http://Manning.com
http://Manning.com
http://www.it-ebooks.info/

246

9.1.1

CHAPTER 9 Text search

About 28,500 results (0.60 seconds)

Manning Java Books

www.manning.com/catalog/java/

Manning Java Books. Java Titles in Print. Out of Print titles listed here may still be available
in eBook format or in revised editions. A list of Cancelled MEAPs that ...

Manning: Java 8 in Action
www.manning.com/urma/

T Java 8 in Action Lambdas, streams, and functional-style programming. Raoul-
%73 Gabriel Urma, Mario Fusco, and Alan Mycroft August 2014 | 424 pages | B&W

Manning: The Well-Grounded Java Developer
www.manning.com/evans/

ﬁ @ The Well-Grounded Java Developer Vital techniques of Java 7 and polyglot
K (@

programming. Benjamin J. Evans and Martijn Verburg Foreword by Dr. Heinz
Kabutz

Figure 9.1 Search results from search for term “java” at www.manning.com

The point of this search is to illustrate a couple of important features that text search
engines provide that you may take for granted:

» The search has performed a case-insensitive search, meaning that no matter how
you capitalize the letters in your search term, even using “jJAVA” instead of “Java”
or “java,” you’ll see results for “Java” or any uppercase, lowercase combination
spelling of the word.

= You won’t see any results for “JavaScript,” even though books on JavaScript con-
tain the text string “Java.” This is because the search engine recognizes that
there’s a difference between the words “Java” and “JavaScript.”

As you may know, you could perform this type of search in MongoDB using a regular
expression, specifying whole word matches only and case-insensitive matches. But in
MongoDB, such pattern-matching searches can be slow when used on large collections
if they can’t take advantage of indexes, something text search engines routinely do to
sift through large amounts of data. Even those complex MongoDB searches won’t pro-
vide the capabilities of a true text search.

Let’s illustrate that using another example.

Text searches vs. pattern matching
Now try a second search on Manning.com; this time use the search term “script.” You
should see something similar to the results shown in figure 9.2.

Notice that in this case the results will include results for books that contain the
word “scripting” as well as the word “script,” but not the word “JavaScript.” This is due

http://www.manning.com
http://Manning.com
http://www.it-ebooks.info/

9.1.2

Text searches—not just pattern matching 247

About 5,010 results (0.32 seconds)

powered by Google ™ Custom Search

Sample Chapter 8
www.manning.com/maher/ch08.pdf

h File Format: PDF/Adobe Acrobat
\:f Hisima Scripting techniques. 8.1 Exploiting script-oriented functions 248. 8.2 Pre-
. processing arguments 256. 8.3 Executing code conditionally with if/else 259.

Programming with Pig - Hadoop in Action
www.manning.com/lam/SampleCh10.pdf
File Format: PDF/Adobe Acrobat
Computing similar documents efficiently, using a simple Pig Latin script. o ... 2 A
compiler that compiles and runs your Pig Latin script in a choice of evaluation ...

Table of Contents
www.manning.com/maher/excerpt_contents.html

Using aliases for common types of Perl commands. Constructing programs. Constructing an
output-only one-liner, Constructing an input/output script. Summary.

Figure 9.2 Results from searching for term “script” on www.manning.com

to the ability of search engines to perform what’s known as stemming, where words in
both the text being searched, as well as the search terms you entered, are converted to
the “stem” or root word from which “scripting” is derived—*“script” in this case. This is
where search engines have to understand the language in which they’re storing and
searching in order to understand that “script” could refer to “scripts,” “scripted,” or
“scripting,” but not “JavaScript.”

Although web page searches use many of the same text search capabilities, they
also provide additional searching capabilities. Let’s see what those search capabilities

”» «

are as well as how they might help or hinder your user.

Text searches vs. web page searches

Web page search engines contain many of the same search capabilities as a dedicated
text search engine and usually much more. Web page searches are focused on search-
ing a network of web pages. This can be an advantage when you’re trying to search the
World Wide Web, but it may be overkill or even a disadvantage when you’re trying to
search a product catalog. This ability to search based on relationships between docu-
ments isn’t something you’ll find in dedicated text search engines, nor will you find it
in MongoDB, even with the new text search capabilities.

One of the original search algorithms used by Google was referred to as “Page
Rank,” a play on words, because not only was it intended to rank web pages, but it was
developed by the co-founder of Google, Larry Page. Page Rank rates the importance,
or weight, of a page based on the importance of pages that link to it. Figure 9.3, based

http://www.manning.com
http://www.it-ebooks.info/

248

CHAPTER 9 Text search

Page B has many lower-ranking pages Page C has only one page linking to it,
linking to it, as well as a high-ranking but it’s from a high-ranking page
page with only one link, page C. with only one link, page B.
C
A 2 9
3.3% 3.8.4% 34.3%
- / \ :
3.9% 3.9%

/ Page E has lots of links
/ to it, but from relatively
E / low-ranking pages.
8.1%

1.6%

PNV,
//

1.6% 1.6%
1.6% 1.6%

Figure 9.3 Page ranking based on importance of pages linking to a page

on the Wikipedia entry for Page Rank, http://en.wikipedia.org/wiki/PageRank, illus-
trates this algorithm.

As you can see in figure 9.3, page C is almost as important as B because it has a
very important page pointing to it: page B. The algorithm, which is still taught in
university courses on data mining, also takes into account the number of outgoing
links a page has. In this case, not only is B very important, but it also has only one
outgoing link, making that one link even more critical. Note also that page E has lot
of links to it, but they’re all from relatively low-ranking pages, so page E doesn’t
have a high rating.

Google today uses many algorithms to weight pages, over 200 by some counts, mak-
ing it a full-featured web search engine. But keep in mind that web page searching
isn’t the same as the type of search you might want to use when searching a catalog.
Web page searches will access the web pages you generate from your database, but not
the database itself. For example, look again at the page that searched for “java,” shown
in figure 9.4. You’ll see that the first result isn’t a product at all—it’s the list of Man-
ning books on Java.

http://en.wikipedia.org/wiki/PageRank
http://www.it-ebooks.info/

Text searches—not just pattern matching 249

Manning Java Books

www.manning.com/catalog/java/

Manning Java Books. Java Titles in Print. Out of Print titles listed here may still be available
in eBook format or in revised editions. A list of Cancelled MEAPs that ...

Figure 9.4 Searching results in more than just books.

Perhaps having a list of Java books as the first result might not be so bad, but because
the Google search doesn’t have the concept of a book, if you search for “javascript,”
you don’t have to scroll down very far before you’ll see a web page for errata for a
book already in the list. This is illustrated in figure 9.5. This type of “noise” can be dis-
tracting if what you’re looking for is a book on JavaScript. It can also require you to
scroll down further than you might otherwise have to.

Manning: Third-Party JavaScript

www.manning.com/Third-PartyJavaScript/

I @ Third-Party JavaScript guides web developers through the complete
I

development of a full-featured third-party JavaScript application. You'll learn
dozens of ...

Secrets of JavaScript
/ Ninja book
Manning: Secrets of the JavaScript Ninja

www.manning.com/resig/
AR Secrets of the Javascript Ninja takes you on a journey towards mastering
gﬂ.x}ﬁﬁ
Ninja

modern JavaScript development in three phases: design, construction, and ...

Manning: JavaScript Application Design
www.manning.com/bevacqua/
E e JavaScript Application Design: A Build First Approach introduces JavaScript

developers to techniques that will improve the quality of their software as well as

Errata for Secrets of
/ JavaScript Ninja book
Secrets of the JavaScript Ninja — errata

www.manning.com/resig/excerpt_errata.html

Secrets of the JavaScript Ninja — errata. In chapter 1, page 10, section 1.4.2: A comment
in the code snippet is terminated with *// . It should be terminated with */ ...

Figure 9.5 A search showing how a book can appear more than once

Although web page search engines are great at searching a large network of pages and
ranking results based on how the pages are related, they aren’t intended to solve the
problem of searching a database such as a product database. To solve this type of
problem, you can look to full-featured text search engines that can search a product
database, such as the one you’d expect to find on Amazon.

http://www.it-ebooks.info/

250

9.1.3

CHAPTER 9 Text search

MongoDB text search vs. dedicated text search engines

Dedicated text search engines can go beyond indexing web pages to indexing extremely
large databases. Text search engines can provide capabilities such as spelling correc-
tion, suggestions as to what you’re looking for, and relevancy measures—things many
web search engines can do as well. But dedicated search engines can provide further
improvements such as facets, custom synonym libraries, custom stemming algorithms,
and custom stop word dictionaries.

Facets? Synonym libraries? Custom stemming? Stop word dictionaries?

If you've never looked into dedicated search engines, you might wonder what all
these terms mean. In brief: facets allow you to group together products by a particular
characteristic, such as the “Laptop Computer” category shown on the left side of the
page in figure 9.6. Synonym libraries allow you to specify different words that have
the same meaning. For example, if you search for “intelligent” you might also want
to see results for “bright” and “smart.” As previously covered in section 9.1.1, stem-
ming allows you to find different forms of a word, such as “scripting” and “script.”
Stop words are common words that are filtered out prior to searching, such as “the,”
“a,” and “and.”

We won’t cover these terms in great depth, but if you want to find out more about
them you can read a book on dedicated search engines such as Solr in Action or Elas-
ticsearch in Action.

Faceted search is something that you’ll see almost any time you shop on a modern
large e-commerce website, where results will be grouped by certain categories that
allow the user to further explore. For example, if you go to the Amazon website and
search using the term “apple” you’ll see something like the page in figure 9.6.

On the left side of the web page, you’ll see a list of different groupings you might
find for Apple-related products and accessories. These are the results of a faceted
search. Although we did provide similar capabilities in our e-commerce data model
using categories and tags, facets make it easy and efficient to turn almost any field into
a type of category. In addition, facets can go beyond groupings based on the different
values in a field. For example, in figure 9.6 you see groupings based on weight ranges
instead of exact weight. This approach allows you to narrow the search based on the
weight range you want, something that’s important if you’re searching for a portable
computer.

Facets allow the user to easily drill down into the results to help narrow their
search results based on different criteria of interest to them. Facets in general are a
tremendous aid to help you find what you’re looking for, especially in a product data-
base as large as Amazon, which sells more than 200 million products. This is where a
faceted search becomes almost a necessity.

http://www.it-ebooks.info/

Show results for

Text searches—not just pattern matching

different “facets”
based on department.

List of most
common facets

amazng Your Amazon.com Today'sDeals Gift Cards ~ Sell Help
Shop by Search Al
Department ~ earc apple

1-16 of 19,437,755 results for "apple”

Computers & Accessories »

. Home Automation & Security Device
Laptop Computers . Shop now »

Computer Tablets
Desktop Computers
Computer Keyboards
Lightning Cables

+ See more

Related Searches: apple laptop, apple tv, apple watch

Top Results for "apple”

+ See All 34 Departments.

Eligible for Free Shipping

Free Shipping by Amazon

251

Hello. Sign in
Your Account

Cables & Accessories Laptops Touch Screen Tablet Tablets Networking Products

Laptop WLAN Accessories
802.11alb/g/n
802.11ac Apple MacBook Air MJVE2LL/A 13.3-Inch Laptop (128 GB) NEWEST VERSION
802.11b/g/n . - N by Apple

Brand $994.00 $999.00 Prime (3-5 days) AR -1
Apple y Getitby Tuesday, Mar 17 FREE Shipping on orders over $35 and 1 more
QXTE ‘ More Buying Choices promation ¥
Poweradd e $994.00 new (2 offers) Product Description
Boxgear Apple MacBook Air MJVE2LL/A 13.3-Inch Laptop
CIYOYO® (128 GB) NEWEST VERSION
Giros Design Electronics: See all 9,957,520 items

Show all facets/
departments.

Figure 9.6 Search on Amazon using the term “apple” and illustrating the use of faceted search

MoNGODB’S TEXT SEARCH: COSTS VS. BENEFITS
Unfortunately, many of the capabilities available in a full-blown text search engine are
beyond the capabilities of MongoDB. But there’s good news: MongoDB can still pro-
vide you with about 80% of what you might want in a catalog search, with less com-
plexity and effort than is needed to establish a full-blown text search engine with
faceted search and suggestive terms. What does MongoDB give you?

Automatic real-time indexing with stemming
Optional assignable weights by field name
Multilanguage support

Stop word removal

Exact phrase or word matches

The ability to exclude results with a given phrase or word

NOTE Unlike more fullfeatured text search engines, MongoDB doesn’t
allow you to edit the list of stop words. There’s a request to add this: https://
jira.mongodb.org/browse/SERVER-10062.

https://jira.mongodb.org/browse/SERVER-10062
https://jira.mongodb.org/browse/SERVER-10062
http://www.it-ebooks.info/

252

CHAPTER 9 Text search

All these capabilities are available for the price of defining an index, which then gives
you access to some decent word-search capabilities without having to copy your entire
database to a dedicated search engine. This approach also avoids the additional admin-
istrative and management overhead that would go along with a dedicated search
engine. Not a bad trade-off if MongoDB gives you enough of the capabilities you need.
Now let’s see the details of how MongoDB provides this support. It’s pretty simple:

= First, you define the indexes needed for text searching.

= Then, you’ll use text search in both the basic queries as well as aggregation
framework.

One more critical component you’ll need is MongoDB 2.6 or later. MongoDB 2.4
introduced text search in an experimental stage, but it wasn’t until MongoDB 2.6 that
text search became available by default and text search-related functions became fully
integrated with the £ind () and aggregate () functions.

What you’ll need to know to use text searching in MongoDB

Although it will help to fully understand chapter 8 on indexing, the text search indexes
are fairly easy to understand. If you want to use text search for basic queries or the
aggregation framework, you'll have to be familiar with the related material in chapter
5, which covers how to perform basic queries, and chapter 6, which covers how to
use the aggregation framework.

MoNGODB TEXT SEARCH: A SIMPLE EXAMPLE

Before taking a detailed look at how MongoDB’s text search works, let’s explore an
example using the e-commerce data. The first thing you’ll need to do is define an index;
you’ll begin by specifying the fields that you want to index. We’ll cover the details of
using text indexes in section 9.3, but here’s a simple example using the e-commerce
products collection:

Index name field
db.products.createIndex (
{name: ltext!, Index description
description: 'text', field
tags: 'text'}
Vi Index tags field

This index specifies that the text from three fields in the products collection will be
searched: name, description, and tags. Now let’s see a search example that looks for
gardens in the products collection:

> db.products
.find ({Stext: {$search: 'gardens'}},
{ id:0, name:1,description:1,tags:1})
.pretty ()

Search for text
field gardens

http://www.it-ebooks.info/

9.2

Manning book catalog data download 253

"name" : "Rubberized Work Glove, Black",
"description" : "Black Rubberized Work Gloves...",
"tags" : [
"gardening" gardening
] matches search
}
{
"name" : "Extra Large Wheel Barrow",
"description" : "Heavy duty wheel barrow...",
"tags" : [
"tools",
"gardening", gardening
n soil 1 n

matches search

Even this simple query illustrates a few key aspects of MongoDB text search and how it
differs from normal text search. In this example, the search for gardens has resulted in
a search for the stemmed word garden. That in turn has found two products with the
tag gardening, which has been stemmed and indexed under garden.

In the next few sections, you’ll learn much more about how MongoDB text search
works. But first let’s download a larger set of data to use for the remaining examples in
this chapter.

Manning book catalog data download

Our e-commerce data has been fine for the examples shown so far in the book. For
this chapter, though, we’re going to introduce a larger set of data with much more
text in order to better illustrate the use of MongoDB text search and its strengths as
well as limitations. This data set will contain a snapshot of the Manning book catalog
created at the time this chapter was written. If you want to follow along and run exam-
ples yourself, you can download the data to your local MongoDB database by following
these steps:

= In the source code included with this book, find the chapter9 folder, and copy
the file catalog.books.json from that folder to a convenient location on your
computer.

= Run the command shown here. You may have to change the command to prefix
the filename, catalog.books.json, with the name of the directory where you
saved the file.

mongoimport --db catalog --collection books --type json --drop
--file catalog.books.json

You should see something similar to the results shown in the following listing. Please
note that the findOne () function returns a randomly selected document.

http://www.it-ebooks.info/

254

CHAPTER 9 Text search

Listing 9.1 Loading sample data in the books collections

> use catalog Switch to catalog
switched to db catalog database
> db.books.findOne ()

{

Show a randomly selected

"oign o1

- L)) book from catalog
nerat "title" : "Unlocking Android",

"isbn" : "1933988673",

"pageCount" : 416,

"publishedDate" : ISODate ("2009-04-01T07:00:002"),

"thumbnailUrl" : "https://s3.amazonaws.com/AKIAJCS5RLADLUMVRPFDQ
.book-thumb-images/ableson.jpg",

"shortDescription" : "Unlocking Android: A Developer's Guide

provides concise, hands-on instruction for the Android operating system and
development tools. This book teaches important architectural concepts in a
straightforward writing style and builds on this with practical and useful
examples throughout.",

"longDescription" : "Android is an open source mobile phone
platform based on the Linux operating system and developed by the Open
Handset Alliance, a consortium of over 30 hardware, software and telecom

* Notification methods * OpenGL, animation & multimedia * Sample
"status" : "PUBLISH",

"authors" : [
"W. Frank Ableson",
"Charlie Collins",
"Robi Sen"

1,

"categories" : [
"Open Source",
"Mobile"

The listing also shows the structure of a document. For each document you’ll have the
following:

m title—A text field with the book title

®» isbn—International Standard Book Number (ISBN)

® pageCount—The number of pages in the book

m publishedDate—The date on which the book was published (only present if

the status field is PUBLISH)

® thumbnailUrl—The URL of the thumbnail for the book cover

m shortDescription—A short description of the book

m longDescription—A long description of the book

» status—The status of the book, either PUBLISH or MEAP

» authors—The array of author names

m categories—The array of book categories

Now that you have the list of books loaded, let’s create a text index for it.

http://www.it-ebooks.info/

9.3

9.3.1

Defining text search indexes 255

Defining text search indexes

Text indexes are similar to the indexes you saw in section 7.2.2, which covered creat-
ing and deleting indexes. One important difference between the regular indexes you
saw there and text indexes is that you can have only a single text index for a given col-
lection. The following is a sample text index definition for the books collection:

db.books.createIndex (

{ritle: ‘text!', Specify fields to
shortDescription: 'text', be text-indexed.
longDescription: 'text',
authors: 'text',

categories: 'text'},
{we ights: Optionally
{title: 10, specify weights
shortDescription: 1, for each field.

longDescription:1,
authors: 1,
categories: 5}

)

There are a few other important differences between the regular indexes covered in
section 7.2.2 and text indexes:

= Instead of specifying a 1 or -1 after the field being indexed, you use text.

= You can specify as many fields as you want to become part of the text index and
all the fields will be searched together as if they were a single field.

= You can have only one text search index per collection, but it can index as many
fields as you like.

Don’t worry yet about weights assigned to the fields. The weights allow you to specify
how important a field is to scoring the search results. We’ll discuss that further and
show how they’re used when we explore text search scoring in section 9.4.2.

Text index size

An index entry is created for each unique, post-stemmed word in the document. As
you might imagine, text search indexes tend to be large. To reduce the number of
index entries, some words (called stop words) are ignored. As we discussed earlier
when we talked about faceted searches, stop words are words that aren’t generally
searched for. In English this include words such as “the,” “an,” “a,” and “and.” Trying
to perform a search for a stop word would be pretty useless because it would return
almost every document in your collection.

The next listing shows the results of a stats () command on our books collection.
The stats () command shows you the size of the books collection, along with the size
of indexes on the collection.

http://www.it-ebooks.info/

256

9.3.2

CHAPTER 9 Text search

Listing 9.2 books collection statistics showing space use and index name

> db.books.stats ()

{
"ns" : "catalog.books",
"count" : 431,
"size" : 772368,
"avgObjSize" : 1792,
"storageSize" : 2793472,
"numExtents" : 5,
"nindexes" : 2,
"lastExtentSize" : 2097152,
"paddingFactor" : 1,
"systemFlags" : O,
"userFlags" : 1,
"totalIndexSize" : 858480,
"indexSizes" : {

" id " : 24528,

Size of books
collection

"title text shortDescription text longDescription text authors text

categories text" : 833952
H Name and size of

tok" ;o1 text search index

Notice that the size of the books collection (size in listing 9.2) is 772,368. Looking at
the indexSizes field in the listing, you’ll see the name and size of the text search
index. Note that the size of the text search index is 833,952—larger than the books
collection itself! This might startle or concern you at first, but remember the index
must contain an index entry for each unique stemmed word being indexed for the
document, as well as a pointer to the document being indexed. Even though you
remove stop words, you’ll still have to duplicate most of the text being indexed as well
as add a pointer to the original document for each word.
Another important point to take note of is the length of the index name:

"title text shortDescription text longDescription text authors_ text
_categories_text."

MongoDB namespaces have a maximum length of 123 bytes. If you index a few more
text fields, you can see how you might easily exceed the 123-byte limit. Let’s see how
you can assign an index a user-defined name to avoid this problem. We’ll also show
you a simpler way to specify that you want to index all text fields in a collection.

Assigning an index name and indexing all text fields

in a collection

In MongoDB a namespace is the name of an object concatenated with the name of the
database and collection, with a dot between the three names. Namespaces can have a
maximum length of 123 bytes. In the previous example, you're already up to 84 char-
acters for the namespace for the index.

http://www.it-ebooks.info/

9.4

Basic text search 257

There are a couple of ways to avoid this problem. First, as with all MongoDB
indexes, you have the option of specifying the name of the index, as shown here:

db.books.createIndex (
{title: 'text!',
shortDescription: 'text',
longDescription: 'text',

authors : 'text', Specify weights for
categories: 'text'}, fields with weights
{weights: other than 1.
{title: 10,
categories: 5},
name : 'books_text_ index' User-defined
1 index name

)

This example also specifies weights for title and categories, but all other fields will
default to a weight of 1. You’ll find out more about how weights affect the sorting of
your search results in section 9.4.3 when we cover sorting by text search score.

Please note that if an index already exists, you won’t be able to create it again even
if you’re using a different name (the error message will be "all indexes already
exist"). In that case, you'll first need to drop it using dropIndex () and then recreate
it with the desired name.

WILDCARD FIELD NAME
Text search indexes also have a special wildcard field name: $**. This name specifies

that you want to index any field that contains a string. For text indexes with the wild-
card specification, the default index name is $**_text, thus enabling you to avoid the
namespace 123-byte limit problem:

db.books.createIndex (

{rgwets teext}, Index all fields
{weights: with strings.
{title: 10,

categories: 5},

)

You can also include other fields in the text index to create a compound index, but
there are some restrictions on how you can search a compound text index. You can
read more about this and other details of the text index at http://docs.mongodb.org/
manual/core/index-text/.

Now that you have a text index, let’s see how to use it for searching.

Basic text search

Let’s start with an example of a simple MongoDB text search:

db.books.find ({Stext: {$search: 'actions'}},{title:1})

http://docs.mongodb.org/manual/core/index-text/
http://docs.mongodb.org/manual/core/index-text/
http://www.it-ebooks.info/

258

CHAPTER 9 Text search

This query looks much like the queries covered in chapter 5 using the £ind() com-
mand. The $text operator defines the query as a text search. The $search parameter
then defines the string you want to use for the search. This query would return these
results or something similar as results are returned in a random order:

{ » id" : 256, "title" : "Machine Learning in Action" }
{ » id" : 146, "title" : "Distributed Agile in Action" }
{ m id" : 233, "title" : "PostGIS in Action" }

{ v id" : 17, "title" : "MongoDB in Action" }

Even for this simple query there’s quite a bit going on under the covers:

= The word actions was stemmed to action.
= MongoDB then used an index to quickly find all documents with the stemmed
word action.

Although not noticeable on our relatively small collection, you can see how using an
index to find the documents instead of scanning all the text fields for all the docu-
ments in the collection can be much faster even for modest-sized collections.

Next, try a more complex search, one using a phrase with more than one word:

db.books.find ({$text: {$search: 'MongoDB in Action'}}, {title:1})

So far the results will appear the same as for the previous example:

{ » id" : 256, "title" : "Machine Learning in Action" }
{ » id" : 146, "title" : "Distributed Agile in Action" }
"oidn , "title" : "PostGI in Action"
Cidn . 233 itl GIS i i
{ » id" : 17, "title" : "MongoDB in Action" }

For this query, the search string is split into words, stop words are removed, the
remaining words are stemmed, and MongoDB then uses the text index to perform a
case-insensitive compare. This is illustrated in figure 9.7.

In the figure, there’s only one stop word, in, and the stemmed versions of each
word are the same as the original word. MongoDB will next use the results to perform
a case-insensitive search using the text index twice: once to search for mongodb, and
then again to search for action. The results will be any documents that contain either
of the two words, the equivalent of an or search.

MongoDB MongoDB MongoDB
“MongoDB in Action” — in E—— ——
Action Action Action
Parse string Remove stop Stem words
into words words

Figure 9.7 Text search string processing

http://www.it-ebooks.info/

9.4.1

Basic text search 259

Now that you’ve seen the basics of simple text searching, let’s move on to more
advanced searches.

More complex searches

In addition to searching for any of a number of words, the equivalent of an or search,
MongoDB search allows you to do the following:

= Specify and word matches instead of or word matches.
= Perform exact phrase matches.

= Exclude documents with certain words.

= Exclude documents with certain phrases.

Let’s start by seeing how to specify that a given word must be in the result document.
You’ve already seen a search for mongodb in action, which returned not only books on
MongoDB, but also any book with the word action. If you enclose a word in double
quotes within the search string, it specifies that the word must always be in the result
document. Here’s an example:

“mongodb” in double

db.books. ¢ th
find({$text: {$search: ' "mongodb" in action'}}) \?v:‘:'de;:‘setal')‘: pr:sent.

This query returns only the books with titles that include the word mongodb:

{ "title" : "MongoDB in Action"}
{ "title" : "MongoDB in Action, Second Edition" }

EXACT MATCH ON PHRASES
Using double quotes also works for phrases, so if you specify the phrase second edition,
only the second edition book is shown because multiple phrases make it an “and” search:

> db.books.
find({$text: {$search: ' "mongodb" "second edition" '}},
{ id:0, title:1})
{ "title" : "MongoDB in Action, Second Edition" } Phrase “second edition”

required as well as the
word “mongodb”

Although the exact match logic will perform a case-insensitive compare, it won’t
remove stop words, nor will it stem the search terms. You can illustrate this by search-
ing using the search string 'books' with and without double quotes:

> db.books.
find ({$text: {$search: ' books '}}). Stemmed version of
e count () word “books”—414
414
>
> db.books.
find ({$text: {$search: ' "books" '}}). Exact word
count () ﬁ “books”—21

21

http://www.it-ebooks.info/

260

CHAPTER 9 Text search

Here you can see that when you specified the word books without double quotes,
MongoDB stemmed the word and could find 414 results. When you specify the exact
match, using double quotes around the word books, MongoDB returned only the count
of documents that contained the exact word books, 21 documents in all. The total
number of results you will get may vary depending on the input data.

EXCLUDING DOCUMENTS WITH SPECIFIC WORDS OR PHRASES
To exclude all documents that contain a word, put a minus sign in front of the word.

For example, if you wanted all books with the word MongoDB but not those with the
word second you could use the following:

> db.books. Exclude documents
. find ({$text: {$search: ' mongodb -second '}}, 44 with the word
{_id:0, title:1 }) “second.”

{ "title" : "MongoDB in Action" }

Note that the three dots on the second and the third lines are automatically added by
the mongo shell to show that the input is longer than one line—in this case it’s three
lines long.

Similarly, you can exclude documents with a particular phrase by enclosing the
phrase in double quotes and preceding it with a minus sign:

> db.books. Exclude
find ({Stext: {$search: ' mongodb -"second edition" '}}, documents
- { id:0, title:1}) with the phrase
{ "title" : "MongoDB in Action" } “second edition.”

IMIORE COMPLEX SEARCH SPECIFICATIONS
You can combine the text search with most other find () search criteria to further
limit your search. For example, if you wanted to search for all Java books that still have
a status of MEAP, you could use this:

> db.books.
fl?d({$te%t: {$search: ' mongodb '}, status: 'MEAP' }, status must
.. { id:0, title:1, status:1}) be MEAP
{ "title" : "MongoDB in Action, Second Edition",
"status" : "MEAP"}

Limits on combining text search criteria

There are a few limits as to what you can combine with a text search and how text
indexes are limited. These limits are further defined at http://docs.mongodb.org/
manual/core/index-text/ under restrictions. A few key limits include the following:

Multikey compound indexes aren’t allowed.
Geospatial compound key indexes aren’t allowed.
hint () cannot be used if a query includes a $text query expression.

n
n
n
m Sort operations cannot obtain sort order from a text field index.

http://docs.mongodb.org/manual/core/index-text/
http://docs.mongodb.org/manual/core/index-text/
http://www.it-ebooks.info/

Basic text search 261

If you add more stop words, such as the, and change the search terms to use non-
stemmed words, you’ll see the same results. This doesn’t prove that the stop words
are in fact ignored or that the nonstemmed word is treated the same as the
stemmed word.

To prove that, you’ll have to look at the text search score to confirm that you’re
receiving the same score regardless of extra stop words or different words with the
same stem. Let’s see what the text search score is and how you can include it in
your results.

9.4.2 Text search scores

The text search score provides a number that rates the relevancy of the document
based on how many times the word appeared in the document. The scoring also uses
any weights assigned to different fields when the index was created, as described in
section 9.3.

To show the text search score, you use a projection field such as score: { $meta:
"textScore" } in your find() command. Note that the name you assign the text
score—score in this case—can be any name you want. The next listing shows an
example of the same search shown earlier but with the text score displayed, followed
by the search with a slightly different but equivalent search string. Please note that the
output you're going to get may be different from the one presented here.

Listing 9.3 Displaying text search score

Search for “Mongodb

in Action.”
> db.books.
find ({$text: {$search: 'mongodb in action'}}, <F4J IndUdFtethearCh
{ 1d:0, title:1, score: { $meta: "textScore" }}) score in results.
.. limit (4) ;
{ "title" : "Machine Learning in Action", "score" : 16.83933933933934 }
{ "title" : "Distributed Agile in Action", "score" : 19.371088861076345 }
{ "title" : "PostGIS in Action", "score" : 17.67825896762905 }
{ "title" : "MongoDB in Action", "score" : 49.48653394500073 } Text search
N scores for first
- search string
> db.books.
find({$text: {$search: 'the mongodb and actions in it'}}, <G+
{ id:0, title:1, score: { Smeta: "textScore" }}).
.. limit (4);
{ "title" : "Machine Learning in Action", "score" : 16.83933933933934 }
{ "title" : "Distributed Agile in Action", "score" : 19.371088861076345 }
{ "title" : "PostGIS in Action", "score" : 17.67825896762905 }
{ "title" : "MongoDB in Action", "score" : 49.48653394500073 }
Second string text scores— Second text string with extra stop
identical to first set of scores words and plural word “actions”

http://www.it-ebooks.info/

262

9.4.3

CHAPTER 9 Text search

In this listing, the search string "MongoDB in Action" is changed to "the mongodb
and actions in it." This new search string uses the plural form of action, and also
adds a number of stop words. As you can see, the text scores are identical in both
cases, illustrating that the stop words are in fact ignored and that the remaining
words are stemmed.

WEIGHT FIELD TO INFLUENCE WORD IMPORTANCE

In the index created in section 9.3.2, you’ll notice the definition of a field called
weights. Weights influence the importance of words found in a particular field, com-
pared to the same word found in other fields. The default weight for a field is 1, but as
you can see, we’ve assigned a weight of 5 to the categories field and a weight of 10 to
the title field. This means that a word found in categories carries five times the weight
of the same word found in the short or long description fields. Similarly, a word found
in the title field will carry 10 times the weight of the same word found in one of the
description fields and twice the weight of the same word found in categories. This will
affect the score assigned to a document:

db.books.createIndex (

{|$**|: ltextl}’ i .
Specify weights for
: fields with weights
hts:
{wel?tiile: 10 other than 1.

categories: 5}
)

This search is fine if you want to find all the books with the words mongodb or action.
But for most searches, you also want to view the most relevant results first. Let’s see
how to do that.

Sorting results by text search score

To sort the results by relevancy, sort by the same text search score shown in the previ-
ous example. In fact, to sort by the text search score, you must also include the $meta
function in your find () projection specification. Here’s an example:

db.books.

find ({$text: {$search: 'mongodb in action'}}, rczeCUOnfor
{title:1, score: { Smeta: "textScore" }}). €xt score

sort ({ score: { Smeta: "textScore" } }) 447
Sort by text score.

This example will result in a list sorted by the text score:

{ » id" : 17, "title" : "MongoDB in Action", "score" : 49.48653394500073 }
{ " id" : 186, "title" : "Hadoop in Action", "score" : 24.99910329985653 }
{ " id" : 560, "title" : "HTMLS5 in Action", "score" : 23.02156177156177 }

http://www.it-ebooks.info/

9.5

Aggregation framework text search 263

As mentioned earlier, you can name the text search score anything you want. We've
named it score in our examples, but you may choose something like textSearchScore.
But keep in mind that the name specified in the sort () function must be the same as
the name specified in the preceding find() function. In addition, you can’t specify
the order (ascending or descending) for the sort by text sort field. The sort is always
from highest score to lowest score, which makes sense, because you normally want the
most relevant results first. If for some reason you do need to sort with least relevant
results first, you can use the aggregation framework text search (which is covered in
the next section).

Now that you’ve seen how to use the text search with the find() command, let’s
see how you can also use it in the aggregation framework.

The projection field $meta:"textScore™"

As you learned in chapter 5, section 5.1.2, you use a projection to limit the fields
returned from the £ind () function. But if you specify any fields in the find projection,
only those fields specified will be returned.

You can only sort by the text search score if you include the text search meta score
results in your projection. Does this mean you must always specify all the fields you
want returned if you sort by the text search score?

Luckily, no. If you specify only the meta text score in your find projection, all the other
fields in your document will also be returned, along with the text search meta score.

Aggregation framework text search

As you learned in chapter 6, by using the aggregation framework, you can transform
and combine data from multiple documents to generate new information not avail-
able in any single document. In this section you’ll learn how to use the text search
capabilities within the aggregation framework. As you’ll see, the aggregation frame-
work provides all the text search capabilities you saw for the find () command and a
bit more.

In section 9.4.3, you saw a simple example in which you found books with the
words mongodb in action and then sorted the results by the text score:

Search for documents
with the words

db.books. mongodb or action.
find ({$text: {$search: 'mongodb in action'}},
{title:1, score: { Smeta: "textScore" }}). L
sort ({ score: { $meta: "textScore" } }) Projection for
text score
Sort by

text score.

http://www.it-ebooks.info/

264 CHAPTER 9 Text search

Using the aggregation framework, you can produce the same results using the follow-
ing code:

Search for documents
with the words
mongodb or action.

db.books.aggregate (
[
{ $match: { stext: { $search: 'mongodb in action' } } },

: : HE S ! ,
{ $sort: { score: { $meta: 'textScore' } } } - <kw Sort by

{ $project: { title: 1, score: { $meta: 'textScore'
text score.

) Projection for
text score

As expected, this code will produce the same results you saw in the previous section:

{ " id" : 17, "title" : "MongoDB in Action", "score" : 49.48653394500073 }
{ "_id" : 186, "title" : "Hadoop in Action", "score" : 24.99910329985653 }
{ » id" : 560, "title" : "HTML5 in Action", "score" : 23.02156177156177 }
{ " id" : 197, "title" : "Erlang and OTP in Action", "score"
22.069632021922096 }

Notice that the two versions of the text search use many of the same constructs to
specify the find/match criteria, the projection attributes, and the sort criteria. But as
we promised, the aggregation framework can do even more. For example, you can
take the previous example and by swapping the $sort and $project operators, sim-
plify the $sort operator a bit:

db.books.aggregate (
[

Sort b
{ $match: { stext: { $search: 'mongodb in action' } } }, descez;hg
{ $project: { title: 1, score: { Smeta: 'textScore' } } }, score

{ $sort: { score: -1 } }

One big difference in the second aggregation example is that, unlike with the £ind ()
function, you can now reference the score attribute you defined in the preceding
$project operation. Notice, though, that you’re sorting the scores in descending order,
and therefore you’re using score: -1 instead of score: 1. But this does provide the
option of showing lowest scoring books first if desired by using score: 1.

Using the $text search in the aggregation framework has some limitations:

= The $match operator using stext function search must be the first operation in
the pipeline and must precede any other references to $meta:'textScore'.

= The $text function can appear only once in the pipeline.

» The $text function can’t be used with $or or $not.

http://www.it-ebooks.info/

9.5.1

Aggregation framework text search 265

With the $match text search string, use the same format you would with the find()
command:

= Ifaword or phrase is enclosed in double quotes, the document must contain an
exact match of the word or phrase.

= A word or phrase preceded by a minus sign (-) excludes documents with that
word or phrase.

In the next section, you’ll learn how to use the ability to access the text score to fur-
ther customize the search.

Where’s MongoDB in Action, Second Edition?

If you look closely at the results from our previous text searches using the string
"MongoDB in Action", you may have wondered why the results didn’t include the sec-
ond edition of MongoDB in Action as well as the first edition. To find out why, use the
same search string but enclose monogdb in double quotes so that you find only those
documents that have the word mongodb in them:

> db.books.aggregate (
[
{ $match: { stext: { $search: ' "mongodb" in action ' } } },
{ sproject: { id:0, title: 1, score: { $meta: 'textScore' } } }
]
L)
{ "title" : "MongoDB in Action", "score" : 49.48653394500073 }
{ "title" : "MongoDB in Action, Second Edition", "score" : 12.5 }

When you see the low text score for the second edition of MonogDB in Action, it
becomes obvious why it hasn’t shown up in the top scoring matches. But now the ques-
tion is why the score is so low for the second edition. If you do a find only on the sec-
ond edition, the answer becomes more obvious:

> db.books.findOne({"title" : "MongoDB in Action, Second Edition"})
{

“_id" : 755,

"title" : "MongoDB in Action, Second Edition",

"isbn" : "1617291609",

"pageCount" : O,

"thumbnailUrl"
"https://s3.amazonaws.com/AKIAJC5RLADLUMVRPFDQ . book-thumb-
images/banker2.jpg",

"status" : "MEAP",

"authors" : [

"Kyle Banker",

"Peter Bakkum",

"Tim Hawkins",

"Shaun Verch",

"Douglas Garrett"
1,

"categories" : []

http://www.it-ebooks.info/

266

CHAPTER 9 Text search

As you can see, because this data is from before the second edition was printed, the
second edition didn’t have the shortDescription or longDescription fields. This is
true for many of the books that hadn’t yet been published, and as a result those books
will end up with a lower score.

You can use the flexibility of the aggregation framework to compensate for this
somewhat. One way to do this is to multiply the text search score by a factor—say, 3—
if a document doesn’t have a longDescription field. The following listing shows an
example of how you might do this.

Listing 9.4 Add text multiplier if LongDescription isn’t present

> db.books.aggregate (
[
{ $match: { $text: { $search: 'mongodb in action' } } },

{ $project: { Calculate multiplier: 3.0 if
title: 1, longDescription doesn’t exist
score: { $meta: 'textScore' },
multiplier: { $cond: ['$longDescription',1.0,3.0] } }

b

{ $project: {

3 1) N Ltiold N Calculate
_1..0, title: ,.score. , multip 1er.. . aﬁuﬁed
adjScore: {$multiply: ['$score','$multiplier']}} score: score
b * multiplier
, Sort by descending
] { $sort: {adjScore: -1}} adjusted score
)i
{ "title" : "MongoDB in Action", "score" : 49.48653394500073,
"multiplier" : 1, "adjScore" : 49.48653394500073 } Second
{ "title" : "MongoDB in Action, Second Edition", "score" : 12.5, edition
"multiplier" : 3, "adjScore" : 37.5 } now second
{ "title" : "Spring Batch in Action", "score" : 11.666666666666666, on list
"multiplier" : 3, "adjScore" : 35 }
{ "title" : "Hadoop in Action", "score" : 24.99910329985653,
"multiplier" : 1, "adjScore" : 24.99910329985653 }
{ "title" : "HTML5 in Action", "score" : 23.02156177156177,
"multiplier" : 1, "adjScore" : 23.02156177156177 }

As you can see in the first Sproject operator in the pipeline, you’re calculating a mul-
tiplier by testing whether longDescription exists. A condition is considered false if
it’s null or doesn’t exist, so you can use the $cond function to set a multiplier of 1.0 if
longDescription exists and a multiplier of 3.0 if longDescription doesn’t exist.

You then have a second $project operator in the aggregation pipeline that calcu-
lates an adjusted score by multiplying the text search score by the multiplier 1.0 or 3.0.
Finally, you sort by the adjusted score in descending order.

As you can see, the MongoDB text search does have its limitations. Missing text
fields can cause you to miss some results. The MongoDB text search also provides

http://www.it-ebooks.info/

9.6.1

Text search languages 267

some ways to improve your search by requiring certain words or phrases to be in the
search results, or by excluding documents that contain certain words. The aggrega-
tion framework offers additional flexibility and functionality and can be useful in
extending the value of your text search.

Now that you’ve seen the basics and a few advanced features of MongoDB text search,
you’re ready to tackle another complex issue: searching languages other than English.

Text search languages

Remember that much of MongoDB’s text search power comes from being able to stem
words. Searching for the word action will return the same results as searching for the
word actions, because they have the same stem. But stemming is language-specific.
MongoDB won’t recognize the plural or other unstemmed version of a non-English
word unless you tell MongoDB what language you’re using.

There are three points at which you can tell MongoDB what language you’re using:

» In the index—You can specify the default language for a particular collection.

u When you insert a document—You can override this default to tell MongoDB that a
particular document or field within the document is a language other than the
index-specified default.

u When you perform the text search in a £ind () or aggregate () function—You can tell
MongoDB what language your search is using.

Stemming and stop words: Simple but limited

Currently MongoDB uses “simple language-specific suffix stemming” (see http:/
docs.mongodb.org/manual/core/index-text/). Various stemming algorithms, includ-
ing suffix stripping, are further described at http://en.wikipedia.org/wiki/ Stemming.
If you require processing of a language not supported by the suffix stemming approach,
such as Chinese, or wish to use a different or customized stemmer, your best bet is
to go to a more full-featured text search engine.

Similarly, although MongoDB will use a different stop word dictionary based on the
language, it doesn’t allow you to customize the stop word dictionaries. Again, this is
something that dedicated text search engines typically support.

Let’s take a look at how you use each of these options.

Specifying language in the index

Returning to the example index you created in section 9.3.2, you can modify the index
definition to define a default language. Before changing the language for the books col-
lection, run the following text search command. You should find no results because
you’re searching for a stop word: in. Remember, stop words aren’t indexed:

> db.books.find ({$text: {$search: 'in '}}) .count ()
0

http://docs.mongodb.org/manual/core/index-text/
http://docs.mongodb.org/manual/core/index-text/
http://en.wikipedia.org/wiki/Stemming
http://www.it-ebooks.info/

268 CHAPTER 9 Text search

Now delete the previous index and create the same index, but with the language french:

db.books.dropIndex ('books_text index'); QAW

db.books.createIndex (
{|$**|: ltextl}’

{weights:
{title: 10,
categories: 5},

Drop existing text
index on books

language french

name : 'books_text index', Add new index with

default_language: 'french'

}
)i

Now if you rerun the previous £ind (), you’ll now find some books, because in French,

the word in isn’t a stop word:

> db.books.find ({$text: {$search: 'in '}}).count ()

334

If you check the indexes on the books collection, you'll see the language is now French:

> db.books.getIndexes ()

[
{

"vroso1,

"key" : {
"oid" o2 1

¥

"name" : "_id ",

"ns" : "catalog.books"

e
{

nwroso1,

"key" : |
" fts" : "text",
"_ftsx" : 1

e

"name" : "books text index",

"ns" : "catalog.books",

"weights" :
|l$**" . 1’
"categories" : 5,
"title" : 10

1

"default_language" : "french",

"language_ override" : "language"

"textIndexVersion" : 2

Default text index
language is French

http://www.it-ebooks.info/

9.6.2

9.6.3

Text search languages 269

Specifying the language in the document

Before you insert an example document that specifies the document language, change
the index back to English by running the following commands:

db.books.dropIndex ('books_text_ index') ;

db.books.createIndex(

{|$**| . ‘text‘},
{weights:
{title: 10,
categories: 5},
name : 'books_text index', Specify default
default_language: 'english' language of English

1
)

Now insert a new document specifying the language as French:

db.books . insert ({
_id: 999,
title: 'Le Petite Prince',
pageCount: 85,
publishedDate: ISODate('1943-01-01T01:00:00Z'),
shortDescription: "Le Petit Prince est une cuvre de langue frangaise,

la plus connue d'Antoine de Saint-Exupéry. Publié en 1943 a New York
simultanément en anglais et en frangais. C'est un conte poétique et
philosophique sous 1l'apparence d'un conte pour enfants.",

status: 'PUBLISH',

authors: ['Antoine de Saint-Exupéry'],

language: 'french'

Specify language
as ‘french’

3]

MongoDB text search also allows you to change the name of the field used to specify
the document language when you define the index, if you want to use something other
than language. You can also specify different parts of the document to be in different
languages. You can read more about these features at http://docs.mongodb.org/
manual/tutorial/specify-language-for-textindex/.

Now that you’ve inserted a document in French, let’s see how you can search for it
in French as well.

Specifying the language in a search

What language your text search string represents can make a big difference in the
results. Remember that the language affects how MongoDB interprets your string by
defining the stop words as well as stemming. Let’s see how the specified language
affects both how the document was indexed and how MongoDB performs the search.
Our first example, shown in the next listing, shows the effect of stemming on our doc-
ument indexes as well as on our search terms.

http://docs.mongodb.org/manual/tutorial/specify-language-for-text-index/
http://docs.mongodb.org/manual/tutorial/specify-language-for-text-index/
http://www.it-ebooks.info/

270

CHAPTER 9 Text search

Listing 9.5 Example of how language affects stemming

> db.books.find ({Stext: {$search: Language French; only

.'51multanmenF',$language:'f?encht}},{tltle:l}) finds "Le Petit Prince"
{ " id" : 999, "title" : "Le Petit Prince" }
> db.books.find ({$text: {$search: 'simultanment'}},{title:1})
{ v id" : 186, "title" : "Hadoop in Action" } .
{ m id" : 293, "title" : "Making Sense of Java" } :an"e ;e:rzh o,
u_' n "title" n 1 1 n E‘g Is in Stwo
{ "_id" : 999, "title" : "Le Petite Prince" } different books
> db.books.find ({$text: {$search: 'prince'}},{title:1})
{ ::—%d:: 145, ::t}tle:: ; :Azure m ACt_:lon: } Search for prince in English
{ » id" : 999, "title" : "Le Petit Prince" } finds both French and
English language books

When you search for simultanment and specify the language as French, you find only
the French book Le Petit Prince. Yet when you do the same search without specifying
the language—meaning you use the default language English—you return two com-
pletely different books.

How can this be? With just this example, you might assume MongoDB is ignoring
any documents that aren’t in the specified language. But if you look at the third
find (), where you search for the word prince you see that MongoDB can indeed find
books in either French or English.

What’s up with this? The answer lies in stemming. When you specify a search
string, MongoDB will search for the stemmed words in your search string, not the
actual words from the string. A similar process is used for creating the index for the
documents where the index will contain the stemmed versions of words in the docu-
ment, not the words themselves. As a result, the stemmed word MongoDB comes up
with for simultanment will be different for French and English.

For French, it’s easy to see how MongoDB found the one document because the
book description contained the word simultanment. For the English documents, though,
the reason is less clear. The next listing helps clarify the situation a bit and also illus-
trates some of the limitations of stemming.

Listing 9.6 Results of stemming simultaneous

db.books.find ({$text: {$search: 'simultaneous'}},{title:1})

> .
{ v id" : 186, "title" : "Hadoop in Action" } E:agl!::shhfor
{ m id" : 293, "title" : "Making Sense of Java" } N
— : simultaneous
{ "_id" : 999, "title" : "Le Petite Prince" }

> db.books.find ({$text: {$search: 'simultaneous',

. . .) French search for
$language: 'french'}}, {title:1}) simultaneous; nothing found

In this listing you searched for the word simultaneous in both English and French. As
you expected, when you searched in English, you found the two books previously
found when you searched for simultanment.

http://www.it-ebooks.info/

9.6.4

Text search languages 271

But if you now search for simultaneous in French, you won’t find the French book.
Unfortunately, in this case what MongoDB calculates as the stem word in French isn’t
the same as the calculated stem word for simultanment.

This result can be confusing, and the process of calculating the stem for a word
isn’t an exact science. But in most cases you’ll find what you’ll expect.

Fortunately, the effect of language on stop words is much simpler. For stop words,
MongoDB can use a dictionary to access a list of known stop words for a given lan-
guage. As a result, the effect of language on the interpretation of stop words is much
clearer. The next listing shows a simple example.

Listing 9.7 Example of how language affects stop words

db.books.find ({Stext: {$search: 'de'}}, {title:1})

>

n 14" . "4 no.on 1 1 "
{ 7%d : 36, tlt.:le : "ASP.NET 4.0 in Practice" } Search for “de” finds
{ » id" : 629, "title" : "Play for Java" } only English books
{ » id" : 199, "title" : "Doing IT Right" }

" id" : 10, "title" : "OSGi in Depth"

_ 1Y

{ » id" : 224, "title" : "Entity Framework 4 in Action" }
{ » id" : 761, "title" : "jQuery in Action, Third Edition" }

> db.books.find ({$text: {$search: 'de', $language: 'french'}}).count ()
0
T Search for “de” in
French finds nothing

In this example, you search for the word de first in English and then in French. When
the search is done in English, you find a number of books. In this case you’re finding
books with authors who have the word de in their name. You won’t find the French
book because in French deis a stop word and therefore isn’t indexed.

If you perform this same search in French, you won’t find any results because deis
a stop word in French. As a result, the parsed search string won’t contain any words to
search for once the stop words are removed.

As you can see, language can have a big effect on the results of your text search as
well as the text search indexes created for a document. That’s why it’s important to spec-
ify the language you’ll be using in your index, document, and search string. If you're

only worried about English, then your task is much simpler. But if not, read on to see
which languages MongoDB supports. Hopefully you’ll find the languages you need.

Available languages

MongoDB supports quite a few languages, and you can expect the list to grow over
time. The following lists the languages supported by MongoDB as of release 2.6 (the
same languages are also supported by MongoDB v3.0). The list also shows the two-let-
ter abbreviation you can use instead of the full word:

= da—danish

= nl—dutch

= en—english

http://www.it-ebooks.info/

272

9.7

CHAPTER 9 Text search

s fi—finnish

s fr—french

= de—german

= hu—hungarian
® it—italian

= no—norwegian
= pt—portuguese
® ro—romanian
= ru—russian

m es—spanish

= sv—swedish

= tr—turkish

In addition to this list, you can specify none. When you do, MongoDB skips any pro-
cessing for stemming and stop words. For example, a document with the language of
none will have an index created for each unique word in the document. Only the exact
words will be indexed, without any stemming, and the index won’t exclude any stop
words. This approach can be useful if your documents contain words that MongoDB
is having a difficult time processing. The downside is that you won’t be able to take
advantage of stemming finding “similar” words and your results will contain only exact
word matches.

Summary

As you can see, MongoDB can provide a great deal of capabilities in using a basic
query text search for your database. The aggregation framework provides even more
complex search capabilities if needed. But MongoDB text search has its limits and isn’t
intended to completely replace dedicated text search engines such as Elasticsearch or
Solr. If you can get by with MongoDB text search, though, you’ll save yourself the
effort and complexity of maintaining a duplicate copy of the data within a dedicated
search engine.

Now that you know the full capabilities of MongoDB searches, updates, and index-
ing, let’s move on to a topic that’s new to MongoDB v3.0 and has to do with how
MongoDB stores, updates, and reads data: the WiredTiger storage engine!

http://www.it-ebooks.info/

10.1

Wared1ger and
pluggable storage

This chapter covers

= WiredTiger

m Pluggable storage engines

m A comparison between MMAPv1 and WiredTiger

With version 3.0, MongoDB introduced the Pluggable Storage Engine API as one of
its major changes. In this chapter, we’ll talk about what exactly it is and why it has
been added to MongoDB. We’ll talk about WiredTiger, a pluggable storage engine
that’s bundled with MongoDB, and compare it with the default storage engine that
MongoDB has used up until version 3.0. We’ll compare the two engines in terms of
speed, disk use, and latency. We’ll also introduce several other pluggable storage
engines that are expected to become interesting alternatives. For the more advanced
readers, we’ll uncover the technology behind pluggable storage engines.

Pluggable Storage Engine API

An application programming interface (API) is a relatively strict set of routines,
protocols, and tools for building software applications. As an example, you should
be aware by now that MongoDB offers an API that allows other software to interact
with MongoDB without using the MongoDB shell: each of the MongoDB drivers

273

http://www.it-ebooks.info/

274

10.1.1

CHAPTER 10 WiredTiger and pluggable storage

that you’ve been using use the API provided by MongoDB to add driver functionality.
They allow your application to communicate with the MongoDB database and to per-
form the basic CRUD operations on your documents in the database.

A storage engine is an interface between the database and the hardware. A storage
engine doesn’t change how you perform your queries in the shell or in the driver, and
it doesn’t interfere with MongoDB at the cluster level. But storage engines interfere
with how data is written to, deleted from, and read from disk, as well as which data
structure will be used for storing the data.

The Pluggable Storage Engine API allows third parties to develop storage engines
for MongoDB. Before the Pluggable Storage Engine API, the only storage engine avail-
able to MongoDB was MMAPvI1.

MongoDB still uses the MMAPvI storage engine, and it’s still the default storage
engine in version 3.0 and later. The MMAPv1 storage engine is based on memory map-
ping, and has been a stable solution for MongoDB so far. One drawback to MMAPv1
that you’ll notice soon if you have a lot of data to store is that it quickly consumes an
enormous amount of disk space as your data set grows, to the extent that it preallo-
cates 2 GB blocks every time it needs to grow in size. But preallocation is done by most
database systems, and MongoDB is no exception. It does this in small, growing incre-
ments at first, but once it becomes larger than 2 GB, every next increment will preallo-
cate another 2 GB, so as a system administrator you’ll have to keep this in mind when
managing disk space for your servers.

The database administrator has to choose from the different storage alternatives,
which dictate how data is stored on disk. Since version 3.0, it’s now possible to tell
MongoDB to use a different module for storage, and that’s what the Pluggable Storage
Engine API does. It provides functions that MongoDB needs to use to store data.
MongoDB 3.0 comes bundled with an alternative to MMAPv1, which is WiredTiger.
We’ll talk more about WiredTiger and how you can switch to using it in a later section
in this chapter, but first let’s consider why MongoDB has offered the ability to use dif-
ferent storage engines.

Why use different storages engines?
Let’s consider two different applications:

= A news site, like Huffington Post
= A social media site, like Twitter or Fac

On news sites you'll see news articles. The Huffington Post averages 1,200 editorial
pieces per day, but they’re read by tens of millions of people around the world.!
Bring this into contrast with a social media site where people share their own sto-
ries, which are much shorter than news articles. Twitter tweets are at most 140 char-
acters, and Fac or Google+ status updates are short as well. These two different

! According to a 2013 article on DigiDay: http://digiday.com/publishers/whos-winning-at-volume-in-publishing /.

http://digiday.com/publishers/whos-winning-at-volume-in-publishing/
http://www.it-ebooks.info/

10.2

WiredTiger 275

use cases have different requirements in terms of database storage and access, as
table 10.1 shows.

News sites have much less data to delve into compared to social media sites, and
for many visitors, the front page looks the same. Social media sites, on the other hand,
have to go through millions and millions of tweets or status updates. Every visitor has
their own feed, which should show only those tweets and updates that matter to the
visitor. In addition to delivering millions of status updates for different visitors, the
social media platforms also need to be able to store millions of new tweets every day.’

Table 10.1 Different requirements for different cases/users

News site Social media site
Number of documents Hundreds of articles Millions of updates
Average size A few kilobytes Tens of bytes
Dynamic content None—same for every visitor Content depends on visitor

For news sites, the application needs to collect the same articles over and over again
for every user visiting the news site at the same time. Many database systems have a query
cache that will quickly deliver the data that was requested by the same query a few
minutes ago. Such news site applications can also make use of an external in-memory
cache system such as Memcached or Redis to deliver the same data at high speeds. But
these technologies will not help social media sites where the requested data is differ-
ent every time, even per visitor. Such applications need a different kind of storage sys-
tem that has much better performance when reading filtered data from a humongous
set of records. Social media sites also need a storage system that has excellent write
performance to be able to store millions of new records every day. News sites don’t
need this kind of performance because their number of write operations only runs in
the mere thousands.

To cater to these different kinds of systems, MongoDB has implemented the con-
cept of a pluggable storage engine so that the database administrators or system engi-
neers can choose the storage engine that gives the best performance for their use case.
In the next section we’ll introduce a storage plugin that’s bundled with MongoDB:
WiredTiger.

WiredTiger

WiredTiger is a high-performance, scalable, open source data engine that focuses on
multicore scalability and optimal RAM use. Multicore scaling is achieved by using

2 According to Domo, in 2014, every minute of the day over 2.4 million pieces of content were shared on Face-
book, and over 270,000 tweets were sent on Twitter. These numbers translate to over 3.5 billion shares per
day, and 400 million tweets per day.

http://www.it-ebooks.info/

276 CHAPTER 10 WiredTiger and pluggable storage

modern programming techniques such as hazard pointers® and lock-free algorithms,*
resulting in more work done by each CPU core than alternative engines.

WiredTiger was developed by Michael Cahill and Keith Bostic, both architects at
Sleepycat Software, which was founded by Bostic and his wife. At Sleepycat Software
they designed and developed the Berkeley DB, the most widely used embedded data-
management software in the world.

10.2.1 Switching to WiredTiger

Before you start using WiredTiger, make sure you’re running a 64-bit system, with a
64-bit OS, because this is required. This should be the case in most modern computer
equipment. Also, when setting up MongoDB to use WiredTiger, it’s crucial that you
start the MongoDB server with the WiredTiger configuration on a fresh dbPath direc-
tory. If you start the server with a dbPath that’s in the MMAPv1 structure, it won’t start.
This is because the storage structure of MMAPv1 isn’t compatible with that of Wired-
Tiger, and there’s no on-the-fly conversion available between storage structures. But
there’s a way to migrate your MMAPvl-based databases to WiredTiger, and vice versa,
using mongodump and mongorestore. See chapter 13 to learn more about dumping
and restoring your databases.

All you need to do to enable WiredTiger in your MongoDB installation is to set the
storage configuration in your default YAML configuration file (see appendix A for
more information about YAML) as follows:

storage:
dbPath: "/data/db"
journal:
enabled: true
engine: "wiredTiger"
wiredTiger:
engineConfig:
cacheSizeGB: 8
journalCompressor: none
collectionConfig:
blockCompressor: none
indexConfig:
prefixCompression: false

* In multithreading programming it’s important to keep track of which memory blocks need to be accessible
by the threads, and whether any thread is accessing it. Hazard pointers are a list of pointers to such memory
blocks that are being accessed by a thread, and other threads are prohibited from modifying or deleting the
pointers and the memory blocks they point to, as long as they’re in the hazard pointers list.

Resource locking is an important concept in multithreaded programming. Lock-free algorithms are program-
ming patterns to avoid a program being stuck because several threads are waiting for each other to release
their locks, and to guarantee that the program as a whole makes progress.

http://www.it-ebooks.info/

WiredTiger 277

This is the basic, noncompressed configuration to enable WiredTiger for your MongoDB
installation. Table 10.2 shows what the options do.

Table 10.2 Various options of the MongoDB configuration file

Option Name

Description

dbPath

journal.enabled

engine

wiredTiger

engineConfig.cacheSize

engineConfig. journalCompressor

collectionConfig.blockCompressor

indexConfig.prefixCompression

The path where your database files are stored.
Defaults to /data/db.

Whether to enable journaling or not. It's recom-
mended to enable this as it may save data that was
lost during a power outage and hasn’t been synchro-
nized to disk. Defaults to true on 64-bit systems.

Which storage engine to use. Defaults to mmapv1l.
To use WiredTiger, set this to wiredTiger.

This is where WiredTiger-specific options are set.

This is how much RAM memory WiredTiger needs
to reserve for the in-memory data, which would
then serve as a cache to rapidly serve your data.
Defaults to half the physical RAM on your system,
at least 1 GB.

Tells WiredTiger what kind of compressor to use for
the journaling data. Defaults to snappy, but this is
best set to none to achieve the best performance.

This tells WiredTiger what kind of compressor to use
for the collection data. The three supported options
are none, snappy, and z1lib. You'll see in the
benchmarks which is the best option for you.
Defaults to snappy.

This tells WiredTiger whether to use compression for
its index data. Defaults to true.

10.2.2 Migrating your database to WiredTiger

Because you can’t run MongoDB with the WiredTiger set up on a data directory that’s
in MMAPv] format, you’ll need to migrate your database to the WiredTiger installa-
tion. This is basically done by creating dumps and restoring from them (see chapter 13

for more information):

1 Create a MongoDB dump of your MMAPv1-based database:

$ mkdir ~/mongo-migration
$ cd ~/mongo-migration
$ mongodump

This will create a dump directory called mongo-migration in your home

directory.

http://www.it-ebooks.info/

278

10.3

CHAPTER 10 WiredTiger and pluggable storage

2 Stop the mongod instance, and make sure there’s no mongod process running:

$ ps ax | grep mongo

3 Update the MongoDB configuration to use WiredTiger, as described in the pre-
vious section.

4 Move the MMAPvl-based database away. Assuming dbPath is set to /data/db:

$ sudo mv /data/db /data/db-mmapvl

5 Create a fresh directory and give the MongoDB user/group (assuming mongodb)
permission to write to it:
$ mkdir /data/db

$ chown mongodb:mongodb /data/db
$ chmod 755 /data/db

6 Start your WiredTiger-enabled MongoDB instance.
7 Import your dump into the WiredTiger-enabled MongoDB instance:

$ cd ~/mongo-migration
$ mongorestore dump

Now you should have your database in your newly configured MongoDB environ-
ment. If you examine the WiredTiger-based /data/db and compare it with your old
MMAPvl-based /data/db-mmapvl, you'll see considerable differences in how they’re
managed. For one, if you have large databases, you’ll notice that the disk use of both
directories differs greatly. You’ll see that when we do the benchmark testing in the
next section.

To convert your WiredTiger-based database back into MMAPv1, repeat the process,
but now you’ll make a dump of the data in your WiredTiger storage, stopping the
MongoDB instance, changing the configuration to use MMAPv1, starting the MongoDB
instance with this configuration, and restoring the data dump into the MMAPvI-
enabled instance.

An alternative method is to run a second MongoDB instance with a WiredTiger
configuration, and add this instance to your replica set, together with your existing
MMAPvI instance. Replica sets are covered in chapter 11.

Comparison with MMAPv1

How does WiredTiger’s performance compare to a MongoDB instance with MMAPv1?
In this chapter, you’ll test three WiredTiger configurations against MMAPv] using a
couple of JavaScript and shell scripts. You’ll test the following configurations:

= Default configuration using MMAPv1
= Normal WiredTiger, no compression

http://www.it-ebooks.info/

10.3.1

Comparison with MMAPv1 279

= WiredTiger with snappy compression
= WiredTiger with zlib compression

Zlib and snappy are compression algorithms. The former is an abstraction of the
DEFLATE compression algorithm, which is an LZ77 variant that uses Huffman coding.
Zlib is very common on many software platforms, and is the basis for the gzip file com-
pression program. Snappy is developed by Google and is widely used in Google’s proj-
ects such as BigTable. Snappy is more of an intermediate solution, which doesn’t aim
for maximum compression, but instead goes for high speeds, along with reasonable
compression.

You’re going to test the insert performance first to fill up the test databases. Then
you’ll use these test databases to measure the read performance. When going through
the benchmark testing in the following sections, please keep in mind that it’s difficult
to draw the correct conclusions from these test results. The data sets in these tests are
much smaller than real-world examples, and in real-world examples you’d have many
more different search filters to collect the data that you need. There would also be a
larger variety in the data structures in real-world examples, which will affect the com-
pression algorithms in use. The tests in this chapter are only simple examples to give
you a general idea. They’ll also hopefully give you some insight into how you’d pro-
ceed testing the MongoDB instances with your own data and the filters that your appli-
cation uses.

Configuration files

To be able to compare the disk use of the different storage configurations, you’ll use
different database paths in the storage configuration files. In a production system,
however, you’d end up with the common database path for a MongoDB installation on
your machine.

The configuration file for the MMAPv1 instance, called mmapvl.conf, is as follows,
in YAML format:

storage:
dbPath: "./data-mmapvl"
directoryPerDB: true
journal:
enabled: true
systemLog:
destination: file
path: "./mongodb-server.log"

logAppend: true
timeStampFormat: iso8601-utc
net:
bindIp: 127.0.0.1
port: 27017
unixDomainSocket :
enabled : true

http://www.it-ebooks.info/

280 CHAPTER 10 WiredTiger and pluggable storage

For the WiredTiger configurations, it’s the same as the previous code, except for the
storage part. For the no-compression version you’ll use the following storage configu-
ration for WiredTiger, naming it wiredtiger-uncompressed.conf:

storage:
dbPath: "./data-wt-uncompressed"
directoryPerDB: true
journal:

enabled: true
engine: "wiredTiger"
wiredTiger:
engineConfig:
cacheSizeGB: 8
journalCompressor: none
collectionConfig:
blockCompressor: none
indexConfig:
prefixCompression: false

For the snappy instance, you’ll use the following configuration for storage; what’s dif-
ferent from the uncompressed WiredTiger instance is shown in bold. This file is called
“wiredtiger-snappy.conf”:

storage:
dbPath: "./data-wt-zlib"
directoryPerDB: true
journal:
enabled: true
engine: "wiredTiger"
wiredTiger:
engineConfig:
cacheSizeGB: 8
journalCompressor: none
collectionConfig:
blockCompressor: snappy
indexConfig:
prefixCompression: true

Finally, for the zIib instance, you’ll use the following storage configuration, naming it
wiredtiger-zlib.conf:

storage:
dbPath: "./data-wt-snappy"
directoryPerDB: true
journal:
enabled: true
engine: "wiredTiger"
wiredTiger:
engineConfig:
cacheSizeGB: 8
journalCompressor: none
collectionConfig:
blockCompressor: zlib

http://www.it-ebooks.info/

10.3.2

Comparison with MMAPv1 281

indexConfig:
prefixCompression: true

If you have a legacy MongoDB installation in some directory, and these configuration
files in a configs directory, you can use this MongoDB installation with these configu-
rations by, for example running the following for the MMAPv] configuration:

$ bin/mongod --config configs/mmapvl.conf &

This should run a MongoDB instance in the background with the given configuration.

Insertion script and benchmark script

You’ll use the following JavaScript code to fill up the benchmark database with docu-
ments that have four fields of different types, an array field with eight document ele-
ments with four differently typed fields each, and eight subdocuments, also with four
differently typed fields each. This is by no means a real-world situation, and compres-
sion algorithms will work differently with different data sets that are more heteroge-
neous than this test data:

for (var j = 0; j < 10000; j++)
var rl = Math.random() ;

// A nice date around year 2000

var dateFld = new Date(l.5el2 * rl);

var intFld = Math.floor(le8 * rl);

// A nicely randomized string of around 40 characters
var stringFld = Math.floor (le64 * rl).toString(36);
var boolFld = intFld % 2;

doc = {
random_date: dateFld,
random_int: intFld,
random_string: stringFld,
random_bool: boolFld

doc.arr = [];

for (var i = 0; i < 16; i++) {
var r2 = Math.random() ;

// A nice date around year 2000

var dateFld = new Date(l.5el2 * r2);

var intFld = Math.floor (le8 * r2);

var stringFld = Math.floor (le64 * r2) .toString(36);
var boolField = intFld % 2;

if (1 < 8) {
doc.arr.push ({
date_field: dateFld,
int_field: intFld,
string field: stringFld,
bool field: boolFld

http://www.it-ebooks.info/

282 CHAPTER 10 WiredTiger and pluggable storage

} else {
doc["sub" + i] = {
date field: dateFld,
int_field: intFld,
string field: stringFld,
bool field: boolFld

}i
}

db.benchmark.insert (doc) ;

This piece of JavaScript code, stored in insert.js, will insert 10,000 documents into the
benchmark database. This script will be run by the following batch script that will go
through all the four configurations, and does the same insert job for each configura-
tion, 16 times:

#!/bin/bash

export MONGO_DIR=/storage/mongodb
export NUM LOOPS=16

configs=(
mmapvl.conf
wiredtiger-uncompressed.conf
wiredtiger-snappy.conf
wiredtiger-zlib.conf

)

cd $MONGO DIR
for config in "${configs[e]}"; do
echo "===== RUNNING S$config ====="
echo "Cleaning up data directory"
DATA DIR=$(grep dbPath configs/$config | awk -F\" '{ print $2 }')
rm -rf $MONGO_DIR/$DATA DIR/*

echo -ne "Starting up mongod... "
T="3 (date +%s)"
./bin/mongod --config configs/$Sconfig &

wait for mongo to start

while [1]; do
./bin/mongostat -n 1 > /dev/null 2>&l
if ["$?" -eq 0]; then
break
fi
sleep 2
done

T="$(($(date +%s)-T))"
echo "took S$T seconds"

T="$ (date +%s)"
for 1 in $(seqg 1 $NUM_LOOPS); do
echo -ne "\rRunning import loop $1"
./bin/mongo benchmark --quiet insert.js >/dev/null 2>&l1

http://www.it-ebooks.info/

10.3.3

Comparison with MMAPv1 283

done
T="$(($(date +%s)-T))"

echo
echo "Insert performance for $config: ST seconds"

echo -ne "Shutting down server... "

T="3% (date +%s)"

./bin/mongo admin --quiet --eval "db.shutdownServer ({force: true})" >/
dev/null 2>&1

while [1]; do
pgrep -U $USER mongod > /dev/null 2>&1
if ["s?" -eq 1]; then
break
fi
sleep 1
done

T="$(($(date +%s)-T))"
echo "took ST seconds"

SIZE=$(du -s --block-size=1 $SMONGO_ DIR/SDATA DIR | cut -f1)
SIZE_MB=$ (echo "scale=2; $SIZE/(1024%*1024)" | bc)
echo "Disk usage for $config: ${SIZE MB}MB"

done

This script assumes a legacy MongoDB installation in the bin directory inside the same
directory as the script, and starts up a MongoDB instance according to the given con-
figuration parameter. Therefore, you should make sure that you stop your MongoDB
instance before running this script.

Insertion benchmark results

After running this batch script, you’ll see output that looks like the following. The tim-
ings may be different on each machine, depending on the hardware and even on the
operating system’s kernel. This output was generated on a QuadCore i5-3570K run-
ning at 3.4 GHz, with 16 GB of RAM, and the storage medium being an ext4-formatted
LVM partition, spread over two Hitachi Deskstar T7K250 250 GB disks connected to a
SATA port, with a 7200 RPM rotational speed. The system runs on an Ubuntu 14.04
machine with a default Linux kernel 3.13.0 for the Intel 64-bit architecture:

===== RUNNING mmapvl.conf =====

Cleaning up data directory

Starting up mongod... took 102 seconds

Running import loop 16

Insert performance for mmapvl.conf: 105 seconds
Shutting down server... took 1 seconds

Disk usage for mmapvl.conf: 4128.04MB

===== RUNNING wiredtiger-uncompressed.conf =====
Cleaning up data directory

Starting up mongod... took 2 seconds

Running import loop 16

Insert performance for wiredtiger-uncompressed.conf: 92 seconds
Shutting down server... took 3 seconds

http://www.it-ebooks.info/

284

CHAPTER 10 WiredTiger and pluggable storage

Disk usage for wiredtiger-uncompressed.conf: 560.56MB
===== RUNNING wiredtiger-snappy.conf =====

Cleaning up data directory

Starting up mongod... took 1 seconds

Running import loop 16

Insert performance for wiredtiger-snappy.conf: 93 seconds
Shutting down server... took 2 seconds

Disk usage for wiredtiger-snappy.conf: 380.27MB

===== RUNNING wiredtiger-zlib.conf =====

Cleaning up data directory

Starting up mongod... took 2 seconds

Running import loop 16

Insert performance for wiredtiger-zlib.conf: 104 seconds
Shutting down server... took 3 seconds

Disk usage for wiredtiger-zlib.conf: 326.67MB

It timed the server startup, the duration of the insert job, and the server shutdown
processes, and measured the disk use of the storage directory after shutdown. You can
see the results in table 10.3.

Table 10.3 Comparing MMAPv1 and WiredTiger operations

MMAPv1 WT WT snappy WT zlib
Starting up 102 sec 2 sec 1 sec 2 sec
Insert job 105 sec 92 sec 93 sec 104 sec
Shut down 1 sec 3 sec 2 sec 3 sec
Disk use 4128.04 MB 560.56 MB 380.27 MB 326.67 MB

From this table it appears that WiredTiger has a tremendous gain in the time to start
up the server and initialize the storage directory. But this is a one-time process, and
therefore not a crucial measurement. Another test of the startup and shutdown times
of the MongoDB instances with a preinitialized storage directory showed that the
MMAPv1 startup took four seconds. You’ll see this in a test in the next section, where
you’ll put the read performance to the test.

There’s little gain to be had for the insert job when using WiredTiger, although
the difference can be considerable when dealing with more data than this data set.
Also keep in mind that this test doesn’t test running the insert job using multiple
Mongo client connections simultaneously.

The most striking feature of these test results is the disk use: WiredTiger without
compression uses less than 15% of what MMAPv1 uses, and if you add compression, it’s
less than 10%! You’ll also see that the snappy compression configuration finds a good
middle ground between the insert speeds and the disk use. It’s almost as fast as a bare
WiredTiger instance with no compression, but still gains 180 MB on this data set. The
zlib configuration has better compression, but in exchange for this, it takes 10 sec-
onds more to do the insert job.

http://www.it-ebooks.info/

Comparison with MMAPv1 285

10.3.4 Read performance scripts

Up until now you’ve benchmarked the write performance of the different storage con-
figurations, but for some applications you might be more interested in the read perfor-
mance. Here’s the simple JavaScript that will fetch all records in the benchmark
collection and sequentially go through each of them. Note that this doesn’t benchmark
searches and filtering, which would need a predefined set of values to search for:

¢ = db.benchmark.find() ;
while (c.hasNext ()) c.next();

This simple JavaScript is put in a read.js file and run by the following read.sh shell
script, which is similar to the insert script:

#!/bin/bash

export MONGO DIR=/storage/mongodb
export NUM_LOOPS=16

configs=(
mmapvl.conf
wiredtiger-uncompressed.conf
wiredtiger-snappy.conf
wiredtiger-zlib.conf

)

sudo echo "Acquired root permissions"

cd $MONGO DIR
for config in "${configs[e]l}"; do

echo "===== RUNNING Sconfig ====="
echo "Clearing memory caches"
sync

echo 3 | sudo tee /proc/sys/vm/drop caches

echo -ne "Starting up mongod... "
T="3% (date +%s)"
./bin/mongod --config configs/$config &

wait for mongo to start

while [1]1; do
./bin/mongostat -n 1 > /dev/null 2>&1
if ["$?" -eq 0]; then
break
fi
sleep 2
done

T="$(($(date +%s)-T))"
echo "took S$T seconds"

rm -f timings-${config}.txt
T="$ (date +%s)"
for 1 in $(seqg 1 SNUM_LOOPS); do
echo -ne "\rRunning read loop $1"
/usr/bin/time -f "%e" -o timings-${config}.txt -a --quiet ./bin/mongo
benchmark --quiet read.js >/dev/null 2>&l

http://www.it-ebooks.info/

286

10.3.5

done

This script also times the startup and shutdown processes of the MongoDB server
instance again, so you can see that it starts up faster with a storage directory that’s
already initialized. Because the script needs to clear the memory caches to get an
accurate timing of cold fetches—that is, fetches that aren’t from the cache, but from
the storage system itself—you’ll need to enter your password to give it sudo access so it

CHAPTER 10 WiredTiger and pluggable storage

done
T="$(($(date +%s)-T))"

echo
echo "Read performance for $config: $T seconds"

echo -ne "Shutting down server... "
T="$ (date +%s)"

./bin/mongo admin --quiet --eval "db.shutdownServer ({force:

dev/null 2>&l

while [1]; do
pgrep -U $USER mongod > /dev/null 2>&l
if ["$?" -eq 1]; then
break
fi
sleep 1
done

T="$(($(date +%s)-T))"
echo "took ST seconds"

can flush the memory cache.

Read performance results

When running the script, you’ll see an output similar to the following:

== RUNNING mmapvl.conf =====

Clearing memory caches

3

Starting up mongod... took 3 seconds
Running read loop 16

Read performance for mmapvl.conf: 33 seconds
Shutting down server... took 1 seconds

== RUNNING wiredtiger-uncompressed.conf =====

Clearing memory caches

3

Starting up mongod... took 2 seconds

Running read loop 16

Read performance for wiredtiger-uncompressed.conf: 23 seconds
Shutting down server... took 2 seconds

== RUNNING wiredtiger-snappy.conf =====

Clearing memory caches

3

Starting up mongod... took 3 seconds

Running read loop 16

Read performance for wiredtiger-snappy.conf: 21 seconds
Shutting down server... took 1 seconds

true})" >/

http://www.it-ebooks.info/

Comparison with MMAPv1 287

===== RUNNING wiredtiger-zlib.conf =====
Clearing memory caches
3

Starting up mongod. ..
Running read loop 16
Read performance for wiredtiger-zlib.conf: 21 seconds
Shutting down server... took 1 seconds

took 2 seconds

The 3’s on their own lines are from the echo to clear the memory caches, so you can
ignore those. You can now clearly see that the startup and shutdown times are similar
for all MongoDB configurations, as shown in table 10.4.

Table 10.4 Comparing shutdown and startup times of various configurations

MMAPv1 WT WT snappy WT zlib
Starting up 3 sec 2 sec 3 sec 2 sec
Read job 33 sec 23 sec 21 sec 21 sec
Shut down 1 sec 2 sec 1 sec 1 sec

The read job took at least 10 seconds longer on the MMAPv1 configuration than on
the WiredTiger configurations. If you check the timings files, you’ll see why. The tim-
ings have been graphed in figure 10.1.

It’s clear that the first iteration took the longest because each subsequent iteration
will take the results directly from the memory cache. For the cold fetch, MMAPvI1 is
clearly the slowest. The compressed configurations of WiredTiger have the best per-
formance during the cold fetch. But for cached results, MMAPv1 is slightly faster than

H MMAPV1
B wWT
15 — B WT-snappy
O wWrT-zlib

10 —

Duration (s)

0 () AT) Y T Y)Y T) T T Y)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iteration

Figure 10.1 The read performance of MMAPv1 and WiredTiger

http://www.it-ebooks.info/

288

CHAPTER 10 WiredTiger and pluggable storage

the WiredTiger alternatives. The graph doesn’t show this clearly, but the timings files
do, and their contents are shown in the table 10.5.

Table 10.5 Timing fetching operations using various storage engines (all times are in seconds)

MMAPv1 WT WT-snappy WT-zlib
1 17.88 7.37 5.67 5.17
2 1.01 1.1 1.05 1.05
3 1 1.05 1.02 1.08
4 1.03 1.03 1.05 1.08
5 0.99 1.07 1.04 1.08
6 1.03 1.03 1.05 1.08
7 0.96 1.06 0.99 1.07
8 0.99 1.08 1.01 1.06
9 0.97 1.03 1.02 1.03
10 0.96 1.03 1.03 1.03
11 0.99 1.03 1.06 1.06
12 1.01 1.07 1.06 1.07
13 0.98 1.04 1.08 1.06
14 1.01 1.08 1.03 1.07
15 1.08 1.05 1.05 1.05
16 1.02 1.06 1.04 1.06

10.3.6 Benchmark conclusion

How much better is WiredTiger is than MMAPvI in different aspects? You've seen the
server startup and shutdown times, the insertion of thousands of averagely sized docu-
ments, and the fetching and iterating through these documents, repeatedly. You’ve
also looked at the disk use of the storage directories.

You haven’t tested how the MongoDB instances perform when there are several cli-
ents connecting and making requests at the same time. You also haven’t tested the ran-
dom search and filtering performances. These two are what happens most in a real-
world example, and require a more complicated benchmark testing setup than what is
used in this chapter. We hope that the benchmark examples give you some insight into
how you want to benchmark the other aspects of the MongoDB installations.

From the results in this chapter, you can conclude that there’s a tremendous gain
to be had in terms of disk use. For small-scale applications where resource use is a con-
cern, this will be the deciding factor, and you should go with a compressed version of
WiredTiger. The zlib version will give the best performance-versus-cost ratio. For critical

http://www.it-ebooks.info/

Other examples of pluggable storage engines 289

applications where extra storage cost is worthwhile, the WiredTiger configuration with-
out compression, or, if needed, using the snappy compression algorithm, will give
slightly better speeds over the zlib configuration.

Even when disk storage isn’t an issue for enterprise users, the speed of cold fetches
will often be an important factor. This is especially true for social network sites where
every visitor will have specific filters, so that cache misses will often occur.

Again, remember that the benchmarks in this chapter aren’t totally representative
of real-world situations, and therefore no hard conclusions should be drawn from the
results of these benchmarks. But we hope that these benchmarks will give you a basic
idea of what you can do with the data in your application, and that you’ll be able to
tune the benchmark scripts to best match the workload in your application. This way
you’ll be able to draw better conclusions as to what storage engine is better for your
application’s specific use case.

There are also several other environmental factors that depend on the hardware
and software (OS kernel) configuration of your system. They haven’t been taken into
account in this chapter, but they may affect the performance of these benchmarks.
When comparing storage engines, one should remember to fix all the environmental
factors, even though some storage systems may perform better with a certain operat-
ing system setting, which may have a negative effect on other storage systems. There-
fore, you should be cautious when drawing conclusions from such benchmarks.

10.4 Other examples of pluggable storage engines

We talked about WiredTiger in the previous sections and how it performs against
MMAPv1 in terms of disk use and read/write speeds. In this section we’ll introduce you
to several other storage engines that are available.

An example is RocksDB, developed by Fac, and based on Google’s Level DB
with significant inspiration from Apache’s Hbase. RocksDB is a key-value store that was
developed to exploit the full potential of high read/write rates offered by Flash or
RAM subsystems to offer low-latency database access by using an LSM tree engine.’
This makes RocksDB a good storage plugin for applications that need high write per-
formance, such as social media applications. MongoDB can be built with RocksDB sup-
port so that you can also enjoy the performance of RocksDB. For more information on
how to do this, check out the announcement on the RocksDB blog.*

Tokutek’s TokuFT (formerly known as TokuKV) is another key-value store that uses
fractal tree indexing” instead of the default B-tree data structure used in WiredTiger.

® Log Structure Merge trees are data structures that outperform B-trees in the most useful record updating sce-
narios. The WiredTiger team compared B-trees vs. LSM trees: https://github.com/wiredtiger/wiredtiger/
wiki/Btree-vs-LSM. For more information on LSM trees, see https://en.wikipedia.org/wiki/Log-structured
_merge-tree.

6 See http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/ for more information.

7 TFractal tree indexing is a Tokutek innovation that keeps write performance consistent while your data set
grows larger. See http://www.tokutek.com/resources/technology/.

https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM
https://github.com/wiredtiger/wiredtiger/wiki/Btree-vs-LSM
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
http://rocksdb.org/blog/1967/integrating-rocksdb-with-mongodb-2/
http://www.tokutek.com/resources/technology/
http://www.it-ebooks.info/

290

10.5

10.5.1

CHAPTER 10 WiredTiger and pluggable storage

Before MongoDB version 3.0, Tokutek offered a fork of MongoDB called TokuMX,
which uses their TokuFT technology as the storage engine. Because MongoDB supports
pluggable storage engines, Tokutek is offering a storage engine—only solution based
on the MongoDB Pluggable Storage API, called TokuMXse,® where se stands for stor-
age engine. While the TokuMX fork incorporates many features, such as clustering
indexes and fast read-free updates by updating the MongoDB codebase, the TokuMXse
version can’t have them because of how the Pluggable Storage Engine API is currently
designed. In this sense, TokuMXse will empower your standard MongoDB installation
with reliably high-performance storage and compression.

Tokutek has been acquired by Percona, so all the TokuFTrelated development will
be done by Percona. Percona has announced an experimental build of MongoDB
using TokuMXse.”

A last example that’s familiar to MySQL users is InnoDB. This engine is used by
MySQL as an alternative to the sequential MyISAM storage engine. InnoDB makes use
of a transaction log that’s replayed when a crash has occurred to get the latest opera-
tions from before the crash synchronized to disk, similar to how journaling works in
WiredTiger and MMAPv]. MyISAM has to go through the whole database after a crash
to repair any indexes or tables that haven’t been flushed to disk, and as the database
grows in size, this has an impact on the availability of the database. InnoDB doesn’t
have that problem and therefore offers better availability on bigger databases. The
InnoDB technology isn’t partial to MySQL. There’s a fork from InnoDB called XtraDB,
which is used by MariaDB, and it’s possible that there will be an InnoDB module for
MongoDB in the future.

Advanced topics

In this section we’ll talk about the more advanced topics to get a better understanding
of how storage engines work and why there are so many different ones with different
technologies out there. The material covered in this section is absolutely not neces-
sary to get a MongoDB instance running with one of the storage engines, but provides
nice background information for those who are curious to know more.

How does a pluggable storage engine work?

The MongoDB source code comes with special classes to deal with storage modules. At
the time of writing, the MongoDB source code was exposing the following classes:

m StorageEngine—A virtual class that forms the basis of the storage engines
= MMAPV1Engine—The MMAPvI storage engine plugin class
m KVStorageEngine—The key-value-based storage engine class

8 Announced in January 2015 by Tokutek: http://www.tokutek.com/2015/01/announcing-tokumxse-v1-0-0-rc-0/.
9 Percona announcement in May 2015: https://www.percona.com/blog/2015/05/08/mongodb-percona-
tokumxse-experimental-build-rcb-available /.

http://www.tokutek.com/2015/01/announcing-tokumxse-v1-0-0-rc-0/
https://www.percona.com/blog/2015/05/08/mongodb-percona-tokumxse-experimental-build-rc5-available/
https://www.percona.com/blog/2015/05/08/mongodb-percona-tokumxse-experimental-build-rc5-available/
http://www.it-ebooks.info/

Advanced topics 291
» KVEngine—The key-value engine that’s used by the KVStorageEngine class

= MMAPVI1DatabaseCatalogEntry—The catalog entry class for MMAPvl-based
databases

» RecordStore—The base class for record store objects

m RecordStoreVliBase—The base class for MMAPv] record store objects; the
MMAPVI1DatabaseCatalogEntry uses these

® WiredTigerkKVEngine—The WiredTiger engine

m WiredTigerFactory—The factory class that creates a KVStorageEngine that
uses the WiredTigerkKvVEngine class for its key-value engine

® WiredTigerRecordStore—The record store class that’s used by the WiredTi-
gerKVEngine class

You can see these classes in figure 10.2.

DatabaseHolder Database Collection
dbs ;| —dbEntry 1 * | recordstore
openDb _collections insertDocument
close ererreColilcerion deleteDocument RecordStore
get dropCollection uPdateDocument o] insertRecord
getCollection find deleteRecord
getStats updateRecord
findRecord
|
1
\'2
GlobalEnvironmentMongoD DatabaseCatalogEntry
_storageFactories Factory: :create
_storageEngine createCollection
registerStorageEngine dropCollzgtlon
setGlobalStorageEngine GRERTerEEeRe
getGlobalStorageEngine
|
StorageEngine 5 -
! MMAPV1StorageEngine
Factory: :create H
[listDatabases
listDatabases [€-mmmmmmmmmmmeeed ! : getDatabaseCatalogEntry
getDatabaseCatalogEntry H A
i
MMAPV1StorageEngine KVSStorageEngine 5 RocksEngine
listDatabases KVEngine*_engine 1 createRecordStore
getDatabaseCatalogEntry LA e RS |- getDatabaseCatalogEntry
getDatabaseCatalogEntry
WiredTigerKVEngine

createRecordStore
getDatabaseCatalogEntry

Figure 10.2 MongoDB multiple storage engines support mechanisms

http://www.it-ebooks.info/

292

10.5.2

CHAPTER 10 WiredTiger and pluggable storage

There are three levels:

m The storage engine at the top—This works as the interface for MongoDB to the stor-
age plugin.

» The storage management—This is the catalog entry class in the MMAPv1 case, and
the key-value store (KVEngine) in the key-value-based storage engine case.

m The record store—This manages the actual MongoDB data, such as collections
and entries. At this level, it communicates with the actual storage engine for the
CRUD operations.

Together, these levels form the translator, if you will, between how MongoDB sees
their data structures and how the storage engines store them. What MongoDB cares
about is its own data structure—BSON—and its own scripting language based on
JavaScript, which is used by the MongoDB drivers to communicate with MongoDB.
How the data is stored or collected is left to the storage engine.

Data structure

In the MongoDB Pluggable Storage Engine API there are base classes for key-value
storage systems. A key-value storage system is a storage system that guarantees fast
access to the records by looking up the keys in the collection. You can tell the storage
system to index certain keys for faster lookup.

A common data structure for storing such key-value data is a B-tree, which is also
used in the WiredTiger storage plugin. B-trees were invented by Rudolf Bayer and Ed
McCreight while working at Boeing Research Labs. There are speculations that the B
in B-tree stands for Bayer, named after Rudolf Bayer, but others say that it stands for
Boeing, where it was developed. In any case, the origin of the name is a mystery, but
what’s more interesting is how it works.

The power of the B-tree lies in the fact that disk-based storage is done in blocks.
Each piece of data that’s stored on disk is put in a block on the filesystem. In a real-
world situation, these blocks are usually 4 KB in size, which is the default for many file-
systems such as ExtFS and NTFS. A larger block size will allow for much larger files to
be stored on the disk, but then we’re talking about files larger than 4 TB.

A B-tree storage system uses these blocks as its nodes to store the indexes to the
data elements. Each node can hold at most 4096 bytes of index information, and this
index information is basically sorted. In the following examples, assume that each
node can hold at most three indexes, but keep in mind that in a real-world example
that number is much larger.

A B-tree starts with a root node, and within this node, you can store data records
using their keys. These data records may have pointers to the actual value assigned to
the key, or may have that value inside the data record. The more interesting part is
how these records are found, because that’s what needs to be done fast. Each node
has several data records, indexed by an index key, and between each record, there’s a
diamond that’s a placeholder for a pointer to another node containing other data

http://www.it-ebooks.info/

Advanced topics 293

records. The diamond placeholder to the left of the 12 goes to a whole tree of data
records with index values less than 12. Similarly, the whole tree that’s pointed to by
the diamond between 12 and 65 contains records with index values all between 12 and
65. This way, when doing a search, an algorithm will quickly know which node to tra-
verse into.

For this to work well, it’s important that the index keys in each node of a B-tree
structure be sorted. To optimize the disk seek times, it’s preferable to store as much
data as you can within a node that’s optimally the same size as a disk block; in most
real-world examples this size is 4096 bytes.

Imagine an empty database with an empty root node. You start adding records with
certain keys in an arbitrary order, and once the node becomes full, you create new
nodes for the next data records to be added. Let’s say you have the following keys to
be added in this order:

{2,63,42,48, 1, 62, 4, 24, 8, 23, 58, 99, 38, 41, 81, 30, 17, 47, 66 }

Remember that you use a maximum node size of three elements. You’ll have a root
node with the keys shown in figure 10.3, which are the first three elements from the
example sequence, in sorted order.

Figure 10.3 Root node with three elements

When you add the fourth element from the
sequence, which is 48, it will create a new node
between 42 and 63, and put 48 there, because 48

is between 42 and 63. The next element, 1, will o e | e

be in the node before 2, because 1 is less than 2.

Then the next element, 62, will join 48 in its

node, because 62 lies between 42 and 63. The 1

following three keys—4, 24, and 8—will go into 48 62

the node that’s pointed to between 2 and 42,
because these numbers are all between 2 and
42. Within this new node, the keys will be sorted,
as is always the case within nodes. After these 418 |24

first steps, the node tree graph will look like fig-
ure 10.4. Note how the numbers are sorted Figure 10.4 Early version of B-tree
within each node.

You continue along the sequence. The next key, 23, is between 2 and 42 and will go
into the node containing 4, 8, and 24, but because that node is already full, it will go
into a new node between 8 and 24, because 23 is between 8 and 24. Then the next
one, 58, will join 48 and 62. Key 99 will be in a new node pointed to after 63, because

http://www.it-ebooks.info/

294

10.5.3

CHAPTER 10 WiredTiger and pluggable storage

99 is more than 63. Key 38, being between 2 and 42, will visit the node containing 4, 8,
and 24, but because that node is full, it will go into a new node after 24, because 38 is
more than 24. Key 41 joins key 38 in that new node at the second level. Key 81 joins
99, and 30 joins 38 and 41. Key 17 joins key 23 in the second-level node. Key 47 lies
between 42 and 63, and so it goes to the node that holds 48, 58, and 62. Because that
node is already full, it goes a level deeper, into a node before 48. Finally, key 66 will
join 81 and 99, because 66 is more than 63. The final structure will look like figure 10.5,
with the keys in each node in a sorted order.

48 | 58 | 62

47 66 | 81 | 99

Figure 10.5 Final version of B-tree

Because the nodes contain the data in a sorted order, you will find out where you have
to be very quickly. It will also be very fast at adding new records into the tree, as it will
traverse through the tree at the same speed as finding a record, until it finds a free slot
in a node, or until it needs to create a new node from a full node.

Locking

In the early days of MongoDB, locking was done for every connection, on a server
level, using mutexes (mutual exclusions), a mechanism that ensures that multiple cli-
ents or threads can access the same resource—in this case, the database server—but
not simultaneously. This is the worst method of locking, especially if you want to be a
Big Data database engine, accessed by thousands of clients at the same time.

This changed with version 2.2, which is when database-level locking was imple-
mented. The mutexes were applied on databases instead of on the whole MongoDB
server instance, which was an improvement. But MongoDB threads would try to
acquire subsequent write locks in a queue and deal with them in a serial fashion, let-
ting the threads continue whenever the currently locking thread released its lock.
While in a small-sized database, this can be rather fast, without any significant perfor-
mance impact; in larger databases with thousands of write requests per second, this
will become problematic and degrade the application’s performance.

http://www.it-ebooks.info/

10.6

Summary 295

This changed with MongoDB version 3.0, which introduced collection-level lock-
ing for the MMAPv] storage engine. This moved the locking mechanism a level lower,
to collections. This means that multiple requests will be served simultaneously, with-
out blocking each other, as long as they’re writing into different collections.

With WiredTiger in version 3.0, MongoDB also supports document-level locking.
This is an even more granular level of locking—multiple requests can now access the
same collection simultaneously without blocking each other, as long as they aren’t
writing into the same document.

Summary

MongoDB version 3.0 introduced the concept of a pluggable storage engine architec-
ture, and in this chapter you’ve seen what this entails and what it means for the system
administrator or the application developer working with MongoDB. A real-world com-
parison has been given between a news site and a social network platform, both having
different requirements for their database systems.

We compared the default engine that MongoDB used in previous versions,
MMAPv1, with the newly bundled WiredTiger engine. WiredTiger performs well in
both read and write operations, and offers document-level locking, whereas MMAPv1
doesn’t go further than collection-level locking. WiredTiger isn’t as greedy as MMAPv1
in terms of disk use, and it makes MongoDB a viable database system, even for small-
scale applications. While MMAPv] may be faster in certain situations, the performance
versus cost ratio that WiredTiger offers far outweighs the performance versus cost
ratio for MMAPv].

While this comparison is based on a simple benchmark kit to give you a general
idea of what benchmarking scripts do, it should give you insight into how to do your
own benchmarks specific to your application’s use case. The benchmarks are simple
without taking into account several environmental factors, such as the hardware and
software (OS kernel) configuration of your system. Tweaking these may affect the
results of your benchmarks, so be cautious when comparing the results of the differ-
ent storage engines.

You also learned about a few other storage engine platforms such as RocksDB and
TokuFT, both of which are still in the experimental phase, but offer interesting fea-
tures, because RocksDB is based on LSM trees and TokuFT is based on fractal trees. It
will be interesting to see how they perform against WiredTiger in different situations.

You also read about some advanced concepts that come into play when designing a
storage engine. Maximizing read and write performance, minimizing disk I/0, and
offering optimal concurrency by using smart locking mechanisms on higher levels all
play a crucial role in developing a storage engine.

Enough with the theory; the topic of the next chapter is used in true production
databases—replication.

http://www.it-ebooks.info/

Replication

This chapter covers

Understanding basic replication concepts
Connecting a driver to a replica set
Administering replica sets and handling failover
Increasing the durability of writes with write
concerns

Optimizing your reads with the read preference
Managing complex replica sets using tagging

Replication is central to most database management systems because of one inevita-
ble fact: failures happen. If you want your live production data to be available even
after a failure, you need to be sure that your production databases are available on
more than one machine. Replication provides data protection, high availability,
and disaster recovery.

We’ll begin this chapter by introducing replication and discussing its main use
cases. Then we’ll cover MongoDB’s replication through a detailed study of replica
sets. Finally, we’ll describe how to connect to replicated MongoDB clusters using the
drivers, how to use write concerns, and how to load-balance reads across replicas.

296

http://www.it-ebooks.info/

11.1

11.1.1

Replication overview 297

Replication overview

Replication is the distribution and maintenance of data across multiple MongoDB
servers (nodes). MongoDB can copy your data to one or more nodes and constantly
keep them in sync when changes occur. This type of replication is provided through a
mechanism called replica sets, in which a group of nodes are configured to automati-
cally synchronize their data and fail over when a node disappears. MongoDB also
supports an older method of replication called master-slave, which is now considered
deprecated, but master-slave replication is still supported and can be used in MongoDB
v3.0. For both methods, a single primary node receives all writes, and then all second-
ary nodes read and apply those writes to themselves asynchronously.

Master-slave replication and replica sets use the same replication mechanism, but
replica sets additionally ensure automated failover: if the primary node goes offline
for any reason, one of the secondary nodes will automatically be promoted to pri-
mary, if possible. Replica sets provide other enhancements too, such as easier recov-
ery and more sophisticated deployment topologies. For these reasons you’d rarely
want to use simple master-slave replication.! Replica sets are thus the recommended
replication strategy for production deployments; we’ll devote the bulk of this chap-
ter to explanations and examples of replica sets, with only a brief overview of master-
slave replication.

It’s also important to understand the pitfalls of replication, most importantly the
possibility of a rollback. In a replica set, data isn’t considered truly committed until it’s
been written to a majority of member nodes, which means more than 50% of the serv-
ers; therefore, if your replica set has only two servers, this means that no server can be
down. If the primary node in a replica set fails before it replicates its data, other mem-
bers will continue accepting writes, and any unreplicated data must be rolled back,
meaning it can no longer be read. We’ll describe this scenario in detail next.

Why replication matters

All databases are vulnerable to failures of the environments in which they run. Repli-
cation provides a kind of insurance against these failures. What sort of failure are we
talking about? Here are some of the more common scenarios:

= The network connection between the application and the database is lost.

= Planned downtime prevents the server from coming back online as expected.
Most hosting providers must schedule occasional downtime, and the results of
this downtime aren’t always easy to predict. A simple reboot will keep a data-
base server offline for at least a few minutes. Then there’s the question of what
happens when the reboot is complete. For example, newly installed software or

! The only time you should opt for MongoDB’s master-slave replication is when you’d require more than 51
slave nodes, because a replica set can have no more than 50 members, which should never happen under nor-
mal circumstances.

http://www.it-ebooks.info/

298

11.1.2

CHAPTER 11 Replication

hardware can prevent MongoDB or even the operating system from starting
up properly.

= There’s a loss of power. Although most modern datacenters feature redundant
power supplies, nothing prevents user error within the datacenter itself or an
extended brownout or blackout from shutting down your database server.

= A hard drive fails on the database server. Hard drives have a mean time to failure
of a few years and fail more often than you might think.? Even if it’s acceptable
to have occasional downtime for your MongoDB, it’s probably not acceptable to
lose your data if a hard drive fails. It’s a good idea to have at least one copy of
your data, which replication provides.

In addition to protecting against external failures, replication has been particularly
important for MongoDB’s durability. When running without journaling enabled,
MongoDB’s data files aren’t guaranteed to be free of corruption in the event of an
unclean shutdown—with journaling enabled data files can’t get corrupted. Without
journaling, replication should always be run to guarantee a clean copy of the data files
if a single node shuts down hard.

Of course, replication is desirable even when running with journaling. After all,
you still want high availability and fast failover. In this case, journaling expedites
recovery because it allows you to bring failed nodes back online simply by replaying
the journal. This is much faster than resyncing from an existing replica to recover
from failure.

It’s important to note that although they’re redundant, replicas aren’t a replace-
ment for backups. A backup represents a snapshot of the database at a particular time
in the past, whereas a replica is always up to date. There are cases where a data set is
large enough to render backups impractical, but as a general rule, backups are pru-
dent and recommended even when running with replication. In other words, backups
are there in case of a logical failure such as an accidental data loss or data corruption.

We highly recommend running a production MongoDB instance with both repli-
cation and journaling, unless you’re prepared to lose data; to do otherwise should
be considered poor deployment practice. When (not if) your application experi-
ences a failure, work invested in thinking through and setting up replication will
pay dividends.

Replication use cases and limitations

You may be surprised at how versatile a replicated database can be. In particular, repli-
cation facilitates redundancy, failover, maintenance, and load balancing. Let’s take a
brief look at each of these use cases.

Replication is designed primarily for redundancy. It ensures that replicated nodes
stay in sync with the primary node. These replicas can live in the same datacenter as

2 You can read a detailed analysis of consumer hard drive failure rates in Google’s article “Failure Trends in a
Large Disk Drive Population” (http://research.google.com/archive/disk_failures.pdf).

http://research.google.com/archive/disk_failures.pdf
http://www.it-ebooks.info/

Replication overview 299

the primary, or they can be distributed geographically as an additional failsafe. Because
replication is asynchronous, any sort of network latency or partition between nodes
will have no effect on the performance of the primary. As another form of redun-
dancy, replicated nodes can also be delayed by a constant number of seconds, min-
utes, or even hours behind the primary. This provides insurance against the case
where a user inadvertently drops a collection or an application somehow corrupts the
database. Normally, these operations will be replicated immediately; a delayed replica
gives administrators time to react and possibly save their data.

Another use case for replication is failover. You want your systems to be highly
available, but this is possible only with redundant nodes and the ability to switch over
to those nodes in an emergency. Conveniently, MongoDB’s replica sets almost always
make this switch automatically.

In addition to providing redundancy and failover, replication simplifies mainte-
nance, usually by allowing you to run expensive operations on a node other than the
primary. For example, it’s common practice to run backups on a secondary node to
keep unnecessary load off the primary and to avoid downtime. Building large indexes
is another example. Because index builds are expensive, you may opt to build on a
secondary node first, swap the secondary with the existing primary, and then build
again on the new secondary.

Finally, replication allows you to balance reads across replicas. For applications
whose workloads are overwhelmingly read-heavy, this is the easiest, or if you prefer,
the most naive, way to scale MongoDB. But for all its promise, a replica set doesn’t
help much if any of the following apply:

= The allotted hardware can’t process the given workload. As an example, we
mentioned working sets in the previous chapter. If your working data set is
much larger than the available RAM, then sending random reads to the second-
aries likely won’t improve your performance as much as you might hope. In this
scenario, performance becomes constrained by the number of I/O operations
per second (IOPS) your disk can handle—generally around 80-100 for non-SSD
hard drives. Reading from a replica increases your total IOPS, but going from
100 to 200 TOPS may not solve your performance problems, especially if writes
are occurring at the same time and consuming a portion of that number. In this
case, sharding may be a better option.

= The ratio of writes to reads exceeds 50%. This is an admittedly arbitrary ratio,
but it’s a reasonable place to start. The issue here is that every write to the pri-
mary must eventually be written to all the secondaries as well. Therefore, direct-
ing reads to secondaries that are already processing a lot of writes can
sometimes slow the replication process and may not result in increased read
throughput.

= The application requires consistent reads. Secondary nodes replicate asynchro-
nously and therefore aren’t guaranteed to reflect the latest writes to the pri-
mary node. In pathological cases, secondaries can run hours behind. As we’ll

http://www.it-ebooks.info/

300

11.2

11.2.1

CHAPTER 11 Replication

explain later, you can guarantee your writes go to secondaries before returning
to the driver, but this approach carries a latency cost.

Replica sets are excellent for scaling reads that don’t require immediate consistency,
but they won’t help in every situation. If you need to scale and any of the preceding
conditions apply, then you’ll need a different strategy, involving sharding, augmented
hardware, or some combination of the two.

Replica sets

Replica sets are the recommended MongoDB replication strategy. We’ll start by con-
figuring a sample replica set. We’ll then describe how replication works because this
knowledge is incredibly important for diagnosing production issues. We’ll end by
discussing advanced configuration details, failover and recovery, and best deploy-
ment practices.

Setup

The minimum recommended replica set configuration consists of three nodes,
because in a replica set with only two nodes you can’t have a majority in case the pri-
mary server goes down. A three-member replica set can have either three members
that hold data or two members that hold data and an arbiter. The primary is the only
member in the set that can accept write operations. Replica set members go through
a process in which they “elect” a new master by voting. If a primary becomes unavail-
able, elections allow the set to recover normal operations without manual interven-
tion. Unfortunately, if a majority of the replica set is inaccessible or unavailable, the
replica set cannot accept writes and all remaining members become read-only. You
may consider adding an arbiter to a replica set if it has an equal number of nodes in
two places where network partitions between the places are possible. In such cases,
the arbiter will break the tie between the two facilities and allow the set to elect a
new primary.

In the minimal configuration, two of these three nodes serve as first-class, persis-
tent mongod instances. Either can act as the replica set primary, and both have a full
copy of the data. The third node in the set is an arbiter, which doesn’t replicate data
but merely acts as a kind of observer. Arbiters are lightweight mongod servers that par-
ticipate in the election of a primary but don’t replicate any of the data. You can see an
illustration of the replica set you’re about to set up in figure 11.1. The arbiter is
located at the secondary data center on the right.

Now let’s create a simple three-node replica set to demonstrate how to do it. Nor-
mally you would create a replica set with each member on a separate machine. To keep
this tutorial simple, we’re going to start all three on a single machine. Each MongoDB
instance we start is identified by its hostname and its port; running the set locally
means that when we connect, we’ll use the local hostname for all three and start each
on a separate port.

http://www.it-ebooks.info/

Replica sets 301

Primary datacenter Secondary datacenter

Secondary ™. _

Replication Ping : Arbiter

L Figure 11.1 A basic
Primary replica set consisting of
a primary, a secondary,
and an arbiter

Begin by creating a data directory for each replica set member:

mkdir ~/nodel
mkdir ~/node2
mkdir ~/arbiter

Next, start each member as a separate mongod. Because you’ll run each process on the
same machine, it’s easiest to start each mongod in a separate terminal window:
mongod --replSet myapp --dbpath ~/nodel --port 40000

mongod --replSet myapp --dbpath ~/node2 --port 40001
mongod --replSet myapp --dbpath ~/arbiter --port 40002

Note how we tell each mongod that it will be a member of the myapp replica set and that
we start each mongod on a separate port. If you examine the mongod log output, the
first thing you’ll notice are error messages saying that the configuration can’t be found.
This is completely normal:
[rsStart] replSet info you may need to run replSetInitiate

-- rs.initiate() in the shell -- if that is not already done

[rsStart] replSet can't get local.system.replset config from self
or any seed (EMPTYCONFIG)

On MongoDB v3.0 the log message will be similar to the following:

2015-09-15T16:27:21.088+0300 I REPL [initandlisten] Did not find local
replica set configuration document at startup; NoMatchingDocument Did not
find replica set configuration document in local.system.replset

To proceed, you need to configure the replica set. Do so by first connecting to one of
the non-arbiter mongods just started. These instances aren’t running on MongoDB’s
default port, so connect to one by running

mongo --port 40000

http://www.it-ebooks.info/

302

CHAPTER 11 Replication

These examples were produced running these mongod processes locally, so you'll see the
name of the example machine, iron, pop up frequently; substitute your own hostname.
Connect, and then run the rs.initiate () command:®

> rs.initiate()

{

"info2" : "no configuration explicitly specified -- making one",
"me" : "iron.local:40000",

"info" : "Config now saved locally. Should come online in about a
minute.",

n Ok n : 1

On MongoDB v3.0 the output will be similar to the following:
{

"info2" : "no configuration explicitly specified -- making one",
"me" : "iron.local:40000",
"ok" : 1

Within a minute or so, you’ll have a one-member replica set. You can now add the
other two members using rs.add ():

rs.add("iron.local:40001")

>

{ mok" : 1}

> rs.add("iron.local:40002", {arbiterOnly: true})
{ mok" : 1}

On MongoDB v3.0 you can also add an arbiter with the following command:

> rs.addArb("iron.local:40002")
{ "ok : 1}

Note that for the second node, you specify the arbiterOnly option to create an arbi-
ter. Within a minute, all members should be online. To get a brief summary of the rep-
lica set status, run the db.isMaster () command:

> db.isMaster ()

{

"setName" : "myapp",
"ismaster" : true,
"secondary" : false,
"hosts" : [

"iron.local:40001",
"iron.local:40000"
1,

3

Some users have reported trouble with this step because they have the line bind_ip = 127.0.0.1 in their

mongod.conf file at /etc/mongod.conf or /usr/local/etc/mongod.conf. If initiating the replica set prints an
error, look for and remove that configuration.

http://www.it-ebooks.info/

The same command produces the following output on a MongoDB v3.0 machine:

"arbiters" : [
"iron.local:40002"

1,

"primary"

"me"

nok"

Replica sets

"iron.local:40000",

"iron.local:40000",
"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,
"localTime"

1

ISODate("2013-11-06T05:53:25.5382Z"),

myapp : PRIMARY> db.isMaster ()

{

"setName"

"setVersion"
"ismaster"

"secondary"
"hosts" : [
"iron.local:40000",
"iron.local:40001"

1,

"arbiters"
"iron.local:40002"

1,

"myapp",
5,
true,
false,

[

"primary" "iron.local:40000",

"me" "iron.local:40000",

"electionId" ObjectId("55f81dd44a50a0le0e3bdede"),
"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,
"maxWriteBatchSize" : 1000,

"localTime" ISODate("2015-09-15T13:37:13.7982"),
"maxWireVersion" : 3,

"minWireVersion" : 0,

"ok"™ : 1

303

A more detailed view of the system is provided by the rs.status () method. You’ll see

state information for each node. Here’s the complete status listing:

>

{

rs.status ()

ISODate ("2013-11-07T17:01:292"),

iron.local:40000",
1,
1,

"get" n myapp ",
I|datel|
"myState" : 1,
"members" : [
n idvl . 0 ,
l|;ame n : n
"health"
"state"
"stateStr"

"uptime"

"PRIMARY",
1099,

http://www.it-ebooks.info/

304 CHAPTER 11 Replication

"optime" : Timestamp (1383842561, 1),
"optimeDate" : ISODate("2013-11-07T16:42:41Z2"),
"self" : true
1
{
"oidr - 1,
"name" : "iron.local:40001",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 1091,
"optime" : Timestamp (1383842561, 1),
"optimeDate" : ISODate("2013-11-07T16:42:41z"),
"lastHeartbeat" : ISODate("2013-11-07T17:01:292"),
"lastHeartbeatRecv" : ISODate("2013-11-07T17:01:292Z"),
"pingMs" : 0,
"lastHeartbeatMessage" : "syncing to: iron.local:40000",
"syncingTo" : "iron.local:40000"
1
{
voidn o2,
"nmame" : "iron.local:40002",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 1089,
"lastHeartbeat" : ISODate("2013-11-07T17:01:292"),
"lastHeartbeatRecv" : ISODate("2013-11-07T17:01:292Z"),
"pingMs" : 0
}
1,
"ok" : 1
}
The rs.status () command produces a slightly different output on a MongoDB v3.0
SE€rver:
{
"set" : "myapp",
"date" : ISODate("2015-09-15T13:41:58.7722Z"),
"myState" : 1,
"members" : [
{
"oid" . 0,
"name" : "iron.local:40000",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"yptime" : 878,
"optime" : Timestamp (1442324156, 1),
"optimeDate" : ISODate("2015-09-15T13:35:562"),
"electionTime" : Timestamp (1442323924, 2),
"electionDate" : ISODate("2015-09-15T13:32:042"),

"configVersion" : 5,

http://www.it-ebooks.info/

"self" : true
b
{ "oid" - 1,
"name" : "iron.local:40001",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 473,
"optime" : Timestamp (1442324156, 1),
"optimeDate" : ISODate("2015-09-15T13:35:56Z"),
"lastHeartbeat" : ISODate("2015-09-15T13:41:56.8192"),
"lastHeartbeatRecv" ISODate ("2015-09-15T13:41:57.3962"),
"pingMs" : 0,
"syncingTo" : "iron.local:40000",
"configVersion" : 5
1
{ "oidr - 2,
"name" : "iron.local:40002",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 360,
"lastHeartbeat" : ISODate("2015-09-15T13:41:57.6762"),
"lastHeartbeatRecv" ISODate ("2015-09-15T13:41:57.676Z"),
"pingMs" : 10,
"configVersion" : 5

1,
nok" i 1

Replica sets

305

Unless your MongoDB database contains a lot of data, the replica set should come
online within 30 seconds. During this time, the statesStr field of each node should
transition from RECOVERING to PRIMARY, SECONDARY, or ARBITER.

Now even if the replica set status claims that replication is working, you may want

to see some empirical evidence of this. Go ahead and connect to the primary node

with the shell and insert a document:

$ mongo --port
myapp : PRIMARY >
switched to db
myapp : PRIMARY >
myapp : PRIMARY >

40000

use bookstore

bookstore

db.books.insert ({title: "Oliver Twist"})
show dbs

bookstore 0.203125GB
local 0.203125GB

Notice how the MongoDB shell prints out the replica set membership status of the
instance it’s connected to.

http://www.it-ebooks.info/

306

CHAPTER 11 Replication

Initial replication of your data should occur almost immediately. In another termi-
nal window, open a new shell instance, but this, time point it to the secondary node.
Query for the document just inserted; it should have arrived:

$ mongo --port 40001

myapp : SECONDARY> show dbs

bookstore 0.203125GB

local 0.203125GB

myapp : SECONDARY> use bookstore

switched to db bookstore

myapp : SECONDARY> rs.slaveOk ()

myapp : SECONDARY> db.books.find ()

{ "_id" : ObjectId("4d42ebf28e3c0c32c06bdf20"), "title" : "Oliver Twist" }

If replication is working as displayed here, you’ve successfully configured your rep-
lica set. By default, MongoDB attempts to protect you from accidentally querying a
secondary because this data will be less current than the primary, where writes
occur. You must explicitly allow reads from the secondary in the shell by running
rs.slaveOk().

It should be satisfying to see replication in action, but perhaps more interesting is
automated failover. Let’s test that now and kill a node. You could kill the secondary,
but that merely stops replication, with the remaining nodes maintaining their current
status. If you want to see a change of system state, you need to kill the primary. If the
primary is running in the foreground of your shell, you can kill it by pressing Ctrl-C; if
it’s running in the background, then get its process ID from the mongod.lock file in
~/nodel and run kill -3 <process id>. You can also connect to the primary using the
shell and run commands to shut down the server:

$ mongo --port 40000

PRIMARY> use admin
PRIMARY> db.shutdownServer ()

Once you’ve killed the primary, note that the secondary detects the lapse in the pri-
mary’s heartbeat. The secondary then elects itself primary. This election is possible
because a majority of the original nodes (the arbiter and the original secondary) are
still able to ping each other. Here’s an excerpt from the secondary node’s log:

Thu Nov 7 09:23:23.091 [rsHealthPoll] replset info iron.local:40000
heartbeat failed, retrying

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet info iron.local:40000
is down (or slow to respond) :

Thu Nov 7 09:23:23.091 [rsHealthPoll] replSet member iron.local:40000
is now in state DOWN

Thu Nov 7 09:23:23.092 [rsMgr] replSet info electSelf 1

Thu Nov 7 09:23:23.202 [rsMgr] replSet PRIMARY

http://www.it-ebooks.info/

11.2.2

Replica sets 307

If you connect to the new primary node and check the replica set status, you'll see that
the old primary is unreachable:

$ mongo --port 40001

> rs.status()

K

" id" : 0,

"name" : "iron.local:40000",

"health" : 0,

"state" : 8,

"stateStr" : " (not reachable/healthy)",

"uptime" : 0,

"optime" : Timestamp (1383844267, 1),

"optimeDate" : ISODate("2013-11-07T17:11:072"),
"lastHeartbeat" : ISODate("2013-11-07T17:30:00Z"),
"lastHeartbeatRecv" : ISODate("2013-11-07T17:23:212"),
"pingMs" : 0

b

Post-failover, the replica set consists of only two nodes. Because the arbiter has no
data, your application will continue to function as long as it communicates with the
primary node only.* Even so, replication isn’t happening, and there’s now no possibil-
ity of failover. The old primary must be restored. Assuming that the old primary was
shut down cleanly, you can bring it back online, and it’ll automatically rejoin the rep-
lica set as a secondary. Go ahead and try that now by restarting the old primary node.

That’s a quick overview of replica sets. Some of the details are, unsurprisingly,
messier. In the next two sections, you’ll see how replica sets work and look at deploy-
ment, advanced configuration, and how to handle tricky scenarios that may arise in
production.

How replication works

Replica sets rely on two basic mechanisms: an oplog and a heartbeat. The oplog enables
the replication of data, and the heartbeat monitors health and triggers failover. You’ll
now see how both of these mechanisms work in turn. You should begin to understand
and predict replica set behavior, particularly in failure scenarios.

ALL ABOUT THE OPLOG

At the heart of MongoDB’s replication stands the oplog. The oplog is a capped collec-
tion that lives in a database called local on every replicating node and records all
changes to the data. Every time a client writes to the primary, an entry with enough
information to reproduce the write is automatically added to the primary’s oplog.
Once the write is replicated to a given secondary, that secondary’s oplog also stores a

* Applications sometimes query secondary nodes for read scaling. If that’s happening, this kind of failure will
cause read failures,sSo it’s important to design your application with failover in mind. More on this at the end
of the chapter.

http://www.it-ebooks.info/

308

CHAPTER 11 Replication

record of the write. Each oplog entry is identified with a BSON timestamp, and all sec-
ondaries use the timestamp to keep track of the latest entry they’ve applied.’

To better see how this works, let’s look more closely at a real oplog and at the oper-
ations recorded in it. First connect with the shell to the primary node started in the
previous section and switch to the local database:

myapp: PRIMARY> use local
switched to db local

The local database stores all the replica set metadata and the oplog. Naturally, this
database isn’t replicated itself. Thus it lives up to its name; data in the local database
is supposed to be unique to the local node and therefore shouldn’t be replicated.

If you examine the local database, you'll see a collection called oplog.rs, which is
where every replica set stores its oplog. You'll also see a few system collections. Here’s
the complete output:

myapp : PRIMARY> show collections
me

oplog.rs

replset.minvalid

slaves

startup_log

system. indexes

system.replset

replset.minvalid contains information for the initial sync of a given replica set
member, and system.replset stores the replica set config document. Not all of your
mongod servers will have the replset.minvalid collection. me and slaves are used to
implement write concerns, described at the end of this chapter, and system. indexes
is the standard index spec container.

First we’ll focus on the oplog. Let’s query for the oplog entry corresponding to the
book document you added in the previous section. To do so, enter the following
query. The resulting document will have four fields, and we’ll discuss each in turn:

> db.oplog.rs.findOne ({op: "i"})
{
"ts" : Timestamp (1383844267, 1),
"h" : NumberLong("-305734463742602323"),
llvll : 2’
llopll : "i",
"ns" : "bookstore.books",
non o . {
"_id" : ObjectId("527bc9aac2595£18349e4154"),
"title" : "Oliver Twist"

5 The BSON timestamp is a unique identifier consisting of the number of seconds since the epoch and an incre-
menting counter. For more details, see http://en.wikipedia.org/wiki/Unix_time.

http://en.wikipedia.org/wiki/Unix_time
http://www.it-ebooks.info/

Replica sets 309

The first field, ts, stores the entry’s BSON timestamp. The timestamp includes two
numbers; the first representing the seconds since epoch and the second representing
a counter value—1 in this case. To query with a timestamp, you need to explicitly con-
struct a timestamp object. All the drivers have their own BSON timestamp construc-
tors, and so does JavaScript. Here’s how to use it:

db.oplog.rs.findOne ({ts: Timestamp (1383844267, 1)})

Returning to the oplog entry, the op field specifies the opcode. This tells the second-
ary node which operation the oplog entry represents. Here you see an i, indicating an
insert. After op comes ns to signify the relevant namespace (database and collection)
and then the lowercase letter o, which for insert operations contains a copy of the
inserted document.

As you examine oplog entries, you may notice that operations affecting multiple
documents are analyzed into their component parts. For multi-updates and mass
deletes, a separate entry is created in the oplog for each document affected. For
example, suppose you add a few more Dickens books to the collection:
myapp : PRIMARY> use bookstore

myapp : PRIMARY> db.books.insert ({title: "A Tale of Two Cities"})
myapp: PRIMARY> db.books.insert ({title: "Great Expectations"})

Now with four books in the collection, let’s issue a multi-update to set the author’s name:
myapp: PRIMARY> db.books.update ({}, {$set: {author: "Dickens {multi:true})

How does this appear in the oplog?

myapp : PRIMARY> use local
myapp: PRIMARY> db.oplog.rs.find({op: "u"})

{

"ts" : Timestamp (1384128758, 1),
"h" : NumberLong ("5431582342821118204"),
nynoso2,
"op" : "u",
"ns" : "bookstore.books",
"o2m ¢ {
"_id" : ObjectId("527bc9aac2595£18349e4154")
¥
"om ;o
"Sset" : |
"author" : "Dickens"
1
1
1
{
"ts" : Timestamp (1384128758, 2),
"h" : NumberLong ("3897436474689294423"),
o2,
"op" : "u",

"ns" : "bookstore.books",

http://www.it-ebooks.info/

310 CHAPTER 11 Replication

noon . {

" id" : ObjectId("528020a9f3f61863aba207e7")
b
non o {

"Sset" @

"author" : "Dickens"

}

}
}
{

"ts" : Timestamp (1384128758, 3),
"h" : NumberLong ("2241781384783113"),
llvll : 2’
"Op" : "Ll",
"ng" : "bookstore.books",
noon . {

"7id" : ObjectId("528020a9f3f61863aba207e8")
I
non o {

"Sset" @

"author" : "Dickens"

}
}
}

As you can see, each updated document gets its own oplog entry. This normalization is
done as part of the more general strategy of ensuring that secondaries always end up
with the same data as the primary. To guarantee this, every applied operation must be
idempotent—it can’t matter how many times a given oplog entry is applied. The result
must always be the same. But the secondaries must apply the oplog entries in the same
order as they were generated for the oplog. Other multidocument operations, like
deletes, will exhibit the same behavior. You can try different operations and see how
they ultimately appear in the oplog.

To get some basic information about the oplog’s current status, you can run the
shell’s db.getReplicationInfo () method:

myapp: PRIMARY> db.getReplicationInfo ()

"logSizeMB" : 192,

"usedMB" : 0.01,

"timeDiff" : 286197,

"timeDiffHours" : 79.5,

"tFirst" : "Thu Nov 07 2013 08:42:41 GMT-0800 (PST)",
"tLast" : "Sun Nov 10 2013 16:12:38 GMT-0800 (PST)",
"now" : "Sun Nov 10 2013 16:19:49 GMT-0800 (PST)"

Here you see the timestamps of the first and last entries in this oplog. You can find
these oplog entries manually by using the $natural sort modifier. For example, the
following query fetches the latest entry:

db.oplog.rs.find () .sort ({$natural: -1}) .limit (1)

http://www.it-ebooks.info/

Replica sets 311

The only important thing left to understand about replication is how the secondaries
keep track of their place in the oplog. The answer lies in the fact that secondaries also
keep an oplog. This is a significant improvement upon master-slave replication, so it’s
worth taking a moment to explore the rationale.

Imagine you issue a write to the primary node of a replica set. What happens next?
First, the write is recorded and then added to the primary’s oplog. Meanwhile, all sec-
ondaries have their own oplogs that replicate the primary’s oplog. When a given second-
ary node is ready to update itself, it does three things. First, it looks at the timestamp
of the latest entry in its own oplog. Next, it queries the primary’s oplog for all entries
greater than that timestamp. Finally, it writes the data and adds each of those entries
to its own oplog.® This means that in case of failover, any secondary promoted to pri-
mary will have an oplog that the other secondaries can replicate from. This feature
essentially enables replica set recovery.

Secondary nodes use long polling to immediately apply new entries from the pri-
mary’s oplog. Long polling means the secondary makes a long-lived request to the
primary. When the primary receives a modification, it responds to the waiting
request immediately. Thus, secondaries will usually be almost completely up to date.
When they do fall behind because of network partitions or maintenance on second-
aries, the latest timestamp in each secondary’s oplog can be used to monitor any
replication lag.

Master-slave replication

Master-slave replication is the original replication paradigm in MongoDB. This flavor
of replication is easy to configure and has the advantage of supporting any number
of slave nodes. But master-slave replication is no longer recommended for production
deployments. There are a couple reasons for this. First, failover is completely man-
ual. If the master node fails, then an administrator must shut down a slave and
restart it as a master node. Then the application must be reconfigured to point to the
new master. Second, recovery is difficult. Because the oplog exists only on the mas-
ter node, a failure requires that a new oplog be created on the new master. This
means that any other existing nodes will need to resync from the new master in the
event of a failure.

In short, there are few compelling reasons to use master-slave replication. Replica
sets are the way forward, and they’re the flavor of replication you should use. If for
some reason you must use master-slave replication, consult the MongoDB manual
for more information.

6

When journaling is enabled, documents are written to the core data files and to the oplog simultaneously in
an atomic transaction.

http://www.it-ebooks.info/

312

CHAPTER 11 Replication

HALTED REPLICATION

Replication will halt permanently if a secondary can’t find the point it’s synced to in
the primary’s oplog. When that happens, you’ll see an exception in the secondary’s
log that looks like this:

repl: replication data too stale, halting
Fri Jan 28 14:19:27 [replsecondary] caught SyncException

Recall that the oplog is a capped collection. This means that the collection can only
hold so much data. If a secondary is offline for an extended period of time, the oplog
may not be large enough to store every change made in that period. Once a given sec-
ondary fails to find the point at which it’s synced in the primary’s oplog, there’s no
longer any way of ensuring that the secondary is a perfect replica of the primary.
Because the only remedy for halted replication is a complete resync of the primary’s
data, you’ll want to strive to avoid this state. To do that, you’ll need to monitor second-
ary delay, and you’ll need to have a large enough oplog for your write volume. You’ll
learn more about monitoring in chapter 12. Choosing the right oplog size is what
we’ll cover next.

SIZING THE REPLICATION OPLOG

The oplog is a capped collection; as such, MongoDB v2.6 doesn’t allow you to resize it
once it’s been created. This makes it important to choose an initial oplog size care-
fully. But in MongoDB v3.0 you can change the size of the oplog. The procedure
requires you to stop the mongod instance and start it as a standalone instance, modify
the oplog size, and restart the member.

The default oplog sizes vary somewhat. On 32-bit systems, the oplog will default to
50 MB, whereas on 64-bit systems, the oplog will be the larger of 1 GB or 5% of free
disk space, unless you're running on Mac OS X, in which case the oplog will be 192
MB. This smaller size is due to the assumption that OS X machines are development
machines. For many deployments, 5% of free disk space will be more than enough.
One way to think about an oplog of this size is to recognize that once it overwrites
itself 20 times, the disk will likely be full (this is true for insert-only workloads).

That said, the default size won’t be ideal for all applications. If you know that
your application will have a high write volume, you should do some empirical test-
ing before deploying. Set up replication and then write to the primary at the rate
you’ll have in production. You’ll want to hammer the server in this way for at least
an hour. Once done, connect to any replica set member and get the current replica-
tion information:

db.getReplicationInfo ()

Once you know how much oplog you're generating per hour, you can then decide
how much oplog space to allocate. The goal is to eliminate instances where your sec-
ondaries get too far behind the primary to catch up using the oplog. You should prob-
ably shoot for being able to withstand at least eight hours of secondary downtime. You

http://www.it-ebooks.info/

Replica sets 313

want to avoid having to completely resync any node, and increasing the oplog size will
buy you time in the event of network failures and the like.

If you want to change the default oplog size, you must do so the first time you start
each member node using mongod’s --oplogSize option. The value is in megabytes.
Thus you can start mongod with a 1 GB oplog like this:’

mongod --replSet myapp --oplogSize 1024

HEARTBEAT AND FAILOVER

The replica set heartbeat facilitates election and failover. By default, each replica set
member pings all the other members every two seconds. In this way, the system can
ascertain its own health. When you run rs.status (), you see the timestamp of each
node’s last heartbeat along with its state of health (1 means healthy and 0 means
unresponsive).

As long as every node remains healthy and responsive, the replica set will hum
along its merry way. But if any node becomes unresponsive, action may be taken.
Every replica set wants to ensure that exactly one primary node exists at all times. But
this is possible only when a majority of nodes is visible. For example, look back at the
replica set you built in the previous section. If you kill the secondary, then a majority
of nodes still exists, so the replica set doesn’t change state but simply waits for the sec-
ondary to come back online. If you kill the primary, then a majority still exists but
there’s no primary. Therefore, the secondary is automatically promoted to primary. If
more than one secondary exists, the most current secondary will be the one elected.

But other possible scenarios exist. Imagine that both the secondary and the arbiter
are killed. Now the primary remains but there’s no majority—only one of the three
original nodes remains healthy. In this case, you’ll see a message like this in the pri-
mary’s log:

[rsMgr] can't see a majority of the set, relinquishing primary
[rsMgr] replSet relinquishing primary state

[rsMgr] replSet SECONDARY
[rsMgr] replSet closing client sockets after relinquishing primary

With no majority, the primary demotes itself to a secondary. This may seem puzzling,
but think about what might happen if this node were allowed to remain primary. If
the heartbeats fail due to some kind of network partition, the other nodes will still be
online. If the arbiter and secondary are still up and able to see each other, then
according to the rule of the majority, the remaining secondary will become a primary.
If the original primary doesn’t step down, you're suddenly in an untenable situation: a
replica set with two primary nodes. If the application continues to run, it might write
to and read from two different primaries, a sure recipe for inconsistency and truly
bizarre application behavior. Therefore, when the primary can’t see a majority, it must
step down.

7 For a tutorial on how to resize the oplog, see http://docs.mongodb.org/manual/tutorial /change-oplog-size/.

http://docs.mongodb.org/manual/tutorial/change-oplog-size/
http://www.it-ebooks.info/

314

11.2.3

CHAPTER 11 Replication

COMMIT AND ROLLBACK

One final important point to understand about replica sets is the concept of a com-
mit. In essence, you can write to a primary node all day long, but those writes won’t be
considered committed until they’ve been replicated to a majority of nodes. What do
we mean by committed? The idea can best be explained by example.

Please note that operations on a single document are always atomic with MongoDB
databases, but operations that involve multiple documents aren’t atomic as a whole.

Imagine again the replica set you built in the previous section. Suppose you issue
a series of writes to the primary that don’t get replicated to the secondary for some
reason (connectivity issues, secondary is down for backup, secondary is lagging, and
so on). Now suppose that the secondary is suddenly promoted to primary. You write
to the new primary, and eventually the old primary comes back online and tries to
replicate from the new primary. The problem here is that the old primary has a
series of writes that don’t exist in the new primary’s oplog. This situation triggers
a rollback.

In a rollback, all writes that were never replicated to a majority are undone. This
means that they’re removed from both the secondary’s oplog and the collection
where they reside. If a secondary has registered a delete, the node will look for the
deleted document in another replica and restore it to itself. The same is true for
dropped collections and updated documents.

The reverted writes are stored in the rollback subdirectory of the relevant node’s
data path. For each collection with rolled-back writes, a separate BSON file will be cre-
ated the filename of which includes the time of the rollback. In the event that you
need to restore the reverted documents, you can examine these BSON files using the
bsondump utility and manually restore them, possibly using mongorestore.

If you ever have to restore rolled-back data, you’ll realize that this is a situation
you want to avoid, and fortunately you can, to some extent. If your application can
tolerate the extra write latency, you can use write concerns, described later, to
ensure that your data is replicated to a majority of nodes on each write (or perhaps
after every several writes). Being smart about write concerns and about monitoring
of replication lag in general will help you mitigate the problem of rollback, or even
avoid it altogether.

In this section you learned perhaps a few more replication internals than expected,
but the knowledge should come in handy. Understanding how replication works goes a
long way in helping you to diagnose any issues you may have in production.

Administration

For all the automation they provide, replica sets have some potentially complicated con-
figuration options. In what follows, we’ll describe these options in detail. In the interest
of keeping things simple, we’ll also suggest which options can be safely ignored.

http://www.it-ebooks.info/

Replica sets 315

CONFIGURATION DETAILS
Here we’ll present the mongod startup options pertaining to replica sets, and we’ll
describe the structure of the replica set configuration document.
Replication options
Earlier, you learned how to initiate a replica set using the shell’s rs.initiate() and
rs.add () methods. These methods are convenient, but they hide certain replica set
configuration options. Let’s look at how to use a configuration document to initiate
and update a replica set’s configuration.

A configuration document specifies the configuration of the replica set. To create
one, first add a value for id that matches the name you passed to the --replSet

parameter:
> config = {_id: "myapp", members: []}
{ " id" : "myapp", "members" : [] }

The individual members can be defined as part of the configuration document as follows:

config.members.push({ id: 0, host: 'iron.local:40000'})
config.members.push({ id: 1, host: 'iron.local:40001'})
config.members.push({ id: 2, host: 'iron.local:40002', arbiterOnly: true})

As noted earlier, iron is the name of our test machine; substitute your own hostname
as necessary. Your configuration document should now look like this:

> config
{
"_id" . n myapp n ,
"members" : [
{
"_id" : o0,
"host" : "iron.local:40000"
1
{
"oidr - 1,
"host" : "iron.local:40001"
¥
{
"oidr - o2,
"host" : "iron.local:40002",
"arbiterOnly" : true

You can then pass the document as the first argument to rs.initiate () to initiate the
replica set.

Technically, the document consists of an _id containing the name of the replica
set, an array specifying between 3 and 50 members, and an optional subdocument for
specifying certain global settings. This sample replica set uses the minimum required

http://www.it-ebooks.info/

316

CHAPTER 11 Replication

configuration parameters, plus the optional arbiterOnly setting. Please keep in
mind that although a replica set can have up to 50 members, it can only have up to 7
voting members.

The document requires an _id that matches the replica set’s name. The initiation
command will verify that each member node has been started with the --replSet
option with that name. Each replica set member requires an _id consisting of increas-
ing integers starting from 0. Also, members require a host field with a hostname and
optional port.

Here you initiate the replica set using the rs.initiate () method. This is a simple
wrapper for the replSetInitiate command. Thus you could have started the replica
set like this:

db.runCommand ({replSetInitiate: config});

config is a variable holding your configuration document. Once initiated, each set
member stores a copy of this configuration document in the local database’s
system.replset collection. If you query the collection, you’ll see that the document
now has a version number. Whenever you modify the replica set’s configuration, you
must also increment this version number. The easiest way to access the current config-
uration document is to run rs. conf ().

To modify a replica set’s configuration, there’s a separate command, replSet-
Reconfig, which takes a new configuration document. Alternatively, you can use
rs.reconfig () which also uses replSetReconfig. The new document can specify the
addition or removal of set members along with alterations to both memberspecific
and global configuration options. The process of modifying a configuration document,
incrementing the version number, and passing it as part of the replSetReconfig can
be laborious, so a number of shell helpers exist to ease the way. To see a list of them
all, enter rs.help () at the shell.

Bear in mind that whenever a replica set reconfiguration results in the election of
a new primary node, all client connections will be closed. This is done to ensure that
clients will no longer attempt to send writes to a secondary node unless they’re aware
of the reconfiguration.

If you’re interested in configuring a replica set from one of the drivers, you can see
how by examining the implementation of rs.add (). Enter rs.add (the method with-
out the parentheses) at the shell prompt to see how the method works.

Configuration document options

Until now, we’ve limited ourselves to the simplest replica set configuration document.
But these documents support several options for both replica set members and for the
replica set as a whole. We’ll begin with the member options. You've seen _id, host,
and arbiterOnly. Here are these plus the rest, in all their gritty detail:

® id (required)—A unique incrementing integer representing the member’s ID.
These _id values begin at 0 and must be incremented by one for each mem-
ber added.

http://www.it-ebooks.info/

Replica sets 317

® host (required)—A string storing the hostname of this member along with an

optional port number. If the port is provided, it should be separated from the
hostname by a colon (for example, iron:30000). If no port number is specified,
the default port, 27017, will be used. We’ve seen it before, but here’s a simple
document with a replica set _id and host:
{

"oidv : oo,

"host" : "iron:40000"

= arbiterOnly—A Boolean value, true or false, indicating whether this mem-

ber is an arbiter. Arbiters store configuration data only. They’re lightweight
members that participate in primary election but not in the replication itself.
Here’s an example of using the arbiterOnly setting:
{

"oidv : oo,

"host" : "iron:40000",

"arbiterOnly": true

» priority—A decimal number from 0 to 1000 that helps to determine the rela-
tive eligibility that this node will be elected primary. For both replica set initia-
tion and failover, the set will attempt to elect as primary the node with the
highest priority, as long as it’s up to date. This might be useful if you have a rep-
lica set where some nodes are more powerful than the others; it makes sense to
prefer the biggest machine as the primary.

There are also cases where you might want a node never to be primary (say, a
disaster recovery node residing in a secondary data center). In those cases, set
the priority to 0. Nodes with a priority of 0 will be marked as passive in the
results to the isMaster () command and will never be elected primary. Here’s
an example of setting the member’s priority:

{

"oid" - 0,
"host" : "iron:40000",
"priority" : 500

}

= votes—All replica set members get one vote by default. The votes setting
allows you to give more than one vote to an individual member.

This option should be used with extreme care, if at all. For one thing, it’s dif-
ficult to reason about replica set failover behavior when not all members have
the same number of votes. Moreover, the vast majority of production deploy-
ments will be perfectly well served with one vote per member. If you do choose
to alter the number of votes for a given member, be sure to think through and

http://www.it-ebooks.info/

318

CHAPTER 11 Replication

simulate the various failure scenarios carefully. This member has an increased
number of votes:

{

" id" : o,
"host" : "iron:40000",
"votes" : 2

hidden—A Boolean value that, when true, will keep this member from showing
up in the responses generated by the isMaster command. Because the MongoDB
drivers rely on isMaster for knowledge of the replica set topology, hiding a
member keeps the drivers from automatically accessing it. This setting can be
used in conjunction with buildIndexes and must be used with slaveDelay.
This member is configured to be hidden:

{

" id" : o,
"host" : "iron:40000",
"hidden" : true

buildIndexes—A Boolean value, defaulting to true, that determines whether
this member will build indexes. You’ll want to set this value to false only on
members that will never become primary (those with a priority of 0).

This option was designed for nodes used solely as backups. If backing up
indexes is important, you shouldn’t use this option. Here’s a member config-
ured not to build indexes:

{

" id" : o,
"host" : "iron:40000",
"buildIndexes" : false

slaveDelay—The number of seconds that a given secondary should lag behind
the primary. This option can be used only with nodes that will never become pri-
mary. To specify a slaveDelay greater than 0, be sure to also set a priority of 0.

You can use a delayed slave as insurance against certain kinds of user errors.
For example, if you have a secondary delayed by 30 minutes and an administra-
tor accidentally drops a database, you have 30 minutes to react to this event
before it’s propagated. This member has been configured with a slaveDelay of
one hour:
{

"oidv . oo,

"host" : "iron:40000",

"slaveDelay" : 3600

}

http://www.it-ebooks.info/

Replica sets 319

» tags—A document containing a set of key-value pairs, usually used to identify
this member’s location in a particular datacenter or server rack. Tags are used
for specifying granular write concern and read settings, and they’re discussed in
section 11.3.4. In the tag document, the values entered must be strings. Here’s a
member with two tags:

{

"oid" . o0,

"host" : "iron:40000",

"tags" : {
"datacenter" : "NY",
"rack" : "B"

That sums up the options for individual replica set members. There are also two
global replica set configuration parameters scoped under a settings key. In the rep-
lica set configuration document, they appear like this:

{
_id: "myapp",
members: [... 1,
settings:
getLastErrorDefaults:
w: 1
b
getLastErrorModes:
multiDC: {
dc: 2
}
}
}
}

m getLastErrorDefaults—A document specifying the default arguments to be
used when the client calls getLastError with no arguments. This option should
be treated with care because it’s also possible to set global defaults for getLast-
Error within the drivers, and you can imagine a situation where application
developers call getLastError not realizing that an administrator has specified a
default on the server.

For more details on getLastError, see its documentation at http://docs
.mongodb.org/manual/reference/command/getLastError. Briefly, to specify
that all writes are replicated to at least two members with a timeout of 500 ms,
you’d specify this value in the config like this:
settings: {

getLastErrorDefaults:

w: 2,
wtimeout: 500

http://docs.mongodb.org/manual/reference/command/getLastError
http://docs.mongodb.org/manual/reference/command/getLastError
http://www.it-ebooks.info/

320 CHAPTER 11 Replication

m getlastErrorModes—A document defining extra modes for the getLastError
command. This feature is dependent on replica set tagging and is described in
detail in section 11.3.4.

REPLICA SET STATUS

You can see the status of a replica set and its members by running the replSetGet-
Status command. To invoke this command from the shell, run the rs.status()
helper method. The resulting document indicates the members and their respective
states, uptime, and oplog times. It’s important to understand replica set member state.
You can see a complete list of possible values in table 11.1.

You can consider a replica set stable and online when all its nodes are in any of
states 1, 2, or 7 and when at least one node is running as the primary. You can use the
rs.status() or replSetGetStatus command from an external script to monitor
overall state, replication lag, and uptime, and this is recommended for production
deployments.®

Table 11.1 Replica set states

State State string Notes

0 STARTUP Indicates that the replica set is negotiating with other nodes by pinging all set
members and sharing config data.

1 PRIMARY This is the primary node. A replica set will always have at most one
primary node.

2 SECONDARY This is a secondary, read-only node. This node may become a primary in the
event of a failover if and only if its priority is greater than O and it’s not
marked as hidden.

3 RECOVERING | This node is unavailable for reading and writing. You usually see this state after
a failover or upon adding a new node. While recovering, a data file sync is often
in progress; you can verify this by examining the recovering node’s logs.

4 FATAL A network connection is still established, but the node isn’t responding to
pings. This usually indicates a fatal error on the machine hosting the node
marked FATAL.

5 STARTUP2 An initial data file sync is in progress.

6 UNKNOWN A network connection has yet to be made.

7 ARBITER This node is an arbiter.

8 DOWN The node was accessible and stable at some point but isn’t currently
responding to heartbeat pings.

9 ROLLBACK A rollback is in progress.

10 REMOVED The node was once a member of the replica set but has since been removed.

8 Note that in addition to running the status command, you can get a useful visual through the web console.
Chapter 13 discusses the web console and shows an example of its use with replica sets.

http://www.it-ebooks.info/

Replica sets 321

FAILOVER AND RECOVERY
In the sample replica set you saw a couple examples of failover. Here we summarize
the rules of failover and provide some suggestions on handling recovery.

A replica set will come online when all members specified in the configuration can
communicate with one another. Each node is given one vote by default, and those
votes are used to form a majority and elect a primary. This means that a replica set can
be started with as few as two nodes (and votes). But the initial number of votes also
decides what constitutes a majority in the event of a failure.

Let’s assume that you've configured a replica set of three complete replicas (no
arbiters) and thus have the recommended minimum for automated failover. If the pri-
mary fails, and the remaining secondaries can see each other, then a new primary can
be elected. As for deciding which one, the secondary with the most up-to-date oplog
with the higher priority will be elected primary.

Failure modes and recovery
Recovery is the process of restoring the replica set to its original state following a fail-

ure. There are two overarching failure categories to be handled. The first is called
clean failure, where a given node’s data files can still be assumed to be intact. One
example of this is a network partition. If a node loses its connections to the rest of the
set, you need only wait for connectivity to be restored, and the partitioned node will
resume as a set member. A similar situation occurs when a given node’s mongod pro-
cess is terminated for any reason but can be brought back online cleanly.” Again, once
the process is restarted, it can rejoin the set.

The second type is called categorical failure, where a node’s data files either no longer
exist or must be presumed corrupted. Unclean shutdowns of the mongod process with-
out journaling enabled and hard drive crashes are both examples of this kind of failure.
The only ways to recover a categorically failed node are to completely replace the data
files via a resync or to restore from a recent backup. Let’s look at both strategies in turn.

To completely resync, start a mongod with an empty data directory on the failed
node. As long as the host and port haven’t changed, the new mongod will rejoin the
replica set and then resync all the existing data. If either the host or port has changed,
then after bringing the mongod back online you’ll also have to reconfigure the replica
set. As an example, suppose the node at iron:40001 is rendered unrecoverable and
you bring up a new node at foobar:40000. You can reconfigure the replica set by
grabbing the configuration document, modifying the host for the second node, and
then passing that to the rs.reconfig() method:

> config = rs.conf ()

{

l|_idl| : l|myappl| ,
"version" : 1,
"members" : [

¢ For instance, if MongoDB is shut down cleanly, then you know that the data files are okay. Alternatively, if
running with journaling, the MongoDB instance should be recoverable regardless of how it’s killed.

http://www.it-ebooks.info/

322

CHAPTER 11 Replication

"oid" : o0,
"host" : "iron:40000"
b
{
voidn -1,
"host" : "iron:40001"
b
{
voidn o 2,
"host" : "iron:40002",
"arbiterOnly" : true
}
]
}
> config.members[1l] .host = "foobar:40000"

foobar:40000
> rs.reconfig(config)

Now the replica set will identify the new node, and the new node should start to sync
from an existing member.

In addition to restoring via a complete resync, you have the option of restoring
from a recent backup. You’ll typically perform backups from one of the secondary
nodes by making snapshots of the data files and then storing them offline.!” Recovery
via backup is possible only if the oplog within the backup isn’t stale relative to the
oplogs of the current replica set members. This means that the latest operation in the
backup’s oplog must still exist in the live oplogs. You can use the information pro-
vided by db.getReplicationInfo() to see right away if this is the case. When you do,
don’t forget to take into account the time it will take to restore the backup. If the
backup’s latest oplog entry is likely to go stale in the time it takes to copy the backup
to a new machine, you’re better off performing a complete resync.

But restoring from backup can be faster, in part because the indexes don’t have to
be rebuilt from scratch. To restore from a backup, copy the backed-up data files to a
mongod data path. The resync should begin automatically, and you can check the logs
orrun rs.status() to verify this.

DEPLOYMENT STRATEGIES
You now know that a replica set can consist of up to 50 nodes in MongoDB v3.0, and
you’ve been presented with a dizzying array of configuration options and considerations
regarding failover and recovery. There are a lot of ways you might configure a replica
set, but in this section we’ll present a couple that will work for the majority of cases.
The most minimal replica set configuration providing automated failover is the
one you built earlier consisting of two replicas and one arbiter. In production, the
arbiter can run on an application server while each replica gets its own machine. This
configuration is economical and sufficient for many production apps.

10 Backups are discussed in detail in chapter 13.

http://www.it-ebooks.info/

Replica sets 323

But for applications where uptime is critical, you’ll want a replica set consisting of
three complete replicas. What does the extra replica buy you? Think of the scenario
where a single node fails completely. You still have two first-class nodes available while
you restore the third. As long as a third node is online and recovering (which may
take hours), the replica set can still fail over automatically to an up-to-date node.

Some applications will require the redundancy afforded by two datacenters, and
the three-member replica set can also work in this case. The trick is to use one of the
datacenters for disaster recovery only. Figure 11.2 shows an example of this. Here,
the primary datacenter houses a replica set primary and secondary, and a backup
datacenter keeps the remaining secondary as a passive node (with priority 0).

Primary datacenter Secondary datacenter
Secondary ™.
IS .._Ping
Replication Ping ™| Secondary
_.-="| (priority = 0)
e ’ Ping
. e Figure 11.2 A three-
Primary node replica set with
members in two
datacenters

In this configuration, the replica set primary will always be one of the two nodes living
in datacenter A. You can lose any one node or any one datacenter and still keep the
application online. Failover will usually be automatic, except in the cases where both
of A’s nodes are lost. Because it’s rare to lose two nodes at once, this would likely rep-
resent the complete failure or partitioning of datacenter A. To recover quickly, you
could shut down the member in datacenter B and restart it without the --replSet
flag. Alternatively, you could start two new nodes in datacenter B and then force a rep-
lica set reconfiguration. You’re not supposed to reconfigure a replica set when the
majority of the set is unreachable, but you can do so in emergencies using the force
option. For example, if you've defined a new configuration document, config, you
can force reconfiguration like this:

> rs.reconfig(config, {force: true})

As with any production system, testing is key. Make sure that you test for all the typical
failover and recovery scenarios in a staging environment comparable to what you’ll be

http://www.it-ebooks.info/

324

11.3

11.3.1

CHAPTER 11 Replication

running in production. Knowing from experience how your replica set will behave in
these failures cases will secure some peace of mind and give you the wherewithal to
calmly deal with emergencies as they occur.

Drivers and replication

If you’re building an application using MongoDB’s replication, you need to know
about several application-specific topics. The first is related to connections and
failover. Next comes the write concern, which allows you to decide to what degree a
given write should be replicated before the application continues. The next topic,
read scaling, allows an application to distribute reads across replicas. Finally, we’ll dis-
cuss tagging, a way to configure more complex replica set reads and writes.

Connections and failover

The MongoDB drivers present a relatively uniform interface for connecting to rep-
lica sets.

SINGLE-NODE CONNECTIONS

You’ll always have the option of connecting to a single node in a replica set. There’s
no difference between connecting to a node designated as a replica set primary and
connecting to one of the vanilla stand-alone nodes we’ve used for the examples
throughout the book. In both cases, the driver will initiate a TCP socket connection
and then run the isMaster command. For a stand-alone node, this command returns
a document like the following:

{

"ismaster" : true,

"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-12T05:22:54.3172"),
n Ok n : 1

What’s most important to the driver is that the isMaster field be set to true, which
indicates that the given node is a stand-alone, a master running master-slave replica-
tion, or a replica set primary.'' In all of these cases, the node can be written to, and
the user of the driver can perform any CRUD operation.

But when connecting directly to a replica set secondary, you must indicate that you
know you’re connecting to such a node (for most drivers, at least). In the Ruby driver,
you accomplish this with the:read parameter. To connect directly to the first second-
ary you created earlier in the chapter, the Ruby code would look like this:

@con = Mongo::Client.new(['iron: 40001'], {:read => {:mode => :secondary}})

' The isMaster command also returns a value for the maximum BSON object size for this version of the
server. The drivers then validate that all BSON objects are within this limit prior to inserting them.

http://www.it-ebooks.info/

Drivers and replication 325

Without the :read argument, the driver will raise an exception indicating that it
couldn’t connect to a primary node (assuming that the mongod running at port
40001 is the secondary). This check is in place to keep you from inadvertently read-
ing from a secondary node. Though such attempts to read will always be rejected by
the server, you won’t see any exceptions unless you’re running the operations with
safe mode enabled.

The assumption is that you’ll usually want to connect to a primary node master;
the :read parameter is enforced as a sanity check.

REPLICA SET CONNECTIONS
You can connect to any replica set member individually, but you’ll normally want to
connect to the replica set as a whole. This allows the driver to figure out which node
is primary and, in the case of failover, reconnect to whichever node becomes the
new primary.

Most of the officially supported drivers provide ways of connecting to a replica set.
In Ruby, you connect by creating a new instance of Mongo: : Client, passing in a list of
seed nodes as well as the name of the replica set:

Mongo: :Client.new(['iron:40000', 'iron:40001'], :replica set => 'myapp')

Internally, the driver will attempt to connect to each seed node and then call the
isMaster command. Issuing this command to a replica set returns a number of
important set details:

> db.isMaster()
{
"setName" : "myapp",
"ismaster" : false,
"secondary" : true,
"hosts" : [
"iron:40001",
"iron:40000"
1,
"arbiters" : [
"iron:40002"
1,

"me" : "iron:40000",

"maxBsonObjectSize" : 16777216,
"maxMessageSizeBytes" : 48000000,

"localTime" : ISODate("2013-11-12T05:14:42.009Z"),
n Ok n : l

Once a seed node responds with this information, the driver has everything it needs.
Now it can connect to the primary member, again verify that this member is still pri-
mary, and then allow the user to read and write through this node. The response
object also allows the driver to cache the addresses of the remaining secondary and
arbiter nodes. If an operation on the primary fails, then on subsequent requests the

http://www.it-ebooks.info/

326

CHAPTER 11 Replication

driver can attempt to connect to one of the remaining nodes until it can reconnect to
a primary.

When connecting to a MongoDB replica set in this way, drivers will automatically
discover additional nodes. This means that when you’re connecting to a replica set,
you don’t need to explicitly list every member of the set. The response from the
isMaster command alerts the driver of the presence of the other members. If none of
the replica set members listed in the connection arguments are active, the connection
will fail, so it’s wise to list as many as you can. But don’t sweat it if a few nodes are miss-
ing from the connection list; they’ll be found. If you have multiple data centers, it’s
considered good practice to include members from all data centers.

It’s important to keep in mind that although replica set failover is automatic, the
drivers don’t attempt to hide the fact that a failover has occurred. The course of
events goes something like this: First, the primary fails or a new election takes place.
Subsequent requests will reveal that the socket connection has been broken, and the
driver will then raise a connection exception and close any open sockets to the data-
base. It’s now up to the application developer to decide what happens next, and this
decision will depend on both the operation being performed and the specific needs
of the application.

Keeping in mind that the driver will automatically attempt to reconnect on any
subsequent request, let’s imagine a couple of scenarios. First, suppose that you only
issue reads to the database. In this case, there’s little harm in retrying a failed read
because there’s no possibility of changing database state. But now imagine that you
also regularly write to the database. You can write to the database with or without
checking for errors. As discussed in section 11.3.2, with a write concern of 1 or more,
the driver will check for problems, including a failure of the write to reach the replica
set, by calling the getLastError command. This is the default in most drivers since
around MongoDB v2.0, but if you explicitly set the write concern to 0, the driver writes
to the TCP socket without checking for errors. If you’re using a relatively recent ver-
sion of the drivers or the shell, you don’t have to explicitly call getLastError () ; writes
send detailed ACK in any case.

If your application writes with a write concern of 0 and a failover occurs, you're left
in an uncertain state. How many of the recent writes made it to the server? How many
were lost in the socket buffer? The indeterminate nature of writing to a TCP socket
makes answering these questions practically impossible. How big of a problem this is
depends on the application. For logging, non-safe-mode writes are probably accept-
able, because losing writes hardly changes the overall logging picture. But for users
creating data in the application, non-safe-mode writes can be a disaster.

The important thing to remember is that the write concern is set to 1 by default,
meaning the writes are guaranteed to have reached one member of a replica set, and
there are risks in setting it to 0. Receiving a response doesn’t eliminate the possibility of
a rollback, as we discussed in section 11.2.2. MongoDB gives you some more advanced
capabilities for managing this by controlling how writes work with the write concern.

http://www.it-ebooks.info/

Drivers and replication 327

11.3.2 Write concern

It should be clear now that the default write concern of 1 is reasonable for some appli-
cations because it’s important to know that writes have arrived errorfree at the pri-
mary server. But greater levels of assurance are required if you want to eliminate the
possibility of a rollback, and the write concern addresses this by allowing developers to
specify the extent to which a write should be replicated before getting an acknowledg-
ment and allowing the application to continue. Technically, you control write con-
cerns via two parameters on the getLastError command: w and wtimeout. The first
value, w, indicates the total number of servers that the latest write should be replicated
to; the second is a timeout that causes the command to return an error if the write
can’t be replicated in the specified number of milliseconds.

For example, if you want to make sure that a given write is replicated to at least one
server, you can indicate a w value of 2. If you want the operation to time out if this level
of replication isn’t achieved in 500 ms, you include a wt imeout of 500. Note that if you
don’t specify a value for wtimeout, and the replication for some reason never occurs,
the operation will block indefinitely.

When using a driver, you usually pass the write concern value in with the write, but
it depends on the specific driver’s API. In Ruby, you can specify a write concern on a
single operation like this:

@collection.insert one(doc, {:w => 2, :wtimeout => 200})

Many drivers support setting default write concern values for a given connection or
database. It can be overwritten for a single operation, as shown earlier, but will
become the default for the life of the connection:

Mongo: :Client.new(['hostname:27017'], :write => {:w => 2})

Even fancier options exist. For instance, if you’ve enabled journaling, you can also
force that the journal be synced to disk before acknowledging a write by adding the
Jj option:

@collection.insert one(doc, :write => {:w => 2, :j => true})

To find out how to set the write concern in your particular case, check your driver’s
documentation.

Write concerns work with both replica sets and masterslave replication. If you
examine the local databases, you'll see a couple of collections, me on secondary
nodes and slaves on the primary node. These are used to implement write concerns.
Whenever a secondary polls a primary, the primary makes a note of the latest oplog
entry applied to each secondary in its slaves collection. Thus, the primary knows
what each secondary has replicated at all times and can therefore reliably answer the
getLastError command’s write requests.

Keep in mind that using write concerns with values of w greater than 1 will intro-
duce extra latency. Configurable write concerns essentially allow you to make the

http://www.it-ebooks.info/

328

11.3.3

CHAPTER 11 Replication

trade-off between speed and durability. If you’re running with journaling, then a write
concern with w equal to 1 should be fine for most applications. On the other hand, for
logging or analytics, you might elect to disable journaling and write concerns alto-
gether and rely solely on replication for durability, allowing that you may lose some
writes in the event of a failure. Consider these trade-offs carefully and test the differ-
ent scenarios when designing your application.

Read scaling

Replicated databases are great for read scaling. If a single server can’t handle the
application’s read load, you have the option to route queries to more than one rep-
lica. Most of the drivers have built-in support for sending queries to secondary nodes
through a read preference configuration. With the Ruby driver, this is provided as an
option on the Mongo: :Client constructor:

Mongo: :Client.new(

['iron:40000', 'iron:40001'],
{:read => {:mode => :secondary})

Note in the connection code that we configure which nodes the new client will read
from. When the :read argument is set to {mode => :secondary}, the connection
object will choose a random, nearby secondary to read from. This configuration is
called the read preference, and it can be used to direct your driver to read from cer-
tain nodes. Most MongoDB drivers have these available read preferences:

= primary—This is the default setting and indicates that reads will always be from
the replica set primary and thus will always be consistent. If the replica set is
experiencing problems and there’s no secondary available, an error will be
thrown.

» primaryPreferred—Drivers with this setting will read from the primary unless for
some reason it’s unavailable or there’s no primary, in which case reads will go to
a secondary. This means that reads aren’t guaranteed to be consistent.

m secondary—This setting indicates the driver should always read from the second-
ary. This is useful in cases where you want to be sure that your reads will have no
impact on the writes that occur on the primary. If no secondaries are available,
the read will throw an exception.

» secondaryPreferred—This is a more relaxed version of the previous setting. Reads
will go to secondaries, unless no secondaries are available, in which case reads
will go to the primary.

m nearest—A driver configured with this setting will attempt to read from the near-
est member of the replica set, as measured by network latency. This could be
either a primary or a secondary. Thus, reads will go to the member that the
driver believes it can communicate with the quickest.

Remember, the primary read preference is the only one where reads are guaranteed
to be consistent. Writing is always done first on the primary. Because there may be a

http://www.it-ebooks.info/

Drivers and replication 329

lag in updating the secondary, it’s possible that a document that has just been writ-
ten won’t be found on a read immediately following the write, unless you’re reading
the primary.

It turns out that even if you’re not using the nearest setting, if a MongoDB driver
has a read preference that allows it to query secondaries, it will still attempt to commu-
nicate with a nearby node. It does this according to its member selection strategy. The
driver first ranks all the nodes by their network latency. Then it excludes all the nodes
for which network latency is at least 15 ms larger than the lowest latency. Finally, it
picks one of the remaining nodes at random. Fifteen milliseconds is the default for
this value, but some drivers will allow configuration of the acceptable latency window.
For the Ruby driver, this configuration might look like this:

Mongo: :Client .new(
['iron:40000', 'iron:40001'],
:read => {:mode => :secondary}, :local threshold => '0.0015"')

The :local_threshold option specifies the maximum latency in seconds as a float.

Note that the nearest read preference uses this strategy to pick a node to read
from as well, but it includes the primary in the selection process. Overall, the advan-
tage of this approach is that a driver will be likely to have lower latency on a query
than with totally random selection but is still able to distribute reads to multiple nodes
if they have similarly low latency.

Many MongoDB users scale with replication in production, but there are three
cases where this sort of scaling won’t be sufficient. The first relates to the number of
servers needed. As of MongoDB v2.0, replica sets support a maximum of 12 mem-
bers, 7 of which can vote. As of MongoDB v3.0, replica sets support a maximum of 50
members, 7 of which can vote. If you need even more replicas for scaling, you can
use master-slave replication. But if you don’t want to sacrifice automated failover
and you need to scale beyond the replica set maximum, you’ll need to migrate to a
sharded cluster.

The second case involves applications with a high write load. As mentioned at the
beginning of this chapter, secondaries must keep up with this write load. Sending
reads to write-laden secondaries may inhibit replication.

A third situation that replica scaling can’t handle is consistent reads. Because
replication is asynchronous, replicas aren’t always going to reflect the latest writes to
the primary. Therefore, if your application reads arbitrarily from secondaries, the
picture presented to end users isn’t always guaranteed to be fully consistent. For some
applications, this isn’t an issue, but for others you need consistent reads; in our shop-
ping cart example from chapter 4, there would be serious problems if we weren’t
reading the most current data. In fact, atomic operations that read and write must
be run on the primary. In these cases, you have two options. The first is to separate
the parts of the application that need consistent reads from the parts that don’t.
The former can always be read from the primary, and the latter can be distributed to

http://www.it-ebooks.info/

330

11.3.4

CHAPTER 11 Replication

secondaries. When this strategy is either too complicated or doesn’t scale, sharding
is the way to go.'?

Tagging

If you're using either write concerns or read scaling, you may find yourself wanting
more granular control over exactly which secondaries receive writes or reads. For
example, suppose you’ve deployed a five-node replica set across two data geographi-
cally separate centers, NY and FR. The primary datacenter, NY, contains three nodes,
and the secondary datacenter, FR, contains the remaining two. Let’s say that you want
to use a write concern to block until a certain write has been replicated to at least one
node in datacenter FR. With what you know about write concerns right now, you'll see
that there’s no good way to do this. You can’t use a w value of a majority of nodes (3)
because the most likely scenario is that the three nodes in NY will acknowledge first.
You could use a value of 4, but this won’t hold up well if, say, you lose one node from
each datacenter.

Replica set tagging solves this problem by allowing you to define special write con-
cern modes that target replica set members with certain tags. To see how this works,
you first need to learn how to tag a replica set member. In the config document, each
member can have a key called tags pointing to an object containing key-value pairs.
Here’s an example:

{

n idu . umyappu ,
"version" : 1,
"members" : [
{
"oid" . 0,
"host" : "nyl.myapp.com:30000",
lltagsll : { lldc n : IINYII , n rackNYll : IIAII }
I
{
voddr s o1,
"host" : "ny2.myapp.com:30000",
"tags" . { nde". "NY" , "rackNY": "A" }
¥
{
"oidr o 2,
"host" : "ny3.myapp.com:30000",
lltagsll : { lldc n : IINYII , n rackNYll : IIBII }
1
{
voidr o« 3,
"host" : "frl.myapp.com:30000",
lltagsll : { lldc n : n FRII , n rackFRll : IIAII }

b

12 Note that to get consistent reads from a sharded cluster, you must always read from the primary nodes of each
shard, and you must issue safe writes.

http://www.it-ebooks.info/

Drivers and replication 331

{

"oidr . o4,
"host" : "fr2.myapp.com:30000",
||tags n : { l|dc n : n FR" , n raCkFR" : ||Bl| }

}
1,
settings: {
getLastErrorModes:
multiDC: { dc: 2 } },
multiRack: { rackNY: 2 } },

}
}

This is a tagged configuration document for the hypothetical replica set spanning two
datacenters. Note that each member’s tag document has two key-value pairs: the first
identifies the datacenter and the second names the local server rack for the given
node. Keep in mind that the names used here are completely arbitrary and only
meaningful in the context of this application; you can put anything in a tag document
(though the value must be a string). What’s most important is how you use it.

That’s where getLastErrorModes comes into play. This allows you to define modes
for the getLastError command that implement specific write concern requirements. In
the example, we’ve defined two of these. The first, multiDC, is defined as { "dc": 2 },
which indicates that a write should be replicated to nodes tagged with at least two differ-
ent values for dc. If you examine the tags, you’ll see this will necessarily ensure that the
write has been propagated to both datacenters. The second mode specifies that at least
two server racks in NY should’ve received the write. Again the tags should make this clear.

In general, a getLastErrorModes entry consists of a document with one or more
keys (in this case, dc and rackNY) the values of which are integers. These integers indi-
cate the number of different tagged values for the key that must be satisfied for the
getLastError command to complete successfully. Once you define these modes, you
can use them as values for w in your application. For example, using the first mode in
Ruby looks like this:

@collection.with(:write => {:w => "multiDC"}) .insert one (doc)

In addition to making write concerns more sophisticated, tagging also works with
most of the read preferences discussed in section 11.3.3. With reads, tagging works by
restricting reads to those with a specific tag. For example, if using a read preference of
secondary, the driver will ignore all the nodes that don’t have the given tag value.
Because the primary read preference can only ever read from one node, it’s not com-
patible with tags, but all the other read preferences are. Here’s an example of this
using the Ruby driver:

@collection.find ({user: "pbakkum"},

{

:read => :secondary,
:tag_sets => {

http://www.it-ebooks.info/

332

114

CHAPTER 11 Replication

:dc => "NY"
}
N

This configuration reads from a secondary node that has the dc:NY tag.

Tagging is an element of MongoDB that you may never use, but it can be incredibly
useful in certain situations. Keep it in mind if you're managing complex replica set
configurations.

Summary

It should be clear from all that we’ve discussed that replication is essential for most
deployments. MongoDB’s replication is supposed to be easy, and setting it up usually
is. But when it comes to backing up and failing over, there are bound to be hidden
complexities. For these complex cases, let experience, and some help from this chap-
ter, breed familiarity.

To finish up, here are some key things to remember as you move on and manage
your own replica sets:

= We recommend that every production deployment of MongoDB where data
protection is critical should use a replica set. Failing that, frequent backups are
especially essential.

= Areplica set should include at least three members, though one of these can be
an arbiter.

= Data isn’t considered committed until it has been written to a majority of rep-
lica set members. In a failure scenario, if a majority of members remain they’ll
continue to accept writes. Writes that haven’t reached a majority of members in
this situation will be placed in the rollback data directory and must be han-
dled manually.

= Ifareplica set secondary is down for a period of time, and the changes made to
the database don’t fit into MongoDB’s oplog, this node will be unable to catch
up and must be resynced from scratch. To avoid this, try to minimize the down-
time of your secondaries.

= The driver’s write concern controls how many nodes must be written to before
returning. Increase this value to increase durability. For real durability, we rec-
ommend you set it to a majority of members to avoid rollback scenarios, though
this approach carries a latency cost.

= MongoDB give you fine-grained controls over how reads and writes behave in
more complex replica sets using read preferences and tagging. Use these
options to optimize the performance of your replica set, especially if you have
set members in multiple datacenters.

As always, think through your deployments and test thoroughly. Replica sets can be an
especially valuable tool when used effectively.

http://www.it-ebooks.info/

Scaling your system
with sharding

This chapter covers

Sharding motivation and architecture

Setting up and loading a sample shard cluster
Querying and indexing a sharded cluster
Choosing a shard key

Deploying sharding in production

With the increasing scale of modern applications, it’s become more and more
expensive, and in some cases impossible, to get a single machine powerful enough
to handle the load. One solution to the problem is to pool the capacity of a large
number of less powerful machines. Sharding in MongoDB is designed to do just
that: partition your database into smaller pieces so that no single machine has to
store all the data or handle the entire load. On top of that, sharding in MongoDB is
transparent to the application, which means the interface for querying a sharded
cluster is exactly the same as the interface for querying a replica set or a single mongod
server instance.

We’ll begin the chapter with an overview of sharding. We’ll go into detail about
what problems it tries to solve and how to know when you need it. Next, we’ll talk

333

http://www.it-ebooks.info/

334

12.1

12.1.1

CHAPTER 12 Scaling your system with sharding

about the components that make up a sharded cluster. Then, we’ll cover the two dif-
ferent ways to shard, and scratch the surface of MongoDB'’s range-based partitioning.

These three sections will give you a basic working knowledge of sharding, but you
won’t fully understand how these ideas all come together until you set up your own
sharded cluster. That’s what you’ll do in the fourth section, where you’ll build a sam-
ple cluster to host data from a massive Google Docs-like application.

We’ll then discuss some sharding mechanics, describing how queries and indexing
work across shards. We’ll look at the ever-important choice of shard key, and we’ll end
the chapter with some specific advice on running sharding in production.

Google Docs instead of e-commerce

We’'re using a Google Docs-like application here, rather than the e-commerce appli-
cation we've used in the rest of the book, because the schema is simpler and allows
us to focus on the sharding itself.

In an e-commerce application, you may have multiple collections. Some of these col-
lections may be large, such as a collection storing all user comments, whereas some
may be smaller, such as a collection storing all user profiles. In a more complex appli-
cation such as this, you’d only shard the collections that would benefit from the
added capacity of sharding while leaving the smaller collections unsharded for sim-
plicity. Because sharded and unsharded collections can exist in the same system, all
of this will work together, completely transparently to the application. In fact, if later
you find that one of the collections that didn’t need to be sharded is becoming larger,
you can enable sharding at any time.

The same principles that we’ll see when looking at our Google Docs-like application
apply to any sharded collection. We’ll stick with this example to keep things simple
and focus on what’s new in this chapter.

Sharding overview

Before you build your first sharded cluster, it’s useful to have a general understanding
of the concepts behind sharding. In this section, we’ll cover what problems sharding
solves, discuss some of the challenges inherent in sharding, and then talk about how
to know when sharding is the correct solution in practice.

What is sharding?

Sharding is the process of partitioning a large dataset into smaller, more manageable
pieces. Until this point in the book, you’ve used MongoDB as a single server, where
each mongod instance contains a complete copy of your application’s data. Even when
using replication (as we did in chapter 11), each replica clones every other replica’s
data entirely. For the majority of applications, storing the complete data set on each
server is perfectly acceptable. But as the size of the data grows, and as an application
demands greater read-and-write throughput, commodity servers may not be sufficient.
In particular, these servers may not be able to address enough RAM, or they might not

http://www.it-ebooks.info/

12.1.2

Sharding overview 335

have enough CPU cores, to process the workload efficiently. In addition, as the size of
the data grows, it may become impractical to store and manage backups for such a
large data set on one disk or RAID array. If you’re to continue to use commodity or vir-
tualized hardware to host the database, the solution to these problems is to distribute
the database across more than one server. The method for doing this in MongoDB is
called sharding. Sharding in MongoDB can help your application scale, but remember
that it’s a large hammer. It’s a complex system that adds administrative and perfor-
mance overhead, so make absolutely sure it’s what your application needs. In the next
section we’ll cover how you can tell when sharding is your best option.

Sharding: Learn by doing

Sharding is complicated. To get the most out of this chapter, you should run the
examples.

You’ll have no trouble running the sample cluster entirely on one machine; once
you’ve successfully set up your cluster, start experimenting with it. There’s nothing
like having a live, sharded deployment on hand for understanding MongoDB as a dis-
tributed system.

When should you shard?

The question of when to shard is straightforward in theory but requires a solid under-
standing of how your system is being used. In general, there are two main reasons to
shard: storage distribution and load distribution. Keep in mind that sharding doesn’t
solve all performance issues, and it adds additional complexity and overhead, so it’s
important to understand why you’re sharding. In many cases, sharding may not be the
optimal solution.

STORAGE DISTRIBUTION

Understanding the storage requirements of your system is usually not difficult. Mon-
goDB stores all its data in ordinary files in the directory specified by the --dbpath
option, which you can read more about in appendix A, so you should be able to use
whatever utilities are present on your host operating system to monitor the storage
usage of MongoDB. In addition, running db.stats () and db.collection.stats() in
the mongo shell will output statistics about the storage usage of the current database
and the collection within it named collection, respectively.

If you carefully monitor your storage capacity as your application grows, you’ll be
able to clearly see when the storage that your application requires exceeds the capac-
ity of any one node. In that case, if adding more capacity isn’t possible, sharding may
be your best option.

LOAD DISTRIBUTION
Understanding the load—the CPU, RAM, and I/O bandwidth used by requests from
clients—that your system must support is a bit more nuanced. In chapter 8 we talked

http://www.it-ebooks.info/

336

12.2

CHAPTER 12 Scaling your system with sharding

about the importance of keeping indexes and the working data set in RAM, and this is
the most common reason to shard. If an application’s data set continues to grow
unbounded, a moment will come when that data no longer fits in RAM. If you’re run-
ning on Amazon’s EC2, you’ll hit that threshold when you’ve exceeded the available
RAM on the largest available instance. Alternatively, you may run your own hardware
with much more RAM, in which case you’ll probably be able to delay sharding for
some time. But no machine has infinite capacity for RAM; therefore, sharding eventu-
ally becomes necessary.

To be sure, the relationship between the load your servers can handle and the
amount of RAM they have available isn’t always straightforward. For instance, using
solid-state drives (an increasingly affordable prospect) or arranging your disks in a
striped RAID configuration will increase the number of IOPS (input/output opera-
tions per second) that your disks can handle, which may allow you to push the data-
to-RAM ratio without negatively affecting performance. It may also be the case that
your working set is a fraction of your total data size and that, therefore, you can
operate with relatively little RAM. On the flip side, if you have an especially demand-
ing write load, you may want to shard well before data reaches the size of RAM, sim-
ply because you need to distribute the load across machines to get the desired write
throughput.

Leave some elbow room

Although it may be tempting to wait to shard until all your disks are 100% full and
all your machines are overloaded, that’s a bad idea. Sharding itself puts some load
on your system because the process of automatic balancing has to move data off
overloaded shards. If your system is already so overloaded that this can’t happen,
your empty shards will remain empty, your overloaded shards will remain over-
loaded, and your system will grind to a halt. Chapter 13 gives some practical advice
for how to keep track of the important metrics, so you can scale up smoothly as your
application grows.

Whatever the case, the decision to shard an existing system will always be based on
regular analyses of network usage, disk usage, CPU usage, and the ever-important ratio
of working set size, or the amount of data actively being used, to available RAM.

Now that you understand the background and theory behind sharding and know
when you need it, let’s look at the components that make up a sharded cluster in
MongoDB.

Understanding components of a sharded cluster

Several components need to work together to make sharding possible. When they’re all
functioning together, this is known as a sharded cluster. To understand how MongoDB’s
sharding works, you need to know about all the components that make up a sharded
cluster and the role of each component in the context of the cluster as a whole.

http://www.it-ebooks.info/

12.2.1

Understanding components of a sharded cluster 337

Metadata write

Shards store (two-phase commit)

application data

mongos reads/writes /\ /
application data

from/to shards pEm———
mongos router]

(in-memory copy of Config
/ cluster metadata) J} . server 2

(Replica set) (Replica set)

~_

—
(—]

N Config
server 1
\—/

mongos routes queries
and collects result

Application sends / Application
queries to single mongos

Metadata read
(single server)

Figure 12.1 Components in a MongoDB shard cluster

A sharded cluster consists of shards, mongos routers, and config servers, as shown in
figure 12.1.
Let’s examine each component in figure 12.1:

» Shards (upper left) store the application data. In a sharded cluster, only the mongos
routers or system administrators should be connecting directly to the shards.
Like an unsharded deployment, each shard can be a single node for develop-
ment and testing, but should be a replica set in production.

= mongos roulers (center) cache the cluster metadata and use it to route opera-
tions to the correct shard or shards.

» Config servers (upper right) persistently store metadata about the cluster, includ-
ing which shard has what subset of the data.

Now, let’s discuss in more detail the role each of these components plays in the cluster
as a whole.

Shards: storage of application data

A shard, shown at the upper left of figure 12.1, is either a single mongod server or a
replica set that stores a partition of the application data. In fact, the shards are the
only places where the application data gets saved in a sharded cluster. For testing, a
shard can be a single mongod server but should be deployed as a replica set in produc-
tion because then it will have its own replication mechanism and can fail over auto-
matically. You can connect to an individual shard as you would to a single node or a

http://www.it-ebooks.info/

338

12.2.2

12.2.3

CHAPTER 12 Scaling your system with sharding

replica set, but if you try to run operations on that shard directly, you’ll see only a por-
tion of the cluster’s total data.

Mongos router: router of operations

Because each shard contains only part of the cluster’s data, you need something to
route operations to the appropriate shards. That’s where mongos comes in. The mongos
process, shown in the center of figure 12.1, is a router that directs all reads, writes, and
commands to the appropriate shard. In this way, mongos provides clients with a single
point of contact with the cluster, which is what enables a sharded cluster to present
the same interface as an unsharded one.

mongos processes are lightweight and nonpersistent.! Because of this, they’re often
deployed on the same machines as the application servers, ensuring that only one net-
work hop is required for requests to any given shard. In other words, the application con-
nects locally to a mongos, and the mongos manages connections to the individual shards.

Config servers: storage of metadata

mongos processes are nonpersistent, which means something must durably store the
metadata needed to properly manage the cluster. That’s the job of the config servers,
shown in the top right of figure 12.1. This metadata includes the global cluster config-
uration; the locations of each database, collection, and the particular ranges of data
therein; and a change log preserving a history of the migrations of data across shards.

The metadata held by the config servers is central to the proper functioning and
upkeep of the cluster. For instance, every time a mongos process is started, the mongos
fetches a copy of the metadata from the config servers. Without this data, no coherent
view of the shard cluster is possible. The importance of this data, then, informs the
design and deployment strategy for the config servers.

If you examine figure 12.1, you’ll see there are three config servers, but they’re not
deployed as a replica set. They demand something stronger than asynchronous repli-
cation; when the mongos process writes to them, it does so using a two-phase commit.
This guarantees consistency across config servers. You must run exactly three config
servers in any production deployment of sharding, and these servers must reside on
separate machines for redundancy.?

Now you know what a shard cluster consists of, but you’re probably still wondering
about the sharding machinery itself. How is data actually distributed? We’ll explain
that in the next section, first introducing the two ways to shard in MongoDB, and then
covering the core sharding operations.

! The mongos server caches a local copy of the config server metadata in memory. This metadata has a version
identifier that changes when the metadata changes, so when a mongos with old metadata tries to contact a
shard with a newer metadata version, it receives a notification that it must refresh its local copy.

2

You can also run a single config server, but only as a way of more easily testing sharding. Running with only

one config server in production is like taking a transatlantic flight in a single-engine jet: it might get you there,
but lose an engine and you’re hosed.

http://www.it-ebooks.info/

12.3

Distributing data in a sharded cluster 339

Distributing data in a sharded cluster

Before discussing the different ways to shard, let’s discuss how data is grouped and
organized in MongoDB. This topic is relevant to a discussion of sharding because it
illustrates the different boundaries on which we can partition our data.

To illustrate this, we’ll use the Google Docs-like application we’ll build later in the
chapter. Figure 12.2 shows how the data for such an application would be structured
in MongoDB.

Database: cloud-docs

Collection: spreadsheets

Chunk: all documents with username
between “bakkum” and “verch”

Document: {"username": "hawkins", ..} e Figure 12.2 Levels of
granularity available in
a sharded MongoDB
deployment

Looking at the figure from the innermost box moving outward, you can see there
are four different levels of granularity in MongoDB: document, chunk, collection,
and database.

These four levels of granularity represent the units of data in MongoDB:

» Document—The smallest unit of data in MongoDB. A document represents a sin-
gle object in the system and can’t be divided further. You can compare this to a
row in a relational database. Note that we consider a document and all its fields
to be a single atomic unit. In the innermost box in figure 12.2, you can see a
document with a username field with a value of "hawkins".

» Chunk—A group of documents clustered by values on a field. A chunk is a con-
cept that exists only in sharded setups. This is a logical grouping of documents
based on their values for a field or set of fields, known as a shard key. We’ll cover
the shard key when we go into more detail about chunks later in this section, and
then again in section 12.6. The chunk shown in figure 12.2 contains all the docu-
ments that have the field username with values between "bakkum" and "verch".

» Collection—A named grouping of documents within a database. To allow users
to separate a database into logical groupings that make sense for the applica-
tion, MongoDB provides the concept of a collection. This is nothing more than
a named grouping of documents, and it must be explicitly specified by the
application to run any queries. In figure 12.2, the collection name is spread-
sheets. This collection name essentially identifies a subgroup within the cloud-
docs database, which we’ll discuss next.

» Database—Contains collections of documents. This is the top-level named group-
ing in the system. Because a database contains collections of documents, a

http://www.it-ebooks.info/

340

12.3.1

CHAPTER 12 Scaling your system with sharding

collection must also be specified to perform any operations on the documents
themselves. In figure 12.2, the database name is cloud-docs. To run any que-
ries, the collection must also be specified—spreadsheets in our example. The
combination of database name and collection name together is unique through-
out the system, and is commonly referred to as the namespace. It is usually repre-
sented by concatenating the collection name and database together, separated
by a period character. For the example shown in figure 12.2, that would look
like cloud-docs. spreadsheets.

Databases and collections were covered in section 4.3, and are present in unsharded
deployments as well, so the only unfamiliar grouping here should be the chunk.

Ways data can be distributed in a sharded cluster

Now you know the different ways in which data is logically grouped in MongoDB. The
next questions are, how does this interact with sharding? On which of these groupings
can we partition our data? The quick answer to these questions is that data can be dis-
tributed in a sharded cluster on two of these four groupings:

= On the level of an entire database, where each database along with all its collec-
tions is put on its own shard.

= On the level of partitions or chunks of a collection, where the documents within
a collection itself are divided up and spread out over multiple shards, based on
values of a field or set of fields called the shard key in the documents.

You may wonder why MongoDB does partitioning based on chunks rather than on
individual documents. It seems like that would be the most logical grouping because
a document is the smallest possible unit. But when you consider the fact that not only
do we have to partition the data, but we also have to be able to find it again, you'll see
that if we partition on a document level—for example, by allowing each spreadsheet
in our Google Docs-like application to be independently moved around—we need
to store metadata on the config servers, keeping track of every single document inde-
pendently. If you imagine a system with small documents, half of your data may end
up being metadata on the config servers just keeping track of where your actual data
is stored.

Granularity jump from database to partition of collection

You may also wonder why there’s a jump in granularity from an entire database to a
partition of a collection. Why isn’t there an intermediate step where we can distribute
on the level of whole collections, without partitioning the collections themselves?

The real answer to this question is that it's completely theoretically possible. It just
hasn’t been implemented yet. Fortunately, because of the relationship between data-
bases and collections, there’s an easy workaround. If you’re in a situation where you

http://www.it-ebooks.info/

12.3.2

12.3.3

Distributing data in a sharded cluster 341

have different collections—say, files.spreadsheets and files.powerpoints—
that you want to be put on separate servers, you can store them in separate data-
bases. For example, you could store spreadsheets in files spreadsheets.spread-
sheets and PowerPoint files in files powerpoints.powerpoints. Because files
_spreadsheets and files powerpoints are two separate databases, they’ll be
distributed, and so will the collections.

In the next two sections, we’ll cover each of the supported distribution methods. First
we’ll discuss distributing entire databases, and then we’ll move on to the more com-
mon and useful method of distributing chunks within a collection.

Distributing databases to shards

As you create new databases in a sharded cluster, each database is assigned to a dif-
ferent shard. If you do nothing else, a database and all its collections will live forever
on the shard where they were created. The databases themselves don’t even need to
be sharded.

Because the name of a database is specified by the application, you can think of this
as a kind of manual partitioning. MongoDB has nothing to do with how well-partitioned
your data is. To see why this is manual, consider using this method to shard the spread-
sheets collection in our documents example. To shard this two ways using database
distribution, you’d have to make two databases—say filesl and files2—and evenly
divide the data between the filesl.spreadsheets and the files2.spreadsheets col-
lections. It’s completely up to you to decide which spreadsheet goes in which collec-
tion and come up with a scheme to query the appropriate database to find them later.
This is a difficult problem, which is why we don’t recommend this approach for this
type of application.

When is the database distribution method really useful? One example of a real
application for database distribution is MongoDB as a service. In one implementation
of this model, customers can pay for access to a single MongoDB database. On the
backend, each database is created in a sharded cluster. This means that if each client
uses roughly the same amount of data, the distribution of the data will be optimal due
to the distribution of the databases throughout the cluster.

Sharding within collections

Now, we’ll review the more powerful form of MongoDB sharding: sharding an individ-
ual collection. This is what the phrase automatic sharding refers to, because this is the
form of sharding in which MongoDB itself makes all the partitioning decisions, with-
out any direct intervention from the application.

To allow for partitioning of an individual collection, MongoDB defines the idea of
a chunk, which as you saw earlier is a logical grouping of documents, based on the values

http://www.it-ebooks.info/

342

CHAPTER 12 Scaling your system with sharding

of a predetermined field or set of fields called a shard key. It’s the user’s responsibility
to choose the shard key, and we’ll cover how to do this in section 12.8.

For example, consider the following document from a spreadsheet management
application:

{

_id: ObjectId("4d6e9b89b600c2c196442c21")
filename: "spreadsheet-1",

updated at: ISODate ("2011-03-02T19:22:54.8452"),
username: "banks",

data: "raw document data"

If all the documents in our collection have this format, we can, for example, choose a
shard key of the _id field and the username field. MongoDB will then use that infor-
mation in each document to determine what chunk the document belongs to.

How does MongoDB make this determination? At its core, MongoDB’s sharding is
range-based; this means that each “chunk” represents a range of shard keys. When
MongoDB looks at a document to determine what chunk it belongs to, it first extracts
the values for the shard key and then finds the chunk whose shard key range contains
the given shard key values.

To see a concrete example of what this looks like, imagine that we chose a shard
key of username for this spreadsheets collection, and we have two shards, “A” and
“B.” Our chunk distribution may look something like table 12.1.

Table 12.1 Chunks and shards

Start End Shard
-0 Abbot B
Abbot Dayton A
Dayton Harris B
Harris Norris A
Norris 0 B

Looking at the table, it becomes a bit clearer what purpose chunks serve in a sharded
cluster. If we gave you a document with a username field of "Babbage", you’d immedi-
ately know that it should be on shard A, just by looking at the table above. In fact, if we
gave you any document that had a username field, which in this case is our shard key,
you’d be able to use table 12.1 to determine which chunk the document belonged to,
and from there determine which shard it should be sent to. We’ll look into this pro-
cess in much more detail in sections 12.5 and 12.6.

http://www.it-ebooks.info/

124

124.1

Building a sample shard cluster 343

Building a sample shard cluster

The best way to get a handle on sharding is to see how it works in action. Fortunately,
it’s possible to set up a sharded cluster on a single machine, and that’s exactly what
we’ll do now.?

The full process of setting up a sharded cluster involves three phases:

1 Starting the mongod and mongos servers—The first step is to spawn all the indi-
vidual mongod and mongos processes that make up the cluster. In the cluster
we’re setting up in this chapter, we’ll spawn nine mongod servers and one
MoNgos Server.

2 Configuring the cluste—The next step is to update the configuration so that the
replica sets are initialized and the shards are added to the cluster. After this, the
nodes will all be able to communicate with each other.

3 Sharding collections—The last step is to shard a collection so that it can be spread
across multiple shards. The reason this exists as a separate step is because
MongoDB can have both sharded and unsharded collections in the same clus-
ter, so you must explicitly tell it which ones you want to shard. In this chapter,
we’ll shard our only collection, which is the spreadsheets collection of the
cloud-docs database.

We’ll cover each of these steps in detail in the next three sections. We’ll then simu-
late the behavior of the sample cloud-based spreadsheet application described in
the previous sections. Throughout the chapter we’ll examine the global shard con-
figuration, and in the last section, we’ll use this to see how data is partitioned based
on the shard key.

Starting the mongod and mongos servers

The first step in setting up a sharded cluster is to start all the required mongod and
mongos processes. The shard cluster you’ll build will consist of two shards and three
config servers. You’ll also start a single mongos to communicate with the cluster. Fig-
ure 12.3 shows a map of all the processes that you’ll launch, with their port numbers
in parentheses.

You’ll runa bunch of commands to bring the cluster online, so if you find yourself
unable to see the forest because of the trees, refer back to this figure.

* The idea is that you can run every mongod and mongos process on a single machine for testing. In section 12.7
we’ll look at production sharding configurations and the minimum number of machines required for a viable
deployment.

http://www.it-ebooks.info/

344

mongod
(port 30000)

mongod
arbiter
(port 30002)

mongod
(port 30000)

Shard-a

Config
server
(port 27019)

Config
server
(port 27020)

Config
server
(port 27021)

Config servers

CHAPTER 12 Scaling your system with sharding

mongod
(port 30100)

mongod
arbiter
(port 30102)

mongod
(port 30101)

Shard-b

mongos router
(port 40000)

Ruby application (load.rb)

Application and router

Figure 12.3 A map of processes comprising the sample shard cluster

STARTING THE SHARDING COMPONENTS

Let’s start by creating the data directories for the two replica sets that will serve as

our shards:

mkdir
mkdir
mkdir
mkdir
mkdir
mkdir

/data/rs-a-1
/data/rs-a-2
/data/rs-a-3
/data/rs-b-1
/data/rs-b-2
/data/rs-b-3

vy vr vr r r v

Next, start each mongod. Because you’re running so many processes, you’ll use the --fork

option to run them in the background.*
set are as follows:

$ mongod
--port
mongod

--port

--shardsvr --replSet shard-a
30000 --logpath /data/rs-a-1
--shardsvr --replSet shard-a
30001 --logpath /data/rs-a-2

4 If you’re running Windows, note that fork won’t work

The commands for starting the first replica

--dbpath /data/rs-a-1 \

.log --fork
--dbpath /data/rs-a-2 \
.log --fork

for you. Because you’ll have to open a new terminal

window for each process, you're best off omitting the 1ogpath option as well.

http://www.it-ebooks.info/

Building a sample shard cluster 345

$ mongod --shardsvr --replSet shard-a --dbpath /data/rs-a-3 \
--port 30002 --logpath /data/rs-a-3.log --fork

Here are the commands for the second replica set:

$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-1 \

--port 30100 --logpath /data/rs-b-1.log --fork Make careful
$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-2 \ note of all the
--port 30101 --logpath /data/rs-b-2.log --fork options that
$ mongod --shardsvr --replSet shard-b --dbpath /data/rs-b-3 \ differ between

--port 30102 --logpath /data/rs-b-3.log --fork nodes.

We won’t cover all the command-line options used here. To see what each of these
flags means in more detail, it’s best to refer to the MongoDB documentation at http://
docs.mongodb.org/manual/reference/program/mongod/ for the mongod program.
As usual, you now need to initiate these replica sets. Connect to each one individually,
run rs.initiate(), and then add the remaining nodes. The first should look like this:

$ mongo localhost:30000
> rs.initiate()

You’ll have to wait a minute or so before the initial node becomes primary. During the
process, the prompt will change from shard-a:SECONDARY> to shard-a:PRIMARY.
Using the rs.status() command will also reveal more information about what’s
going on behind the scenes. Once it does, you can add the remaining nodes:

> rs.add("localhost:30001") addArb means to add this node
> rs.addArb("localhost:30002") to replica set as an arbiter.

Using localhost as the machine name might cause problems in the long run because
it only works if you’re going to run all processes on a single machine. If you know your
hostname, use it to get out of trouble. On a Mac, your hostname should look some-
thing like MacBook-Pro.local. If you don’t know your hostname, make sure that you
use localhost everywhere!

Configuring a replica set that you’ll use as a shard is exactly the same as configur-
ing a replica set that you’ll use on its own, so refer back to chapter 10 if any of this rep-
lica set setup looks unfamiliar to you.

Initiating the second replica set is similar. Again, wait a minute after running
rs.initiate():
mongo localhost:30100
rs.initiate ()

rs.add("localhost:30100")
rs.addArb("localhost:30101")

vV Vv Vv O

Finally, verify that both replica sets are online by running the rs.status () command
from the shell on each one. If everything checks out, you’re ready to start the config

http://docs.mongodb.org/manual/reference/program/mongod/
http://docs.mongodb.org/manual/reference/program/mongod/
http://www.it-ebooks.info/

346 CHAPTER 12 Scaling your system with sharding

servers.” Now you create each config server’s data directory and then start a mongod for
each one using the configsvr option:

$ mkdir /data/config-1

$ mongod --configsvr --dbpath /data/config-1 --port 27019 \
--logpath /data/config-1.log --fork --nojournal

$ mkdir /data/config-2

$ mongod --configsvr --dbpath /data/config-2 --port 27020 \
--logpath /data/config-2.log --fork --nojournal

$ mkdir /data/config-3

$ mongod --configsvr --dbpath /data/config-3 --port 27021 \
--logpath /data/config-3.log --fork --nojournal

Ensure that each config server is up and running by connecting with the shell, or by
tailing the log file (tail -f <log_file_path>) and verifying that each process is listen-
ing on the configured port. Looking at the logs for any one config server, you should
see something like this:

Wed Mar 2 15:43:28 [initandlisten] waiting for connections on port 27020
Wed Mar 2 15:43:28 [websvr] web admin interface listening on port 28020

If each config server is running, you can go ahead and start the mongos. The mongos
must be started with the configdb option, which takes a comma-separated list of con-
fig database addresses:®

$ mongos --configdb localhost:27019,localhost:27020,localhost:27021 \
--logpath /data/mongos.log --fork --port 40000

Once again, we won’t cover all the command line options we’re using here. If you
want more details on what each option does, refer to the docs for the mongos program
at http://docs.mongodb.org/manual/reference/program/mongos/ .

12.4.2 Configuring the cluster

Now that you’ve started all the mongod and mongos processes that we’ll need for this
cluster (see figure 12.2), it’s time to configure the cluster. Start by connecting to the
mongos. To simplify the task, you’ll use the sharding helper methods. These are meth-
ods run on the global sh object. To see a list of all available helper methods, run
sh.help().

You’ll enter a series of configuration commands beginning with the addShard com-
mand. The helper for this command is sh.addShard (). This method takes a string
consisting of the name of a replica set, followed by the addresses of two or more seed

® Again, if running on Windows, omit the --fork and --logpath options, and start each mongod in a new
window.

% Be careful not to put spaces between the config server addresses when specifying them.

http://docs.mongodb.org/manual/reference/program/mongos/
http://www.it-ebooks.info/

12.4.3

Building a sample shard cluster 347
nodes for connecting. Here you specify the two replica sets you created along with the
addresses of the two non-arbiter members of each set:

$ mongo localhost:40000
> sh.addShard ("shard-a/localhost:30000,localhost:30001")

{ "shardadded" : "shard-a", "ok" : 1 }
> sh.addShard ("shard-b/localhost:30100,localhost:30101")
{ "shardadded" : "shard-b", "ok" : 1 }

If successful, the command response will include the name of the shard just added.
You can examine the config database’s shards collection to see the effect of your
work. Instead of using the use command, you’ll use the getSiblingDB () method to
switch databases:

> db.getSiblingDB ("config") .shards.find ()
{ " id" : "shard-a", "host" : "shard-a/localhost:30000,localhost:30001" }
{ " id" : "shard-b", "host" : "shard-b/localhost:30100,localhost:30101" }

As a shortcut, the 1istshards command returns the same information:

> use admin
> db.runCommand ({listshards: 1})

While we’re on the topic of reporting on sharding configuration, the shell’s sh.sta-
tus () method nicely summarizes the cluster. Go ahead and try running it now.

Sharding collections

The next configuration step is to enable sharding on a database. This doesn’t do any-
thing on its own, but it’s a prerequisite for sharding any collection within a database.
Your application’s database will be called cloud-docs, so you enable sharding like this:

> sh.enableSharding("cloud-docs")

As before, you can check the config data to see the change you just made. The config
database holds a collection called databases that contains a list of databases. Each
document specifies the database’s primary shard location and whether it’s partitioned
(whether sharding is enabled):

> db.getSiblingDB ("config") .databases.find ()
{ " id" : "admin", "partitioned" : false, "primary" : "config" }
{ " id" : "cloud-docs", "partitioned" : true, "primary" : "shard-a" }

Now all you need to do is shard the spreadsheets collection. When you shard a col-
lection, you define a shard key. Here you’ll use the compound shard key {username:
1, _id: 1} because it’s good for distributing data and makes it easy to view and com-
prehend chunk ranges:

> sh.shardCollection("cloud-docs.spreadsheets", {username: 1, _id: 1})

http://www.it-ebooks.info/

348 CHAPTER 12 Scaling your system with sharding

Again, you can verify the configuration by checking the config database for sharded
collections:

> db.getSiblingDB ("config") .collections.findOne ()

{ Full namespace of the
" id" : "cloud-docs.spreadsheets", collection we just sharded
"lastmod" : ISODate ("1970-01-16T00:50:07.2682Z"),
"dropped" : false,
"key" : { Shard key of the
‘username" : 1, collection we
} "_id" s 1 just sharded
"unique" : false

Don’t worry too much about understanding all the fields in this document. This is
internal metadata that MongoDB uses to track collections, and it isn’t meant to be
accessed directly by users.

SHARDING AN EMPTY COLLECTION

This sharded collection definition may remind you of something: it looks a bit like an
index definition, especially with its unique key. When you shard an empty collection,
MongoDB creates an index corresponding to the shard key on each shard.” Verify
this for yourself by connecting directly to a shard and running the getIndexes ()
method. Here you connect to your first shard, and the output contains the shard key
index, as expected:

$ mongo localhost:30000

> use cloud-docs

> db.spreadsheets.getIndexes ()
[

{ - -
"name" : " id ", _|d |ndex, which is
"ns" : "cloud-docs. spreadsheets", automatically created
- for all collections

ey" : {
noidn s o1
1
llvll : O
1
{ Compound index on
"ns" : "cloud-docs.spreadsheets", username and _id
nkey" : { created, because we
"ysername" : 1, sharded this collection
"oidr o1 on that key

1.

"name" : "username_1_ id 1",

llvll : O

7 If you’re sharding an existing collection, you’ll have to create an index corresponding to the shard key before
you run the shardcollection command

http://www.it-ebooks.info/

12.4.4

Building a sample shard cluster 349

Once you’ve sharded the collection, sharding is ready to go. You can now write to the
cluster and data will distribute. You’ll see how that works in the next section.

Writing to a sharded cluster

We’ll insert some documents into the sharded cluster so you can observe the forma-
tion and movement of chunks, which is the essence of MongoDB’s sharding. The sam-
ple documents, each representing a single spreadsheet, will look like this:

{

_id: ObjectId("4de6f29clOe4ef0l23afdacaeb"),
filename: "sheet-1",

updated_at: new Date(),

username: "banks",

data: "RAW DATA"

Note that the data field will contain a 5 KB string to simulate user data.

This book’s source code for this chapter includes a Ruby script you can use to write
documents to the cluster. The script takes a number of iterations as its argument, and
for each iteration, it inserts one 5 KB document for each of 200 users. The script’s
source is here:

require 'rubygems'

require 'mongo' .
Connection to

MongoDB using
the Ruby driver

require 'names’'
@con = Mongo::MongoClient.new("localhost", 40000)
@col = @con|'cloud-docs'] ['spreadsheets']
@data = "abcde" * 1000
def write user docs(iterations=0, name_count=200)
iterations.times do |iteration]
name count.times do |name number |
doc = { :filename => "sheet-#{iteration}",
:updated_at => Time.now.utc, Function to
:username => Names::LIST[name number], actually insert
:data => @data data into
} MongoDB
@col.insert (doc)
end
end
end
if ARGV.empty? || !(ARGV[0] =~ /"\d+%/)
puts "Usage: load.rb [iterations] [name_count]"
else
iterations = ARGV[0].to i
if ARGV[1] && ARGV[1] =~ /"\d+$/
name_count = ARGV[1l].to i
else

name_count = 200
end
write user docs(iterations, name_count)
end

http://www.it-ebooks.info/

350

CHAPTER 12 Scaling your system with sharding

If you have the script on hand, you can run it from the command line with no argu-
ments to insert the initial iteration of 200 values:

$ ruby load.rb 1

Now connect to mongos via the shell. If you query the spreadsheets collection, you’ll
see that it contains exactly 200 documents and that they total around 1 MB. You can
also query a document, but be sure to exclude the sample data field (you don’t want
to print 5 KB of text to the screen):

$ mongo localhost:40000

> use cloud-docs

> db.spreadsheets.count ()

200

> db.spreadsheets.stats () .size

1019496

> db.spreadsheets.findOne ({}, {data: 0})

{

"7id" : ObjectId("4dedebl191d41c8547d0024c2"),
"username" : "Cerny",

"updated_at" : ISODate("2011-03-01T21:54:33.8132"),
"filename" : "sheet-0"

CHECK ON THE SHARDS
Now you can check out what’s happened sharding-wise. Switch to the config database
and check the number of chunks:

> use config

> db.chunks.count ()
1

There’s only one chunk so far. Let’s see how it looks:

> db.chunks.findOne ()

{

"_id" : "cloud-docs.spreadsheets-username_ MinKey id MinKey",
"lastmod" : {
"tro: 1000,
"iv s 0
1
"ns" : "cloud-docs.spreadsheets",
"min" : | <+—— min field
"username" : { $minKey : 1 },
v id" : { $minKey : 1 }
1
"max" : { <+—— max field
"username" : { $maxKey : 1 },
" id" : { SmaxKey : 1 }

b

"shard" : "shard-a"

http://www.it-ebooks.info/

Building a sample shard cluster 351

Can you figure out what range this chunk represents? If there’s only one chunk, it
spans the entire sharded collection. That’s borne out by the min and max fields, which
show that the chunk’s range is bounded by $minKey and $maxKey.

minKey and maxKey

SminKey and SmaxKey are used in comparison operations as the boundaries of BSON
types. BSON is MongoDB’s native data format. $minKey always compares lower than
all BSON types, and $maxKey compares greater than all BSON types. Because the
value for any given field can contain any BSON type, MongoDB uses these two types
to mark the chunk endpoints at the extremities of the sharded collection.

You can see a more interesting chunk range by adding more data to the spreadsheets
collection. You’ll use the Ruby script again, but this time you’ll run 100 iterations,
which will insert an extra 20,000 documents totaling 100 MB:

$ ruby load.rb 100

Verify that the insert worked:

> db.spreadsheets.count ()
20200

> db.spreadsheets.stats () .size
103171828

Sample insert speed

Note that it may take several minutes to insert this data into the shard cluster. There
are two main reasons for the slowness:

1 You're performing a round-trip for each insert, whereas you might be able to per-
form bulk inserts in a production situation.

2 Most significantly, you’re running all of the shard’s nodes on a single machine.
This places a huge burden on the disk because four of your nodes are being writ-
ten to simultaneously (two replica set primaries and two replicating secondaries).

Suffice it to say that in a proper production installation, this insert would run much
more quickly.

Having inserted this much data, you’ll definitely have more than one chunk. You

can check the chunk state quickly by counting the number of documents in the
chunks collection:

> use config
> db.chunks.count ()
10

http://www.it-ebooks.info/

352

CHAPTER 12 Scaling your system with sharding

You can see more detailed information by running sh.status(). This method
prints all of the chunks along with their ranges. For brevity, we’ll only show the first
two chunks:

> sh.status ()

sharding version: { " id" : 1, "version" : 3 }
shards:
{ v id": "shard-a", "host": "shard-a/localhost:30000,localhost:30001" }
{ » id": "shard-b", "host": "shard-b/localhost:30100,localhost:30101" }
databases:
{ " id": "admin", "partitioned": false, "primary": "config" }
{ " id": "test", ‘partitioned": false, "primary": "shard-a" }
{ " _id": "cloud-docs", "partitioned": true, ‘'primary": "shard-b" }
shard-a 5
shard-b 5
{ "username": { $minKey : 1 }, " id" : { S$minKey : 1 } } -->> { First chunk
"username": "Abdul", starting from
"_id": ObjectId("4e89ffe7238d43be9£0000012") } the minimum
on: shard-a { "t" : 2000, "i" : 0 } key
{ "username" : "Abdul",
" id" : ObjectId("4e89ffe7238d3be9£0000012") } -->> { Second chunk
"username" : "Buettner", starting from where
" id" : ObjectId("4e8a00a0238d3be9£0002e98") } the first chunk ended
on : shard-a { "t" : 3000, "i" : 0 }

SEEING DATA ON MULTIPLE SHARDS
The picture has definitely changed. As you can see in figure 12.4, you now have 10
chunks. Naturally, each chunk represents a contiguous range of data.

You can see in figure 12.4 that shard-a has a chunk that ranges from one of Abdul’s
documents to one of Buettner’s documents, just as you saw in our output. This means
that all the documents with a shard key that lies between these two values will either
be inserted into, or found on, shard-a.? You can also see in the figure that shard-b has

{"username":"Abdul"," id"..}-> {"username":"Lee"," id"..}->

{"username" :"Hawkins", ..} {"username":"Stewart", ..}

Figure 12.4 The chunk distribution of the spreadsheets collection

8 If you’re following along and running all these examples for yourself, note that your chunk distributions may
differ somewhat.

http://www.it-ebooks.info/

some chunks too, in particular the chunk ranging from one of Lee’s documents to
one of Stewart’s documents, which means any document with a shard key between
those two values belongs on shard-b. You could visually scan the sh.status () output
to see all the chunks, but there’s a more direct way: running a query on the chunks
collection that filters on the name of the shard and counting how many documents

Building a sample shard cluster 353

would be returned:

Ul v U1 v

As long as the cluster’s data size is small, the splitting algorithm dictates that splits hap-
pen often. That’s what you see now. This is an optimization that gives you a good dis-
tribution of data and chunks early on. From now on, as long as writes remain evenly

db.chunks.count ({"shard": "shard-a"})

db.chunks.count ({"shard": "shard-b"})

distributed across the existing chunk ranges, few migrations will occur.

Now the split threshold will increase. You can see how the splitting slows down, and
how chunks start to grow toward their max size, by doing a more massive insert. Try
adding another 800 MB to the cluster. Once again, we’ll use the Ruby script, remem-

Splits and migrations

Behind the scenes, MongoDB relies on two mechanisms to keep the cluster bal-
anced: splits and migrations.

Splitting is the process of dividing a chunk into two smaller chunks. This happens
when a chunk exceeds the maximum chunk size, currently 64 MB by default. Splitting
is necessary because chunks that are too large are unwieldy and hard to distribute
evenly throughout the cluster.

Migrating is the process of moving chunks between shards. When some shards
have significantly more chunks than others, this triggers something called a migra-
tion round. During a migration round, chunks are migrated from shards with many
chunks to shards with fewer chunks until the cluster is more evenly balanced. As
you can imagine, of the two operations, migrating is significantly more expensive
than splitting.

In practice, these operations shouldn’t affect you, but it’s useful to be aware that
they’re happening in case you run into a performance issue. If your inserts are well-
distributed, the data set on all your shards should increase at roughly the same rate,
meaning that the number of chunks will also grow at roughly the same rate and expen-
sive migrations will be relatively infrequent.

bering that it inserts about 1 MB on each iteration:

$

ruby load.rb 800

http://www.it-ebooks.info/

354

CHAPTER 12 Scaling your system with sharding

This will take a lot of time to run, so you may want to step away and grab a snack after
starting this load process. By the time it’s done, you’ll have increased the total data
size by a factor of 8. But if you check the chunking status, you’ll see that there are only
around twice as many chunks:

> use config
> db.chunks.count ()
21

Given that there are more chunks, the average chunk ranges will be smaller, but each
chunk will include more data. For example, the first chunk in the collection spans
from Abbott to Bender but it’s already nearly 60 MB in size. Because the max chunk
size is currently 64 MB by default, you’d soon see this chunk split if you were to con-
tinue inserting data.

Another thing to note is that the distribution still looks pretty even, as it did
before:

> db.chunks.count ({"shard": "shard-a"})
11
> db.chunks.count ({"shard": "shard-b"})
10

Although the number of chunks has increased during the last 800 MB insert round,
you can probably assume that no migrations occurred; a likely scenario is that each of
the original chunks split in two, with a single extra split somewhere in the mix. You
can verify this by querying the config database’s changelog collection:

> db.changelog.count ({what: "split"})

20

> db.changelog.find ({what: "moveChunk.commit"}) .count ()
6

This is in line with these assumptions. A total of 20 splits have occurred, yielding 20
chunks, but only 6 migrations have taken place. For an extra-deep look at what’s going
on here, you can scan the change log entries. For instance, here’s the entry recording
the first chunk move:

> db.changelog.findOne ({what: "moveChunk.commit"})

" id" : "localhost-2011-09-01T20:40:59-2",
"server" : "localhost",

"clientAddr" : "127.0.0.1:55749",

"time" : ISODate("2011-03-01T20:40:59.0352"),
"what" : "moveChunk.commit",

"ns" : "cloud-docs.spreadsheets",

http://www.it-ebooks.info/

12.5

12.5.1

Querying and indexing a shard cluster 355

"details" : {
"min" {
"username" : { $minKey : 1 },
nodidan minKey : 1 .
} - s Y J Details about
- the chunk that
max" : {
"username" : "Abbott", was moved
" id" : ObjectId("4d6d57f£61d41c851ee000092")
¥
"from" : "shard-a",
"to" : "shard-b" Shard that the
} Shard that the chunk was
} chunk was moved from

moved to

Here you see the movement of chunks from shard-a to shard-b. In general, the docu-
ments you find in the change log are quite readable. As you learn more about shard-
ing and begin prototyping your own shard clusters, the config change log makes an
excellent live reference on split and migrate behavior. Refer to it often.

Querying and indexing a shard cluster

From the application’s perspective, there’s no difference between querying a sharded
cluster and querying a single mongod. In both cases, the query interface and the pro-
cess of iterating over the result set are the same. But behind the scenes, things are dif-
ferent, and it’s worthwhile to understand exactly what’s going on.

Query routing

Imagine you’re querying a sharded cluster. How many shards does mongos need to
contact to return a proper query response? If you give it some thought, you’ll see that
it depends on whether the shard key is present in the query selector that we pass to
find and similar operations. Remember that the config servers (and thus mongos)
maintain a mapping of shard key ranges to shards. These mappings are none other
than the chunks we examined earlier in the chapter. If a query includes the shard key,
then mongos can quickly consult the chunk data to determine exactly which shard
contains the query’s result set. This is called a targeted query.

But if the shard key isn’t part of the query, the query planner will have to visit all
shards to fulfill the query completely. This is known as a global or scatter/gather query.
The diagram in figure 12.5 illustrates both query types.

Figure 12.5 shows a cluster with two shards, two mongos routers, and two applica-
tion servers. The shard key for this cluster is {username: 1, _id: 1}. We’ll discuss how
to choose a good shard key in section 12.6.

http://www.it-ebooks.info/

356

12.5.2

CHAPTER 12 Scaling your system with sharding

Shard-a Shard-b

(replica set) (replica set)

Queries only the shard Query cannot be
with the chunk containing / \ isolated using chunk
documents with “Abbott” information so it is
as the shard key : o sent to all shards
mongos mongos
find ({username:"Abbott"}) find({filename:"sheet-1"})
Application Application
Targeted queries Global queries
(query selector has (query selector lacks
shard key) shard key)

Figure 12.5 Targeted and global queries against a shard cluster

To the left of the figure, you can see a targeted query that includes the username field
in its query selector. In this case, the mongos router can use the value of the username
field to route the query directly to the correct shard.

To the right of the figure, you can see a global or scatter/gather query that doesn’t
include any part of the shard key in its query selector. In this case, the mongos router
must broadcast the query to both shards.

The effect of query targeting on performance cannot be overstated. If all your que-
ries are global, that means each shard must respond to every single query against your
cluster. In contrast, if all your queries are targeted, each shard only needs to handle
on average the total number of requests divided by the total number of shards. The
implications for scalability are clear.

But targeting isn’t the only thing that affects performance in a sharded cluster.
As you’ll see in the next section, everything you’ve learned about the performance
of an unsharded deployment still applies to a sharded cluster, but to each shard
individually.

Indexing in a sharded cluster

No matter how well-targeted your queries are, they must eventually run on at least one
shard. This means that if your shards are slow to respond to queries, your cluster will
be slow as well.

http://www.it-ebooks.info/

12.5.3

Querying and indexing a shard cluster 357

As in an unsharded deployment, indexing is an important part of optimizing per-
formance. There are only a few key points to keep in mind about indexing that are
specific to a sharded cluster:

= Each shard maintains its own indexes. When you declare an index on a sharded
collection, each shard builds a separate index for its portion of the collection.
For example, when you issue the db.spreadsheets.createIndex() command
while connected to a mongos router, each shard processes the index creation
command individually.

= It follows that the sharded collections on each shard should have the same
indexes. If this ever isn’t the case, you’ll see inconsistent query performance.

= Sharded collections permit unique indexes on the _id field and on the shard
key only. Unique indexes are prohibited elsewhere because enforcing them
would require intershard communication, which is against the fundamental
design of sharding in MongoDB.

Once you understand how queries are routed and how indexing works, you should be
in a good position to write smart queries and indexes for your sharded cluster. Most of
the advice on indexing and query optimization from chapter 8 will apply.

In the next section, we’ll cover the powerful explain() tool, which you can use to
see exactly what path is taken by a query against your cluster.

The explain() tool in a sharded cluster

The explain() tool is your primary way to troubleshoot and optimize queries. It can
show you exactly how your query would be executed, including whether it can be tar-
geted and whether it can use an index. The following listing shows an example of
what this output might look like.

Listing 12.1 Index and query to return latest documents updated by a user

mongos> db.spreadsheets.createIndex({username:1, updated at:-1})

{

"raw" : |

"shard-a/localhost:30000,localhost:30001" : {
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 3,
"numIndexesAfter" : 4,
"ok" : 1

1

"shard-b/localhost:30100, localhost:30101" : {
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 3,
"numIndexesAfter" : 4,
"ok" : 1

b

nok" i 1

http://www.it-ebooks.info/

358 CHAPTER 12 Scaling your system with sharding

mongos> db.spreadsheets.find({username: "Wallace"}).sort ({updated at:-
1}) .explain()
{

"clusteredType" : "ParallelSort",
"shards" : {
"shard-b/localhost:30100,localhost:30101" : [

{

"cursor" : "BtreeCursor username_ 1 updated at -1",
"isMultiKey" : false,
"m" : 100, Index on
"nscannedObjects" : 100, updated_at and
"nscanned" : 100, username used to
"nscannedObjectsAllPlans" : 200, fetch documents
"mscannedAllPlans" : 200,
"scanAndOrder" : false,
"indexOnly" : false,
"nYields" : 1,
"nChunkSkips" : 0,
"millis" : 3,
"indexBounds" : {
"username" : [
[
"Wallace",
"Wallace"
]
1,
"updated_at" : [
[
{
"SmaxElement" : 1
¥
{
"$SminElement" : 1
}
]
]
¥
"server" : "localhost:30100",
"filterSet" : false
}
]
1
"cursor" : "BtreeCursor username_1l updated_at_ -1",
"n" : 100,
"nChunkSkips" : 0,
"nYields" : 1,
"nscanned" : 100,
"mscannedAllPlans" : 200,
"nscannedObjects" : 100,
"nscannedObjectsAllPlans" : 200,
"millisShardTotal" : 3,
"millisShardavg" : 3, lember of shards
"numQueries" : 1, this query was
"numShards" : 1, sent to

"indexBounds" : {

http://www.it-ebooks.info/

12.54

12.6

Choosing a shard key 359

"username" : [
[
"Wallace",
"Wallace"
1
1,
"updated at" : [
[
{
"SmaxElement" : 1
¥
{
"SminElement" : 1
1
1
1
b
"millis" : 4

}

You can see from this explain() plan that this query was only sent to one shard @,
and that when it ran on that shard it used the index we created to satisfy the sort more
efficiently @. Note that this explain () plan output is from v2.6 and earlier, and it has
changed in 3.0 and later versions. Chapter 8 contains output from the explain ()
command when used on a MongoDB v3.0 server. Consult the documentation at
https://docs.mongodb.org/manual/reference /method/ cursor.explain/ for your spe-
cific version if you see any fields you don’t understand.

Aggregation in a sharded cluster

It’s worth noting that the aggregation framework also benefits from sharding. The
analysis of an aggregation is a bit more complicated than a single query, and may
change between versions as new optimizations are introduced. Fortunately, the aggre-
gation framework also has an explain() option that you can use to see details about
how your query would perform. As a basic rule of thumb, the number of shards that
an aggregation operation needs to contact is dependent on the data that the opera-
tion needs as input to complete. For example, if you're counting every document in
your entire database, you’ll need to query all shards, but if you’re only counting a
small range of documents, you may not need to query every shard. Consult the cur-
rent documentation at https://docs.mongodb.org/manual/reference/method/db
.collection.aggregate/ for more details.

Choosing a shard key

In section 12.3 you saw how the shard key is used to split a collection into logical
ranges called chunks, and in section 12.5.1 you saw how the mongos can use this infor-
mation to figure out where a set of documents might be located.

In this section, we’ll discuss in depth the vitally important process of choosing
a shard key. A poorly chosen shard key will prevent your application from taking

https://docs.mongodb.org/manual/reference/method/cursor.explain/
https://docs.mongodb.org/manual/reference/method/db.collection.aggregate/
https://docs.mongodb.org/manual/reference/method/db.collection.aggregate/
http://www.it-ebooks.info/

360

12.6.1

CHAPTER 12 Scaling your system with sharding

advantage of many of the benefits provided by sharding. In the pathological case,
both insert and query performance will be significantly impaired. Adding to the grav-
ity of the decision is that once you’ve chosen a shard key, you're stuck with it. Shard
keys are immutable.’

The best way to understand the pitfalls of a bad shard key is to walk through the
process of finding a good one step by step and analyze in depth each shard key you
consider along the way. That’s exactly what we’ll do now, using the spreadsheet appli-
cation as an example.

After we find an optimal shard key for our spreadsheet application, at the end of
the chapter we’ll consider how our shard key choice would have been different if we’d
instead been designing a system to support an email application. This will highlight
how much the optimal shard key depends on the specifics of each application.

As we walk through the process of choosing a shard key for our spreadsheet appli-
cation, you’ll see three main pitfalls:

» Hotspots—Some shard keys result in situations where all reads or writes are
going to a single chunk, on a single shard. This can cause one shard to be com-
pletely overwhelmed, while the others are sitting idle.

» Unsplittable chunks—A shard key that’s too coarse-grained can result in a situation
where there are many documents with the same shard key. Because sharding is
based on ranges of shard keys, this means that the documents can’t be split into
separate chunks, which can limit MongoDB’s ability to evenly distribute data.

» Poor targeting—Even if writes are distributed perfectly in the cluster, if our shard
key doesn’t have some relationship to our queries, we’ll have poor query per-
formance. You saw this in section 12.5.1 when we discussed global and tar-
geted queries.

Now we’ll begin the process of finding the best shard key for our spreadsheet applica-
tion and see firsthand how each of these situations can come up in practice.

Imbalanced writes (hotspots)

The first shard key you may consideris { "_id" : 1 }, which will shard on the _id field.
The _id field may initially seem like a great candidate: it must be present in every doc-
ument, it has an index by default, you may have it in many of your queries, and it’s
automatically generated by MongoDB using the BSON Object ID type, which is essen-
tially a GUID (globally unique identifier).

But there’s one glaring problem with using an Object ID as a shard key: its values
are strictly ascending. This means that every new document will have a shard key
larger than any other document in the collection. Why is this a problem? If the system
is already completely balanced, that means every new document will go to the same

 Note that there’s no good way to alter the shard key once you’ve created it. Your best bet is to create a new
sharded collection with the proper key, export the data from the old sharded collection, and then restore the
data to the new one.

http://www.it-ebooks.info/

Choosing a shard key 361

Ascending shard key
(n = document number)

(["n":1003,..})
(["n":1001,..}) (["n":1002,..})

{"n:{"S$minKey":1}} {"n":1000}—>
->{"n":10} {("n": {SmaxKey":}}

Figure 12.6 The ascending shard key causing all writes to go to one chunk.

chunk, which is the chunk that ranges up to $maxKey. This issue is best understood
with an example, as shown in figure 12.6.

For simplicity, rather than using a BSON Object ID to illustrate the problem with
ascending shard keys, this example uses the document number, which is stored in the
field n. As you can see, we’ve already inserted documents 1 to 1000, and we’re about to
insert documents 1001, 1002, and 1003. Because MongoDB hadn’t seen anything
above 1000 before that point, it had no reason to split the chunk ranging from 1000 to
$maxKey. This means that the three new documents all belong in that chunk, and so
will all new documents.

To see how this might affect a real application, consider using the ascending BSON
Object id field as the shard key for the spreadsheet application. Practically, what this
means is that every new spreadsheet that gets created will belong in the same chunk,
which means that every new document will need to be written to the single shard
responsible for storing that chunk. This is where the performance issue becomes
clear. Even if you have a hundred shards, all your writes will be sent to a single one
while the rest sit idle. On top of that, MongoDB will do its best to migrate data off the
overloaded shard, which will slam it even more.

This effectively nullifies one of sharding’s greatest benefits: the automatic distribu-
tion of the insert load across machines.'® All that said, if you still want to use the _id
field as your shard key, you have two options:

= First, you can override the _id field with your own identifier that isn’t ascend-
ing. If you choose this approach, however, take care to remember that _id must
be unique even in a sharded cluster.

= Alternatively, you can make your shard key on id a hashed shard key. This
instructs MongoDB to use the output of a hash function on the shard key, rather

19 Note that an ascending shard key shouldn’t affect updates as long as documents are updated randomly.

http://www.it-ebooks.info/

362

12.6.2

12.6.3

CHAPTER 12 Scaling your system with sharding

than using the shard key directly. Because the hash function is designed to have
an output that appears randomly distributed, this will ensure that your inserts
are evenly distributed throughout the cluster. But this also means that range
queries will have to span multiple shards, because even documents with shard
keys that are similar may hash to completely different values.

Uniqueness gotchas

MongoDB can only ensure that the shard key is unique. It can’t enforce uniqueness
on any other key because one shard can’t check another shard to see if there are
duplicates. Surprisingly, this also includes the id field, which is required to be
unique. By default, MongoDB generates the id field using a BSON Object ID.
Great care was taken in the design of this data type to ensure that, statistically
speaking, it would be unigue across the cluster. Because of this, beware of overrid-
ing the _id field yourself. If you don’t properly enforce uniqueness on the client side,
you could lose data when two documents with the same _id field are migrated to the
same shard.

Unsplittable chunks (coarse granularity)

Now you know that { " id" : 1 } won’t work as a shard key, but what about { "user-
name" : 1 }? This looks like a good candidate because when we’re querying or updat-
ing a spreadsheet, we generally already know what user the spreadsheet belongs to, so
we can include the username field in our query and get good targeting. Additionally,
sharding on the username field will also lead to relatively well-balanced inserts because
the distribution of inserts across users should be relatively even.

There’s just one problem with this field: it’s so coarse that we may end up in a sit-
uation where one chunk grows without bound. To see this, imagine that the user
“Verch” decides to store 10 GB of spreadsheet data. This would bring the size of the
chunk containing the documents with a username of “Verch” well above our 64 MB
maximum.

Normally, when a chunk gets too large, MongoDB can split the chunk into smaller
pieces and rebalance them across the cluster. However, in this case, there’s no place
the chunk can be split, because it already contains only a single shard key value. This
causes a number of technical problems, but the end result is that your cluster will
become imbalanced, and MongoDB won’t be able to rebalance effectively.

Poor targeting (shard key not present in queries)

After seeing all these problems, you may want to throw up your hands and say “Fine,
I'll just pick a completely random shard key. It’s unique and it’s not ascending.”
Although that does solve the problem of writes, it isn’t a good shard key if you ever
intend to read from your cluster. As you saw in section 12.5.1, queries can only be routed
to the correct shard if they include the shard key. If your shard key is completely

http://www.it-ebooks.info/

12.6.4

Choosing a shard key 363

random, then at the time you’re querying for a document, chances are you’ll have no
idea what the shard key is. You probably will know the username you’re looking for, or
the ID of the document, which is why those fields were so appealing in the first place.
This means that the router will have to result to a global broadcast, which can hurt
performance.

That said, if you’re writing an application where all you need to do is dump a large
amount of data and you don’t need selective queries—for example, in an application
where you’re collecting sensor data to analyze later in large batches (where you’re
processing such a large portion of the data that you’ll need to query all the shards any-
way)—a random unique shard key may not be a bad idea. In fact, if you can guarantee
uniqueness (by making it a GUID using some library that provides this guarantee) and
ensure that it’s not ascending, you can even override the _id field.

Ideal shard keys

So far you've seen three things that you need to consider when choosing a shard
key. One is how reads are targeted, the second is how well writes are distributed, and
the last is how effectively MongoDB can split and migrate chunks in your collection.
Each key satisfied some of these properties but failed in others. How can you pick a
shard key that works for all three? The answer, as you might expect, is using a com-
pound shard key that provides all these benefits. In this case, that shard key is {
username : 1, _id : 1 }. This has good targeting because the username field will
often be present in our reads, has good write balancing because username has values
that are evenly distributed throughout the alphabet, and is fine-grained enough for
MongoDB to split chunks because it includes the _id field, which is unique. See fig-
ure 12.7 for an example.

{"username":"Verch", "7id" 145} —>
{"username":"Versace","_id":3}
{"username":"Verch","_id":45}~> {"username":"Verch"," id":98}~>
{"username":"Verch"," id":98} {"username":"Versace"," id":3}

Figure 12.7 Splitting a chunk that was previously unsplittable when sharding only on username

Here we can see a split on a chunk that we couldn’t split when we sharded only on the
username field. Now, because we include the _id field, we can split all the documents
from "Verch" into two separate chunks, which we couldn’t have done if our shard key
was { "username" : 1 }.

http://www.it-ebooks.info/

364

CHAPTER 12 Scaling your system with sharding

Indexing matters

This chapter is all about choosing an effective shard key, but it’s important to keep
in mind that indexing is still just as important as it was for a single node. As we dis-
cussed in section 12.5.2, even if your shard key is perfect and each query is routed
to a single shard, if the performance on each shard is poor, your overall performance
will still be poor. For this reason, MongoDB requires an index to be created on the
shard key before a collection is sharded. There’s no technical reason for this, other
than the fact that it’d be a common mistake to leave this out if it wasn’t done auto-
matically. As you design your sharded system, be sure to keep in mind everything you
learned about indexing on a single node. It's just as important in a sharded cluster,
and likely more so because you’re operating at a larger scale.

One important factor to consider is index locality. This refers to how close together
subsequent inserts are in the index. In this case, random inserts will perform poorly
because the entire index must be loaded into memory, whereas sequential inserts
will perform well because only the end of the index will need to be in memory at any
given time. This is in direct contrast to the requirement that shard keys aren’t ascend-
ing and illustrates the fact that proper indexing and optimal shard key choice must
be each given dedicated attention when designing a sharded system.

Fortunately, the shard key { "username" : 1, " id" : 1 } that we chose earlier
satisfies all the requirements. It's well-distributed on username, so it’s balanced
from the cluster perspective, but it’'s ascending on _id, so it's also ascending for
each username, thus providing good index locality.

12.6.5 Inherent design trade-offs (email application)

Sometimes in sharding there are inherent design trade-offs that must be dealt with.
Our spreadsheet example was a clean example of sharding because both the writes
(document creation) and reads (document viewing) are correlated by username, so
the shard key we chose in the previous section provides good performance on both.
But what if we have an application where we need to query based on a field that isn’t
correlated with our write patterns? For example, what if we’re building an email appli-
cation where we need to send emails and read inboxes? This may not seem like a
problem at first, until you realize that writes are correlated to the sender whereas
reads are correlated to the recipient. Because anyone can in theory send an email to
anyone else, it’s difficult to predict the relationship between these two fields. In this
section, we’ll consider two approaches. First, we’ll take the more straightforward
approach and shard based on sender, and then we’ll see how sharding on recipient
can change our usage patterns. These two approaches are shown in figure 12.8.

SHARDING ON SENDER

Our first tactic may be to shard on sender. This seems to be a sensible choice—each
email has exactly one sender. In this case, our write patterns are good: each write will
go to one and only one shard. What happens when we need to read a user’s inbox? If
we’re sharding based on sender and then piecing together all the emails a user has

http://www.it-ebooks.info/

12.7

Sharding in production 365

Send email Read inbox Send email Read inbox

VAT

\,

Sharding on sender Sharding on recipient

Figure 12.8 Overview of two ways an email application might be sharded

received, we need to do a full global broadcast query, as shown in figure 12.8, because
we have no idea who any given user has received emails from.

SHARDING ON RECIPIENT

Our next tactic may be to shard on recipient. This is a bit more complicated because
every email must be written to multiple locations to ensure every recipient gets a copy,
as shown in figure 12.8. This unfortunately means that our writes will take longer and
put more load on the cluster. But this approach has one nice side effect; the query to
read a user’s inbox is well-targeted, so reads will return quickly and scale well.

What’s the right approach? That’s a difficult question to answer precisely, but for
this application, the second approach is likely better. This is for two reasons. One is
that users may read their inbox more often than they send emails, and the other is that
it’s easier for users to conceptualize that taking an action such as sending an email
requires real work but may not realize that reading their inbox does, too. How often
have you heard “I can’t even load my inbox!” as if that’s somehow the easiest thing for
their email application to do? In the end, this is all speculation and, like any real-
world application, requires careful measurement and testing to determine what the
usage patterns are.

What this example illustrates is the fact that your shard key depends on the specif-
ics of your application. There’s no magic bullet shard key that covers all use cases, so
remember to think about what your read and write patterns are expected to be.

So far we’ve discussed in great detail the theory behind sharding, as well as how to
configure the parameters in a way that will optimize the performance of your system.
In the next section, we’ll get to the details of what else you might want to think about
when setting up a sharded cluster in the real world.

Sharding in production

Earlier in this chapter, we created a fully functional sharded cluster, all on one
machine. Although this is great for testing, it’d be a terrible way to deploy sharding
in production.

http://www.it-ebooks.info/

366

12.7.1

CHAPTER 12 Scaling your system with sharding

Fortunately, that’s exactly what we’ll cover in this next section. We’ll look at the
three general categories of production concerns and the order in which they arise. The
first, provisioning, is how to best allocate machines and resources for use by MongoDB
processes. The next, deployment, consists of things that you need to think about before
you start running this cluster in production for the first time, and the last, mainte-
nance, is how to keep your new cluster running and healthy.

Provisioning

The first thing to consider when thinking about how to deploy your system is provi-
sioning, or how to allocate resources and machines to MongoDB.

DEPLOYMENT TOPOLOGIES

To launch the sample MongoDB shard cluster, you had to start a total of nine pro-
cesses (three mongods for each replica set, plus three config servers). That’s a poten-
tially frightening number. First-time users might assume that running a two-shard
cluster in production would require nine separate machines. Fortunately, fewer are
needed. You can see why by looking at the expected resource requirements for each
component of the cluster.

Consider first the replica sets. Each replicating member contains a complete copy
of the data for its shard and may run as a primary or secondary node. These processes
will always require enough disk space to store their copy of the data, and enough RAM
to serve that data efficiently. Thus, replicating mongods are the most resource-intensive
processes in a shard cluster and must be given their own machines.

What about replica set arbiters? These processes are like any other member of
the replica set, except they don’t store any data besides replica set config data, which
is minimal. Hence, arbiters incur little overhead and certainly don’t need their
Own SErvers.

Next are the config servers. These also store a relatively small amount of data. For
instance, the data on the config servers managing the sample replica set totaled only
about 30 KB. If you assume that this data will grow linearly with shard cluster data size,
then a 1 TB shard cluster might swell the config servers’ data size to a mere 30 MB.!!
This means that config servers don’t necessarily need their own machines, either. But
given the critical role played by the config servers, some users prefer to place them on
a few modestly provisioned machines (or virtual instances).

From what you already know about replica sets and shard clusters, you can con-
struct a list of minimum deployment requirements:

= Each member of a replica set, whether it’s a complete replica or an arbiter,
needs to live on a distinct machine.
= Every replicating replica set member needs its own machine.

! That’s a highly conservative estimate. The real value will likely be far smaller.

http://www.it-ebooks.info/

Sharding in production 367

m Replica set arbiters are lightweight enough to share a machine with another
process. Refer back to chapter 10 for more on arbiters.

= Config servers can optionally share a machine. The only hard requirement is
that all config servers in the config cluster reside on distinct machines.

Satisfying these rules might feel like tackling a logic problem. Fortunately, we’ll apply
them now by looking at two reasonable deployment topologies for the sample two-
shard cluster. The first requires only four machines. The process layout is illustrated in
figure 12.9.

This configuration satisfies all the deployment rules just mentioned. Predominant
on each machine are the replicating nodes of each shard. The remaining processes
are arranged so that all three config servers and all members of each replica set live
on different machines. To speak of fault tolerance, this topology will tolerate the fail-
ure of any one machine. No matter which machine fails, the cluster will continue to
process reads and writes. If the failing machine happens to host one of the config

Shard-a
mongod
(27017)

Shard-a
mongod
(27017)

Shard-b
arbiter
(30000)

Config
server
(27019)

Config

server
(27019)

Machine 1 Machine 2

Shard-b
mongod
(27017)

Shard-b
mongod
(27017)

Shard-a

Config
server
(27019)

arbiter
(30000)

Machine 3 Machine 4

Figure 12.9 A two-shard cluster deployed across four machines

http://www.it-ebooks.info/

368 CHAPTER 12 Scaling your system with sharding

Shard-a Config Shard-a

server
(27019)

mongod

(27017)

mongod

(27017)

Datacenter | \achine 1 Machine 2
(main)

Shard-b
mongod
(27017)

Shard-b
mongod
(27017)

Config
server
(27019)

Machine 3 Machine 4

Shard-a Confi Shard-b
Datacenter | — onfig —
(recovery) (27017) server (27017)

(27019)

priority 0 priority O

Machine 5 Machine 6

Figure 12.10 A two-shard cluster deployed across six machines and two
datacenters

servers, all chunk splits and migrations will be suspended.'? Fortunately, suspending
sharding operations doesn’t prevent the cluster from servicing operations; splitting
and migrating can wait until the lost machine is recovered.

That’s the minimum recommend setup for a two-shard cluster. But applications
demanding the highest availability and the fastest paths to recovery will need some-
thing more robust. As discussed in the previous chapter, a replica set consisting of two
replicas and one arbiter is vulnerable while recovering. Having three nodes reduces
the fragility of the set during recovery and also allows you to keep a node in a second-
ary datacenter for disaster recovery. Figure 12.10 shows a robust two-shard cluster
topology. Each shard consists of a three-node replica set, where each node contains a
complete copy of the data. For disaster recovery, one config server and one node from
each shard are located in a secondary datacenter; to ensure that those nodes never
become primary, they’re given a priority of 0.

12 All three config servers need to be online for any sharding operations to take place.

http://www.it-ebooks.info/

12.7.2

Sharding in production 369

With this configuration, each shard is replicated twice, not just once. Additionally,
the secondary datacenter has all the data necessary for a user to completely recon-
struct the shard cluster in the event of the failure of the first datacenter.

The decision about which sharding topology is best for your application should
always be based on serious considerations about how much downtime you can toler-
ate, as measured by your recovery time objective (RTO). Think about the potential
failure scenarios and simulate them. Consider the consequences for your application
(and business) if a datacenter should fail.

Deployment

Now that you’ve settled on the topology of your cluster, it’s time to discuss the actual
deployment and configuration.

Fortunately, configuration of a production cluster follows exactly the same steps
that we took to configure our example cluster in section 12.4. Here, we’ll focus on the
additional variables that must be considered in a production deployment.

ADDING NEW SHARDS

Users frequently want to know how many shards to deploy and how large each shard
should be. Naturally, each additional shard introduces extra complexity, and each
shard also requires replicas. Thus it’s better to have a small number of large shards
than a large number of small ones. But the question remains, how large can each
shard be in practice?

The answer, of course, depends on the circumstances. In fact, the same concepts
we discussed in section 12.1.2 for how to know when to shard in the first place apply
here as well. Knowing when a single replica set—or, in this case, a shard—is at capacity
is a matter of understanding the requirements of your application. Once you reach a
point where your application requirements exceed the capacity of the shards you have
or plan to have in your cluster, that’s when you need a new shard. As always, make sure
you add enough shards before your cluster grinds to a halt, or MongoDB may not be
able to rebalance your data quickly enough.

SHARDING AN EXISTING COLLECTION

You can shard existing collections, but don’t be surprised if it takes some time to dis-
tribute the data across shards. Only one balancing round can happen at a time, and
the migrations will move only around 100-200 MB of data per minute. Thus, sharding
a 50 GB collection will take around eight hours, and this will likely involve some mod-
erate disk activity. In addition, when you initially shard a large collection like this, you
may have to split manually to expedite the sharding process because splitting is trig-
gered by inserts.

Given this, it should be clear that sharding a collection at the last minute isn’t a
good response to a performance problem. If you plan on sharding a collection at
some point in the future, you should do so well in advance of any anticipated perfor-
mance degradation.

http://www.it-ebooks.info/

370

12.7.3

CHAPTER 12 Scaling your system with sharding

PRESPLITTING CHUNKS FOR INITIAL LOAD
If you have a large data set that you need to load into a sharded collection, and you
know something about the distribution of the data, then you can save a lot of time by
presplitting and then premigrating chunks. For example, suppose you wanted to
import the spreadsheet data into a fresh MongoDB shard cluster. You can ensure that
the data distributes evenly upon import by first splitting and then migrating chunks
across shards. You can use the split and moveChunk commands to accomplish this.
These are aliased by the sh.splitAt() (or sh.splitFind()) and sh.moveChunks ()
helpers, respectively.

Here’s an example of a manual chunk split. You issue the split command, specify
the collection you want, and then indicate a split point:

> sh.splitAt("cloud-docs.spreadsheets",
{ "username" : "Chen", " id" : ObjectId("4d6d59dbld41c8536£001453") })

When run, this command will locate the chunk that logically contains the document
where username is Chen and _id is ObjectId("4d6d59db1d41c8536£001453").1% It
then splits the chunk at that point, which results in two chunks. You can continue
splitting like this until you have a set of chunks that nicely distribute the data. You’ll
want to make sure that you’ve created enough chunks to keep the average chunk size
well within the 64 MB split threshold. If you expect to load 1 GB of data, you should
plan to create around 20 chunks.

The second step is to ensure that all shards have roughly the same number of
chunks. Because all chunks will initially reside on the same shard, you’ll need to move
them. Each chunk can be moved using the moveChunk command. The helper method
simplifies this:

> sh.moveChunk ("cloud-docs.spreadsheets", {username: "Chen"}, "shardB")

This says that you want to move the chunk that logically would contain the document
{username: "Chen"} to shard B.

Maintenance

We’ll round out this chapter with a few words about sharding maintenance and
administration. Note that much of this can be done using MongoDB'’s official moni-
toring and automation tools, which we’ll discuss in chapter 13, but here we explore
the fundamentals of what’s happening in the cluster, because that’s still important
to know. The MongoDB automation uses a lot of these commands under the hood to
implement its functionality.

'3 Note that such a document need not exist. That should be clear from the fact that you're splitting chunks on
an empty collection.

http://www.it-ebooks.info/

Sharding in production 371

MONITORING

A shard cluster is a complex piece of machinery, and you should monitor it closely.
The serverStatus and currentOp () commands can be run on any mongos, and their
output will reflect aggregate statistics across shards. We’ll discuss these commands in
more detail in the next chapter.

In addition to aggregating server statistics, you’ll want to keep an eye on the distri-
bution of chunks and on individual chunk sizes. As you saw in the sample cluster, all of
this information is stored in the config database. If you ever detect unbalanced chunks
or unchecked chunk growth, you can use the split and movechunk commands to
address these issues. Alternatively, you can consult the logs to see whether the balanc-
ing operation has halted for some reason.

IMANUAL PARTITIONING

There are a couple of cases where you may want to manually split and migrate chunks
on a live shard cluster. For example, as of MongoDB v2.6, the balancer doesn’t directly
take into account the load on any one shard. Obviously, the more a shard is written to,
the larger its chunks become, and the more likely they are to eventually migrate. Nev-
ertheless, it’s not hard to imagine situations where you’d be able to alleviate load on a
shard by migrating chunks. This is another situation where the movechunk command
can be helpful.

ADDING A SHARD
If you’ve determined that you the need more capacity, you can add a new shard to an
existing cluster using the same method you used earlier:

sh.addShard ("shard-c/rsl.example.net:27017,rs2.example.net:27017")

When adding capacity in this way, be realistic about how long it will take to migrate
data to the new shard. As stated earlier, you can expect data to migrate at a rate of
100-200 MB per minute. This means that if you need to add capacity to a sharded clus-
ter, you should do so long before performance starts to degrade. To determine when
you need to add a new shard, consider the rate at which your data set is growing. Obvi-
ously, you’ll want to keep indexes and working set in RAM. A good rule of thumb is to
plan to add a new shard at least several weeks before the indexes and working set on
your existing shards reach 90% of RAM.

If you’re not willing to play it safe, as described here, then you open yourself up to
a world of pain. Once your indexes and working set don’t fit in RAM, your application
can come to a halt, especially if the application demands high write and read through-
put. The problem is that the database will have to page to and from the disk, which
will slow reads and writes, backlogging operations that can’t be served into a read/
write queue. At that point, adding capacity is difficult because migrating chunks
between shards adds read load to existing shards. Obviously, when a database is over-
loaded, the last thing you want to do is add load.

All of this is to emphasize that you should monitor your cluster and add capacity
well before you need to.

http://www.it-ebooks.info/

372

CHAPTER 12 Scaling your system with sharding

REMOVING A SHARD
You may, in rare cases, want to remove a shard. You can do so using the removeshard
command:

> use admin
> db.runCommand({removeshard: "shard—l/localhost:30100,localhost:30101"k

"msg" : "draining started successfully",
"state" : "started",

"shard" : "shard-1-test-rs",

mok" ;1 }

The command response indicates that chunks are now being drained from the shard
to be relocated to other shards. You can check the status of the draining process by
running the command again:

> db.runCommand ({removeshard: "shard-1/localhost:30100,localhost:30101"})
{
"msg" : "draining ongoing",
"state" : "ongoing",
"remaining" : {
"chunks" : 376,
"dbs" : 3
b

okn ;1)

Once the shard is drained, you also need to make sure that no database’s primary
shard is the shard you’re going to remove. You can check database shard membership
by querying the config.databases collection:

> use config
> db.databases.find ()

{ " id" : "admin", "partitioned" : false, "primary" : "config" }
{ " id" : "cloud-docs", "partitioned" : true, "primary" : "sharda" }
{ " _id" : "test", "partitioned" : false, "primary" : "shardB" }

Here the cloud-docs database is owned by shardB but the test database is owned by
shardA. Because you're removing shardB, you need to change the test database’s pri-
mary node. You can accomplish that with the moveprimary command:

> db.runCommand ({moveprimary: "test", to: "shard-O-test-rs" });

Run this command for each database whose primary is the shard to be removed. Then
run the removeshard command again to verify that the shard is completely drained:

> db.runCommand({removeshard: "shard—l/localhost:30100,localhost:30101"k

{ "msg": "remove shard completed successfully",
"stage": "completed",
"host": "localhost:30100",
"ok" : 1

}

Once you see that the removal is completed, it’s safe to take the removed shard offline.

http://www.it-ebooks.info/

Sharding in production 373

UNSHARDING A COLLECTION

Although you can remove a shard, there’s no official way to unshard a collection. If
you do need to unshard a collection, your best option is to dump the collection and
then restore the data to a new collection with a different name.'* You can then drop
the sharded collection you dumped. For example, suppose that foo is a sharded col-
lection. You must dump foo by connecting to mongos with mongodump:

$ mongodump -h localhost --port 40000 -d cloud-docs -c foo
connected to: localhost:40000
DATABASE: cloud-docs to dump/cloud-docs
cloud-docs.foo to dump/cloud-docs/foo.bson
100 objects

This will dump the collection to a file called foo.bson. You can then restore that file
using mongorestore:

$ mongorestore -h localhost --port 40000 -d cloud-docs -c bar
Tue Mar 22 12:06:12 dump/cloud-docs/foo.bson

Tue Mar 22 12:06:12 going into namespace [cloud-docs.bar]
Tue Mar 22 12:06:12 100 objects found

Once you’ve moved the data into an unsharded collection, you’re then free to drop
the old sharded collection, foo. But when dropping collections, you should be extra
careful because bad things can happen: first of all, make sure that you're dropping
the correct collection!

BACKING UP A SHARDED CLUSTER

As you’ll see in chapter 13, there are a few different options for backing up MongoDB.
For the most part, these strategies also apply to backing up each shard in a sharded
cluster. But there are two additional steps that must be taken when backing up a
sharded cluster, regardless of which method you’re using to back up the shards:

» Disable chunk migrations—The first thing to keep in mind when backing up a
sharded cluster is that chunk migrations may be occurring. This means that
unless you backup everything at exactly the same instant in time, which is essen-
tially impossible, you may end up missing some data. We’ll cover exactly how to
disable chunk migrations in this section.

» Config server metadata—When backing up a sharded cluster, the config server
metadata must also be backed up. To do this, perform a backup of a single con-
fig server node, because all config servers should have the same data. Like the
backup of the shards, this should also be done after chunk migrations are dis-
abled to avoid missing data.

Fortunately, there’s a builtin mechanism to disable automatic chunk migrations. All
migration of data between shards is handled by something called the balancer process.

14 The utilities you use to dump and restore, mongodump and mongorestore, are covered in the next chapter.

http://www.it-ebooks.info/

374

CHAPTER 12 Scaling your system with sharding

Once you stop this process, you're guaranteed that no automatic migrations are hap-
pening. You can still trigger migrations manually or create new databases, however,
which would disrupt a proper backup, so be sure you have no other processes running
that do administrative operations.

STOPPING AND STARTING THE BALANCER
To disable the balancer, use the sh.stopBalancer () shell helper:

> use config
> sh.stopBalancer ()

Note that this may take a long time to complete. This is because this helper only
marks the balancer as disabled, and doesn’t abort existing balancing rounds. This
means it has to wait for in-progress balancing rounds to complete. Once it returns suc-
cessfully, you can be sure that no chunk migrations are in progress. To start the bal-
ancer again, you can use the sh.startBalancer () helper:

> use config
> sh.startBalancer ()

You should consult the MongoDB docs for additional balancer configuration, which
includes a setting to enable the balancer only in a specified time window.

FAILOVER AND RECOVERY
Although we’ve covered general replica set failures, it’s also important to note a
sharded cluster’s potential points of failure along with best practices for recovery.

FAILURE OF A SHARD MEMBER

Each shard consists of a replica set. If any member of one of these replica sets fails, a
secondary member will be elected primary, and the mongos process will automatically
connect to it. Chapter 11 describes the specific steps to take in restoring a failed rep-
lica set member. The method you choose depends on how the member has failed, but
regardless, the instructions are the same whether or not the replica set is part of a
sharded cluster.

FAILURE OF A CONFIG SERVER
A sharded cluster requires three config servers for normal operation, but up to two of
these can fail. Whenever you have fewer than three config servers, your remaining
config servers will become read-only, and all splitting and balancing operations will be
suspended. Note that this won’t negatively affect the cluster as a whole. Reads and
writes to the cluster will still work, and the balancer will start from where it left off
once all three config servers are restored.

To restore a config server, copy the data files from an existing config server to the

failed config server’s machine. Then restart the server.”

15 As always, before you copy any data files, make sure you either lock the mongod (as described in chapter 11)
or shut it down cleanly. Never copy data files while the server is live.

http://www.it-ebooks.info/

12.8

Summary 375

FAILURE OF A MONGOS
The failure of a mongos process is nothing to worry about. If you’re hosting mongos on
an application server and mongos fails, it’s likely that your application server has failed,
too. Recovery in this case simply means restoring the server.

Regardless of how mongos fails, the process has no state of its own. This means that
recovering a mongos is a matter of restarting the mongos process and pointing it at the
config servers.

Summary

Sharding is an effective strategy for maintaining high read-and write-performance on
large data sets. MongoDB’s sharding works well in numerous production deployments
and can work for you, too. Instead of having to worry about implementing your own
half-baked, custom sharding solution, you can take advantage of all the effort that’s
been put into MongoDB’s sharding mechanism. If you follow the advice in this chap-
ter, paying particular attention to the recommended deployment topologies, the strat-
egies for choosing a shard key, and the importance of keeping data in RAM, then
sharding will serve you well.

http://www.it-ebooks.info/

Deployment-and
admanisiration

This chapter covers

Provisioning and hardware requirements
Monitoring and diagnostics

Backups and administrative tasks
Security

Performance troubleshooting
Deployment checklist

This book would be incomplete without a few notes on deployment and adminis-
tration. After all, it’s one thing to use MongoDB but quite another to keep it run-
ning smoothly in production. The goal of this final chapter is to prepare you to
make good decisions when deploying and administering MongoDB. You can think
of this chapter as providing the wisdom required to keep you from experiencing
the unpleasantness of a production database meltdown.

We’ll start this chapter with MongoDB’s hardware requirements, as well as some
options for deploying this hardware. Then, we’ll move into a few sections that dis-
cuss how to keep your system running, resilient, and secure. Finally, we’ll end
with a deployment checklist you can look back on to make sure you’ve covered all
your bases.

376

http://www.it-ebooks.info/

13.1

13.1.1

Hardware and provisioning 377

Hardware and provisioning

The first question you need to ask before you deploy MongoDB is, “What I should
deploy it on?” If you ran an entire production cluster on a single laptop as we did ear-
lier in this book, you’d be in big trouble. In this section, we’ll discuss how to choose
the right topology for your requirements, how different hardware affects MongoDB,
and what options are available for provisioning this hardware.

Cluster topology

This section gives you some basic recommendations on cluster topologies, but for a
more complete analysis of different deployment topologies in replicated and sharded
setups, you can consult chapters 11 and 12.

Figure 13.1 shows the minimum setup for the three different cluster types, as well
as when you’d want to upgrade to a different type of cluster.

In total, there are three different types of clusters in MongoDB:

m Single node—As you can see at the top of figure 13.1, MongoDB can be run as a
single server to support testing and staging environments. But for production
deployments, a single server isn’t recommended, even if journaling is enabled.
Having only one machine complicates backup and recovery, and when there’s a
server failure, there’s nothing to fail over to. That said, if you don’t need reli-
ability and have a small enough data set, this is always an option.

® Replica set—As shown in the middle of figure 13.1, the minimum recommended
deployment topology for a replica set is three nodes, at least two of which
should be data-storing nodes rather than arbiters. A replica set is necessary for
automatic failover, easier backups, and not having a single point of failure.
Refer to chapter 10 for more details on replica sets.

» Sharded cluster—As you can see at the bottom of figure 13.1, the minimum
recommended deployment for a sharded cluster has two shards because
deploying a sharded cluster with only one shard would add additional over-
head without any of the benefits of sharding. Each shard should also be a
replica set and there should be three config servers to ensure that there’s no
single point of failure. Note that there are also two mongos processes. Loss of
all mongos processes doesn’t lead to any data loss, but it does lead to down-
time, so we have two here as part of the minimum production topology to
ensure high availability. A sharded cluster is necessary when you want to scale
up the capacity of your cluster by pooling together the capacity of a number
of less powerful commodity servers. Refer to chapter 12 for more details on
sharded clusters.

Now that you have a high-level understanding of the types of clusters that are available,
let’s go into more specific details about the deployment of each individual server.

http://www.it-ebooks.info/

378

13.1.2

CHAPTER 13 Deployment and administration

| 'I/(
Single node Ej rongod
D

Increased performance
—
Config server

| | | | [Avplication
N

\ Increased performance

s

Figure 13.1 The minimum single node, replica set, and sharded cluster setups, as
well as their purpose

Replica set

Shared cluster

Deployment environment

Here we’ll present considerations for choosing good deployment environments for
MongoDB. We’ll discuss specific hardware requirements, such as CPU, RAM, and disks,
and provide recommendations for optimizing the operating system environment. Fig-
ure 13.2 is a simplified visualization of the hardware and operating system compo-
nents that MongoDB needs to interact with that we’ll cover in this section. In the

http://www.it-ebooks.info/

Hardware and provisioning 379

|:| MongoDB internals or configuration

[Hardware and hardware configuration

MongoDB server [] operating system configuration
CPU (64 bit, little endian) MongoDB read/write locks
RAM (>working set) Accurate system time (NTP)

N\

MongoDB data files (journal on separate disk, directoryperdb)

I

Filesystem (ext4 or xfs with noatime and correct ulimits set) Figure 13.2 A simplified
I visualization of how
MongoDB depends on
Disk (RAID 10 using LVM) the operating system

and hardware

subsequent sections we’ll discuss cluster topology and provide some advice for deploy-
ing in the cloud.

ARCHITECTURE

Two notes on hardware architecture are in order. First, because MongoDB maps all
data files to a virtual address space, all production deployments should be run on 64-bit
machines. A 32-bit architecture limits MongoDB to about 2 GB of storage. With jour-
naling enabled, the limit is reduced at around 1.5 GB. This is dangerous in production
because if these limits are ever surpassed, MongoDB will behave unpredictably.l Feel
free to run on 32-bit machines for unit testing and staging, but in production and for
load testing, stick to 64-bit architectures.

Next, the components that ship with the MongoDB servers must be run on little-
endian machines.? This usually isn’t difficult to comply with since the x86 architec-
ture, which you’re likely using if you’re not sure, is little endian, but users running
SPARC, PowerPC, PA-RISC, and other big-endian architectures will have to hold off.3
The client drivers, though, are maintained as separate projects, and they’re usually
built to support both little- and big-endian byte orderings. This means that even

In this case “unpredictably” means that the behavior is completely undefined. This essentially means that
MongoDB “might” simply crash, or it might make demons fly out of your nose. We just don’t know. The main
point here is that you should avoid this scenario because even the maintainers of MongoDB can’t help you.
? The “endianness” of a machine is a hardware detail referring to the order in which bytes are stored in mem-
ory. See https://en.wikipedia.org/wiki/Endianness for more information.
3 Ifyou’re interested in big-endian support for the core server, see https://jira.mongodb.org/browse/SERVER-
1625.

https://en.wikipedia.org/wiki/Endianness
https://jira.mongodb.org/browse/SERVER-1625
https://jira.mongodb.org/browse/SERVER-1625
http://www.it-ebooks.info/

380

CHAPTER 13 Deployment and administration

though the server must run on little endian machines, clients of MongoDB can usually
run on either architecture.

CPU

MongoDB isn’t particularly CPU-intensive; database operations are rarely CPU-bound,
so this isn’t the first place to look when diagnosing a performance issue. Your first pri-
ority when optimizing for MongoDB is to ensure operations aren’t I/O-bound (we’ll
discuss I/O-bound issues more in the next two sections on RAM and disks).

But once your indexes and working set fit entirely in RAM, you may see some CPU-
boundedness. If you have a single MongoDB instance serving tens (or hundreds) of
thousands of queries per second, you can realize performance increases by providing
more CPU cores.

If you do happen to see CPU saturation, check your logs for slow query warnings.
There may be some types of queries that are inherently more CPU-intensive, or you
may have an index issue that the logs will help you diagnose. But if that’s not the case
and you’re still seeing CPU saturation, it’s likely due to lock contention, which we’ll
briefly touch on here.

RAM

As with any database, MongoDB performs best with sufficient RAM. Be sure to select
hardware with enough RAM to contain your frequently used indexes, plus your work-
ing data set. Then as your data grows, keep a close eye on the ratio of RAM-to—working
set size. If you allow working set size to grow beyond RAM, you may start to see signifi-
cant performance degradation. Paging from disk in and of itself isn’t a problem—it’s
a necessary step in loading data into memory. But if you’re unhappy with perfor-
mance, excessive paging may be your problem. (Chapter 8 discusses the relationship
between working set, index size, and RAM in great detail.) By the end of this chapter,
you should have enough tools in your arsenal to diagnose RAM deficiencies.

There are a few use cases where you can safely let data size grow well beyond avail-
able RAM, but they’re the exception, not the rule. One example is using MongoDB as
an archive, where reads and writes seldom happen and you don’t need fast responses.
Because RAM is essentially a cache for pages on disk, it only provides a performance
boost if a page will be used more than once in a short period of time. In the case of an
archive application, this may not be the case, and the page will need to be loaded into
memory from disk the first (and possibly only) time it’s used anyway. On top of that,
having as much RAM as data for this type of application might be prohibitively expen-
sive. For all data sets, the key is testing. Test a representative prototype of your applica-
tion to ensure that you get the necessary baseline performance.

Disks

When choosing disks, you need to consider cost, IOPS (input/output operations per
second), seek time, and storage capacity. The differences between running on a single
consumer-grade hard drive, running in the cloud in a virtual disk (say, EBS), and run-
ning against a high-performance SAN can’t be overemphasized. Some applications will

http://www.it-ebooks.info/

Hardware and provisioning 381

perform acceptably against a single network-attached EBS volume, but demanding
applications will require something more.
Disk performance is important for a few reasons:

» High write workloads—As you’re writing to MongoDB, the server must flush the
data back to disk. With a write-intensive app and a slow disk, the flushing may
be slow enough to negatively affect overall system performance.

» A fast disk allows a quicker server warm-up—Any time you need to restart a server,
you also have to load your data set into RAM. This happens lazily; each succes-
sive read or write to MongoDB will load a new virtual memory page into RAM
until the physical memory is full. A fast disk will make this process much faster,
which will increase MongoDB’s performance following a cold restart.

m A fast disk alters the required ratio of working set size to RAM for your application—
Using, say, a solid-state drive, you may be able to run with much less RAM (or
much greater capacity) than you would otherwise.

Regardless of the type of disk used, serious deployments will generally use, not a single
disk, but a redundant array of disks (RAID) instead. Users typically manage a RAID
cluster using Linux’s logical volume manager, LVM, with a RAID level of 10. RAID 10
provides redundancy while maintaining acceptable performance, and it’s commonly
used in MongoDB deployments.* Note that this is more expensive than a single disk,
which illustrates the tradeoff between cost and performance. Even more advanced
deployments will use a high-performance self-managed SAN, where the disks are all
virtual and the idea of RAID may not even apply.

If your data is spread across multiple databases within the same MongoDB server,
then you can also ensure capacity by using the server’s --directoryperdb flag. This
will create a separate directory in the data file path for each database. Using this, you
can conceivably mount a separate volume (RAID’ed or not) for each database. This
may allow you to take advantage of some performance increases, because you’ll be
able to read from separate sets of spindles (or solid-state drives).

Locks

MongoDB’s locking model is a topic unto itself. We won’t discuss all the nuances of
concurrency and performance in MongoDB here, but we’ll cover the basic concur-
rency models MongoDB supports. In practice, ensuring that you don’t have lock con-
tention will require careful monitoring or benchmarking because every workload is
different and may have completely different points of contention.

In the early days, MongoDB took a global lock on the entire server. This was soon
updated to a global lock on each database and support was added to release the lock
before disk operations.

As of v3.0 MongoDB now supports two separate storage engines with different con-
currency models. It has collection-level locking in its own native mmap-based storage

4 For an overview of RAID levels, see http://en.wikipedia.org/wiki/Standard_RAID_levels.

http://en.wikipedia.org/wiki/Standard_RAID_levels
http://www.it-ebooks.info/

382 CHAPTER 13 Deployment and administration

engine, and documentlevel locking in the newly supported WiredTiger storage engine,
which can be used instead of the native storage engine. Consult JIRA, MongoDB’s bug-
tracking system, as well as the latest release notes for the status of these improvements.”’

FILESYSTEMS
You’ll get the best performance from MongoDB if you run it on the right filesystem.
Two in particular, ext4 and xfs, feature fast, contiguous disk allocation. Using these
filesystems will speed up MongoDB’s frequent preallocations.®

Once you mount your fast filesystem, you can achieve another performance gain by
disabling updates to files’ last access time: atime. Normally, the operating system will
update a file’s atime every time the file is read or written. In a database environment,
this amounts to a lot of unnecessary work. Disabling atime on Linux is relatively easy:

1 First, make a backup of the filesystem config file:
sudo cp /etc/fstab /etc/fstab.bak
2 Open the original file in your favorite editor:

sudo vim /etc/fstab

3 For each mounted volume you’ll find inside /etc/fstab, you'll see a list of set-
tings aligned by column. Under the options column, add the noatime directive:

file-system mount type options dump pass
UUID=8309beda-bf62-43 /ssd ext4 noatime 0 2

4 Save your work. The new settings should take effect immediately.”

You can see the list of all mounted filesystems with the help of the findmnt command,
which exists on Linux machines:

$ findmnt -s

TARGET SOURCE FSTYPE OPTIONS

/proc proc proc defaults

/ /dev/xvda ext3 noatime, errors=remount-ro
none /dev/xvdb swap sw

The -s option makes findmnt get its data from the /etc/fstab file. Running findmnt
without any command-line parameters shows more details yet more busy output.

FILE DESCRIPTORS
Some Linux systems cap the number of allowable open file descriptors at 1024. This is
occasionally too low for MongoDB and may result in warning messages or even errors

5 Release notes can be found at https://jira.mongodb.org/browse/server and https://docs.mongodb.org/
manual/release-notes/ for more information.

5 For more detailed filesystem recommendations, see https://docs.mongodb.org/manual/administration/
production-notes/#kernel-and-file-systems.

7 Note that these are basic recommendations and by no means comprehensive. See https://en.wikipedia.org/
wiki/Fstab for an overview of mount options.

https://jira.mongodb.org/browse/server
https://docs.mongodb.org/manual/release-notes/
https://docs.mongodb.org/manual/release-notes/
https://docs.mongodb.org/manual/administration/production-notes/#kernel-and-file-systems
https://docs.mongodb.org/manual/administration/production-notes/#kernel-and-file-systems
https://en.wikipedia.org/wiki/Fstab
https://en.wikipedia.org/wiki/Fstab
http://www.it-ebooks.info/

Hardware and provisioning 383

when opening connections (which you’ll see clearly in the logs). Naturally, MongoDB
requires a file descriptor for each open file and network connection.

Assuming you store your data files in a folder with the word “data”in it, you can see
the number of data file descriptors using 1sof and a few well-placed pipes:

lsof | grep mongo | grep data | we -1
Counting the number of network connection descriptors is just as easy:
lsof | grep mongo | grep TCP | wc -1

When it comes to file descriptors, the best strategy is to start with a high limit so that
you never run out in production. You can check the current limit temporarily with the
ulimit command:

ulimit -Hn
To raise the limit permanently, open your limits.conf file with your editor of choice:
sudo vim /etc/security/limits.conf

Then set the soft and hard limits. These are specified on a per-user basis. This exam-
ple assumes that the mongodb user will run the mongod process:

mongodb soft nofile 2048
mongodb hard nofile 10240

The new settings will take effect when that user logs in again.8

CLOCKS

It turns out that replication is susceptible to “clock skew,” which can occur if the clocks
on the machines hosting the various nodes of a replica set get out of sync. Replication
depends heavily on time comparisons, so if different machines in the same replica set
disagree on the current time, that can cause serious problems. This isn’t ideal, but for-
tunately there’s a solution. You need to ensure that each of your servers uses NTP
(Network Time Protocol)? or some other synchronization protocol to keep their
clocks synchronized:

= On Unix variants, this means running the ntpd daemon.
= On Windows, the Windows Time Services fulfills this role.
JOURNALING

MongoDB v1.8 introduced journaling, and since v2.0 MongoDB enables journaling by
default. When journaling is enabled, MongoDB will commit all writes to a journal

8 This may not apply if the user is purely a daemon. In that case restarting the mongodb service using something
like sudo service mongodb restart should do the trick.
9 Make sure to verify that NTP is working correctly using diagnostic commands such as ntpstat.

http://www.it-ebooks.info/

384

CHAPTER 13 Deployment and administration

before writing to the core data files. This allows the MongoDB server to come back
online quickly and cleanly in the event of an unclean shutdown.

In the event of an unclean shutdown of a nonjournaled mongod process, restoring
the data files to a consistent state requires running a repair. The repair process
rewrites the data files, discarding anything it can’t understand (corrupted data).
Because downtime and data loss are generally frowned upon, repairing in this way is
usually part of a last-ditch recovery effort. Resyncing from an existing replica is almost
always easier and more reliable. Being able to recover in this way is one of the reasons
why it’s so important to run with replication.

Journaling obviates the need for database repairs because MongoDB can use the
journal to restore the data files to a consistent state. In MongoDB v2.0 as well as v3.0,
journaling is enabled by default, but you can disable it with the --nojournal flag:

$ mongod --nojournal

When enabled, the journal files will be kept in a directory called journal, located just
below the main data path.
If you run your MongoDB server with journaling enabled, keep a of couple points
in mind:
= First, journaling adds some additional overhead to writes.
= One way to mitigate this is to allocate a separate disk for the journal, and then
either create a symlink'” between the journal directory and the auxiliary vol-
ume or simply mount this disk where the journal directory should be. The aux-
iliary volume needn’t be large; a 120 GB disk is more than sufficient, and a
solid-state drive (SSD) of this size is affordable. Mounting a separate SSD for
the journal files will ensure that journaling runs with the smallest possible per-
formance penalty.
= Second, journaling by itself doesn’t guarantee that no write will be lost. It guar-
antees only that MongoDB will always come back online in a consistent state.
Journaling works by syncing a write buffer to disk every 100 ms, so an unclean
shutdown can result in the loss of up to the last 100 ms of writes. If this isn’t
acceptable for any part of your application, you can change the write concern of
operations through any client driver. You’d run this as a safe mode option (just
like w and wtimeout). For example, in the Ruby driver, you might use the j option
like this in order to have safe mode enabled all the time for one of the servers:

client = Mongo::Client.new(['127.0.0.1:27017'], :write => {:j =>
true}, :database => 'garden')

19" A symlink, or symbolic link, is essentially an object that looks like a file but is actually a reference to another
location. Using this here means that MongoDB can still find the journal directory in the same place despite
the fact that it’s on a completely different disk. See https://en.wikipedia.org/wiki/Symbolic_link for more
details.

https://en.wikipedia.org/wiki/Symbolic_link
http://www.it-ebooks.info/

13.1.3

Hardware and provisioning 385

Be aware that running this after every write is unwise because it forces every write to
wait for the next journal sync.11 Even then, these writes are subject to rollbacks in a
replicated setup because journal acknowledged writes only wait until the primary
writes to its journal and doesn’t wait for replication to secondaries. Therefore, a more
commonly used way to ensure your writes are durable is to use the “majority” write
concern option. This ensures that the write reaches a majority of the replica set, which
is usually sufficient and resilient to failures. See chapter 10 for more details on replica-
tion and write concern options.'?

Provisioning

You can certainly deploy on your own hardware, and that approach does have its
advantages, but this section will focus mostly on cloud deployments and automation.
In-house deployments require a lot of specialized administration and setup that’s out-
side the scope of this book.

THE cLouD

More and more users are running MongoDB in hosted, virtualized environments, col-
lectively known as the cloud. Among these, Amazon’s EC2 has become a deployment
environment of choice because of its ease of use, wide geographic availability, and
competitive pricing. EC2, and other environments like it, can be adequate for deploy-
ing MongoDB. At a high level, there are three main components to consider when
thinking about deploying on any cloud provider:

= The hosts themselves, which will actually run MongoDB
» The persistent storage system, which will store MongoDB’s data files
= The network that MongoDB will use to communicate internally and with clients

First, EC2 hosts are convenient, because they’re easy to provision and can be allocated
as you need them, so the cost will scale with your needs. But one disadvantage of an
EC2 host is that it’s essentially a black box. You may experience service blips or
instance slowdowns and have no way of diagnosing or remedying them. Sometimes
you might get a “bad box,” which means your virtual instance got allocated on a
machine with slow hardware or several other active users."

Second, EC2 allows you to mount virtual block devices known as EBS volumes as
your persistent storage. EBS volumes provide a great deal of flexibility, allowing you to
add storage and move volumes across machines as needed. EBS also lets you take snap-

shots, which you can use for backups.

1 Recent versions of MongoDB allow changing the journal commit interval to reduce the latency on journal-
acknowledged writes, using the commitIntervalMs option.

12 For more details on the behavior of specific write concern levels, see https://docs.mongodb.org/manual/
core/write-concern.

13 Note that EC2 has many different instance types and purchasing options that may suffer more or less from
these problems. Check with EC2 or your cloud provider to find out exactly how they provision your machine.

https://docs.mongodb.org/manual/core/write-concern
https://docs.mongodb.org/manual/core/write-concern
http://www.it-ebooks.info/

386

13.2

CHAPTER 13 Deployment and administration

The problem with the cheapest EBS volumes is that they may not provide a high
level of throughput compared to what’s possible with physical disks. Be sure to check
with your hosting provider to learn what their current offerings are. As of this writing,
EBS volumes can be SSD-backed, and Amazon also provides an option to use disks
local to the node. On top of that, another way to increase performance is to run what-
ever disks you’re using with a RAID 10 for increased read throughput.

Finally, EC2’s network is sufficient for most users, but like the storage and the hosts
themselves, you give up a great deal of control by using EC2’s network rather than one
you set up yourself. You're sharing the same network with many others, so high traffic
from other applications have the potential to affect your network performance. Like
disks and instance types, this is “pay to play” when dealing with a hosting provider, so
you may be able to pay more to mitigate these problems.

In summary, deploying on EC2 has many advantages, but it clearly has some nota-
ble drawbacks. For these reasons, rather than dealing with some of EC2’s limitations
and unpredictability, many users prefer to run MongoDB on their own physical hard-
ware. Then again, EC2 and the cloud in general are convenient and perfectly accept-
able for a wide variety of users. In the end, the best way to approach deploying in any
environment is careful testing. Benchmarking the cloud platform that you want to
deploy on will ultimately help you make the decision more than anything else.

MMS AUTOMATION

Another provisioning option that is relatively new is the MongoDB Management Sys-
tem (MMS) Automation. MMS Automation can provision instances from EC2 and setup
of your entire cluster with the press of a button.!* The MMS team at MongoDB is con-
stantly adding new features to simplify MongoDB operations, so if you’re interested in
using this, refer to the current documentation at https://docs.mms.mongodb.com to
find out what’s available.

Monitoring and diagnostics

Once you’ve deployed MongoDB in production, you’ll want to keep an eye on it. If
performance is slowly degrading, or if failures are occurring frequently, you’ll want to
be apprised of these. That’s where monitoring comes in.

Let’s start with the simplest kind of monitoring: logging. Then we’ll explore the
built-in commands that provide the most information about the running MongoDB
server; these commands underlie the mongostat utility and the web console, both of
which we’ll describe in brief.

Then we’ll look at the MMS Monitoring provided by the MongoDB company. We’ll
make a couple of recommendations on external monitoring tools and end the section
by presenting two diagnostic utilities: bsondump and mongosniff.

¥ MMS Automation can also deploy MongoDB onto preprovisioned hardware if you're not using EC2.

https://docs.mms.mongodb.com
http://www.it-ebooks.info/

13.2.1

13.2.2

Monitoring and diagnostics 387

Logging

Logging is the first level of monitoring; as such, you should plan on keeping logs for
all your deployments. This usually isn’t a problem because MongoDB requires that you
specify the --logpath option when running it in the background. But there are a few
extra settings to be aware of. To enable verbose logging, start the mongod process with
the -vvvvv option (the more vs, the more verbose the output). This is handy if, for
instance, you need to debug some code and want to log every query. But do be aware
that verbose logging will make your logs quite large and may affect server perfor-
mance. If your logs become too unwieldy, remember that you can always store your
logs on a different partition.

Next you can start mongod with the --logappend option. This will append to an
existing log rather than moving it and appending a timestamp to the filename, which
is the default behavior.

Finally, if you have a long-running MongoDB process, you may want to write a
script that periodically rotates the log files. MongoDB provides the logrotate com-
mand for this purpose. Here’s how to run it from the shell:

> use admin
> db.runCommand ({logrotate: 1})

Sending the SIGUSR1' signal to the process also runs the logrotate command.
Here’s how to send that signal to process number 12345:

$ kill -SIGUSR1 12345

You can find the process ID of the process you want to send the signal to using the ps
command, like this:

$ ps -ef | grep mongo

Note that the kill command isn’t always as dire as it sounds. It only sends a signal to a
running process, but was named in the days when most or all signals ended the pro-
cess.'® But running ki1l with the -9 command-line option will end a process in a bru-
tal way and should be avoided as much as possible on production systems.

MongoDB diagnostic commands
MongoDB has a number of database commands used to report internal state. These
underlie all MongoDB monitoring applications. Here’s a quick reference for a few of
the commands that you might find useful:

= Global server statistics: db. serverStatus ()

= Stats for currently running operation: db.currentOp ()

15 Unix-like systems support sending “signals” to running processes, which can trigger certain actions if the pro-
cess that receives the signal is written to handle it. MongoDB is configured to handle receiving the SIGUSR1
signal and rotates the logs when it receives it.

16 There’s no Windows equivalent for this, so you’ll have to rely on the logrotate command in that case.

http://www.it-ebooks.info/

388

13.2.3

CHAPTER 13 Deployment and administration

= Include stats for idle system operations: db.currentOp (true)
= Per database counters and activity stats: db. runCommand ({top:1})
= Memory and disk usage statistics: db.stats ()

The output for all of these commands improves with each MongoDB release, so docu-
menting it in a semi-permanent medium like this book isn’t always helpful. Consult
the documentation for your version of MongoDB to find out what each field in the
output means.

MongoDB diagnostic tools
In addition to the diagnostic commands listed previously, MongoDB ships with a few
handy diagnostic tools. Most of these are built on the previous commands and could
be easily implemented using a driver or the mongo shell.

Here’s a quick introduction to what we’ll cover in this section:

» mongostat—Global system statistics

= mongotop—Global operation statistics

= mongosniff (advanced)—Dump MongoDB network traffic
» bsondump—Display BSON files as [SON

MONGOSTAT
The db.currentOp () method shows only the operations queued or in progress at a
particular moment in time. Similarly, the serverStatus command provides a point-in-
time snapshot of various system fields and counters. But sometimes you need a view of
the system’s real-time activity, and that’s where mongostat comes in. Modeled after
iostat and other similar tools, mongostat polls the server at a fixed interval and dis-
plays an array of statistics, from the number of inserts per second to the amount of res-
ident memory, to the frequency of B-tree page misses.

You can invoke the mongostat command on localhost, and the polling will occur
once a second:

$ mongostat

It’s also highly configurable, and you can start it with --help to see all the options. For
example, you can use the --host option to connect to a host and port besides the
default of localhost:27017. One of the more notable features is cluster discovery;
when you start mongostat with the --discover option, you can use the --host option
to point it to a single node, and it’ll discover the remaining nodes in a replica set or
sharded cluster. It then displays the entire cluster’s statistics in aggregate.

MONGOTOP

Similar to the way mongostat is the external tool for the db. currentOp () and server-
Status commands, mongotop is the external tool for the top command. You can run
this in exactly the same way as mongostat, assuming you have a server running on the
local machine and listening on the default port:

$ mongotop

http://www.it-ebooks.info/

Monitoring and diagnostics 389

As with mongostat, you can run this command with -help to see a number of useful
configuration options.

MONGOSNIFF

The next command we’ll cover is mongosniff, which sniffs packets from a client to the
MongoDB server and prints them intelligibly. If you happen to be writing a driver or
debugging an errant connection, then this is your tool. You can start it up like this to
listen on the local network interface at the default port:

sudo mongosniff --source NET IO

Then when you connect with any client—say, the MongoDB shell—you’ll get an easy-
to-read stream of network chatter:

127.0.0.1:58022 -->> 127.0.0.1:27017 test.Scmd 61 bytes id:89ac9cld
2309790749 query: { isMaster: 1.0 } ntoreturn: -1
127.0.0.1:27017 <<-- 127.0.0.1:58022 87 bytes

reply n:1 cursorId: 0 { ismaster: true, ok: 1.0 }

Here you can see a client running the isMaster command, which is represented as a
query for { isMaster: 1.0 } against the special test.$cmd collection. You can also see
that the response document contains ismaster: true, indicating that the node that
this command was sent to was in fact the primary. You can see all the mongosniff
options by running it with --help.

BSONDUMP

Another useful command is bsondump, which allows you to examine raw BSON files.
BSON files are generated by the mongodump command (discussed in section 13.3) and
by replica set rollbacks.!” For instance, let’s say you’ve dumped a collection with a sin-
gle document. If that collection ends up in a file called users.bson, then can examine
the contents easily:

$ bsondump users.bson
{ " id" : ObjectId("4d82836dc3efdb9915012b91"), "name" : "Kyle" }

As you can see, bsondump prints the BSON as JSON by default. If you’re doing serious
debugging, you’ll want to see the real composition of BSON types and sizes. For that,
run the command in debug mode:

$ bsondump --type=debug users.bson
--- new object ---

size : 37

_id

type: 7 size: 17

name

type: 2 size: 15

17 MongoDB writes replica set rollback files to the rollback directory inside the data directory.

http://www.it-ebooks.info/

390

13.24

13.2.5

CHAPTER 13 Deployment and administration

This gives you the total size of the object (37 bytes), the types of the two fields (7 and 2),
and those fields’ sizes.

THE WEB CONSOLE

Finally, MongoDB provides some access to statistics via a web interface and a REST
server. As of v3.0, these systems are old and under active development. On top of that,
they report the same information available via the other tools or database commands
presented earlier. If you want to use these systems, be sure to look at the current docu-
mentation and carefully consider the security implications.

MongoDB Monitoring Service

MongoDB, Inc. provides MMS Monitoring for free, which not only allows you to view
dashboards to help you understand your system, but also provides an easy way to share
your system information with MongoDB support, which is indispensable if you ever
need help with your system. MMS Monitoring can also be licensed as a self-hosted ver-
sion for large enterprises with paid contracts. To get started, all you need to do is cre-
ate an account on the MMS Monitoring website at https://mms.mongodb.com. Once
you create an account, you’ll see instructions to walk you through the process of set-
ting up MMS, which we won’t cover here.

External monitoring applications

Most serious deployments will require an external monitoring application. Nagios and
Munin are two popular open source monitoring systems used to keep an eye on many
MongoDB deployments. You can use each of these with MongoDB by installing a sim-
ple open source plug-in.

Writing a plug-in for any arbitrary monitoring application isn’t difficult. It mostly
involves running various statistics commands against a live MongoDB database. The
serverStatus, dbstats, and collstats commands usually provide all the informa-
tion you might need, and you can get all of them straight from the HTTP REST inter-
face, avoiding the need for a driver.

Finally, don’t forget the wealth of tools available for low-level system monitoring.
For example, the iostat command can be helpful in diagnosing MongoDB perfor-
mance issues. Most of the performance issues in MongoDB deployments can be traced
to a single source: the hard disk.

In the following example, we use the -x option to show extended statistics and
specify 2 to display those stats at two-second intervals:

$ iostat -x 2

Device: rsec/s wsec/s avgrg-sz avgqu-sz await svctm $util
sdb 0.00 3101.12 10.09 32.83 101.39 1.34 29.36
Device: rsec/s wsec/s avgrg-sz avgqu-sz await svetm %util
sdb 0.00 2933.93 9.87 23.72 125.23 1.47 34.13

https://mms.mongodb.com
http://www.it-ebooks.info/

13.3

13.3.1

Backups 391

For a detailed description of each of these fields, or for details on your specific version
of iostat, consult your system’s man'® pages. For a quick diagnostic, you’ll be most
interested in two of the columns shown:

= The await column indicates the average time in milliseconds for serving I/0
requests. This average includes time spent in the I/O queue and time spent
actually servicing I/O requests.

= 3util is the percentage of CPU during which I/0 requests were issued to the
device, which essentially translates to the bandwidth use of the device.

The preceding iostat snippet shows moderate disk usage. The average time waiting
on I/0 is around 100 ms (hint: that’s a lot!), and the utilization is about 30%. If you
were to investigate the MongoDB logs on this machine, you’d likely see numerous slow
operations (queries, inserts, or otherwise). In fact, it’s those slow operations that
would initially alert you to a potential problem. The iostat output can help you con-
firm the problem. We’ve covered a lot of ways to diagnose and monitor a running sys-
tem to keep it running smoothly, but now let’s get into an unavoidable aspect of a
production deployment: backups.

Backups

Part of running a production database deployment is being prepared for disasters.
Backups play an important role in this. When disaster strikes, a good backup can save
the day, and in these cases, you’ll never regret having invested time and diligence in a
regular backup policy. Yet some users still decide that they can live without backups.
These users have only themselves to blame when they can’t recover their databases.
Don’t be one of these users.

Three general strategies for backing up a MongoDB database are as follows:

= Using mongodump and mongorestore
= Copying the raw data files
= Using MMS Backups

We’ll go over each of these strategies in the next three sections.

mongodump and mongorestore

mongodump writes the contents of a database as BSON files. mongorestore reads these
files and restores them. These tools are useful for backing up individual collections
and databases as well as the whole server. They can be run against a live server (you
don’t have to lock or shut down the server), or you can point them to a set of data files,

'8 The man pages, or “manual” pages, are the way many programs on Unix-based systems provide documenta-
tion. For example, type man iostat in a terminal to get the iostat man page.

http://www.it-ebooks.info/

392 CHAPTER 13 Deployment and administration

but only when the server is locked or shut down. The simplest way to run mongodump
is like this:"

$ mongodump -h localhost --port 27017

This will dump each database and collection from the server at localhost to a direc-
tory called dump.?’ The dump directory will include all the documents from each collec-
tion, including the system collections that define users and indexes. But significantly,
the indexes themselves won’t be included in the dump. This means that when you
restore, any indexes will have to be rebuilt. If you have an especially large data set, or a
large number of indexes, this will take time.

RESTORING BSON FILES
To restore BSON files, run mongorestore and point it at the dump folder:

$ mongorestore -h localhost --port 27017 dump

Note that when restoring, mongorestore won’t drop data by default, so if you're restor-
ing to an existing database, be sure to run with the --drop flag.

13.3.2 Data file-based backups

Most users opt for a file-based backup, where the raw data files are copied to a new
location. This approach is often faster than mongodump because the backups and resto-
rations require no transformation of the data.

The only potential problem with a file-based backup is that it requires locking the
database, but generally you’ll lock a secondary node and thus should be able to keep
your application online for the duration of the backup.

COPYING THE DATA FILES

Users frequently make the mistake of copying the data files without first locking the
database. Even if journaling is enabled, doing so will result in corruption of the cop-
ied files. This section will cover how to bring the data files to a consistent state by lock-
ing the database to allow for safe backups.

Snapshotting a live system

You may wonder why you have to lock the data files even when journaling is enabled.
The answer is that journaling is only able to restore a database to a consistent state
from a single point in time. If you're manually copying the data files, there may be
some delay between copying each file, which means different data files may be from
different points in time, and journaling can’t deal with this.

19 If you have secondary reads enabled, you can run this against the secondary of a replica set rather than the
primary.

20 1f possible, this directory should be stored on a separate disk, both for performance and for extra defense
against disk failure.

http://www.it-ebooks.info/

13.3.3

Backups 393

But if your filesystem, storage provider, or hosting provider explicitly supports “point-
in-time” snapshots, you can use this feature to safely snapshot a live system without
locking the data files. Note that everything has to be saved at exactly the same time,
including the journal. This means that if your journal is on a separate disk (or you have
journaling disabled), you’re out of luck unless you have a system that supports point-
in-time snapshots across multiple volumes.

To safely copy the data files, you first need to make sure that they’re in a consistent
state, so you either have to shut down the database or lock it. Because shutting down
the database might be too involved for some deployments, most users opt for the lock-
ing approach. Here’s the command for syncing and locking:

> use admin
> db. fsyncLock ()

At this point, the database is locked against writes?! and the data files are synced to
disk. This means that it’s now safe to copy the data files. If you’re running on a filesys-
tem or storage system that supports snapshots, it’s best to take a snapshot and copy
later. This allows you to unlock quickly.

If you can’t run a snapshot, you’ll have to keep the database locked while you copy
the data files. If you're copying data files from a secondary node, be sure that the
node is current with the primary and has enough oplog to remain offline for the dura-
tion of the backup.

Once you’ve finished making a snapshot or backing up, you can unlock the data-
base. The somewhat arcane unlock command can be issued like this:

> db.fsyncUnlock ()

Note that this is merely a request to unlock; the database may not unlock right away.
Run the db.currentOp () method to verify that the database is no longer locked.

MMS backups

Once again, the MMS team at MongoDB has a solution for this problem. MMS Backups
use the replication oplog to provide point-in-time backups for your entire cluster. This
works for stand-alone replica sets as well as for entire sharded cluster. As we mentioned
earlier, the MMS team is constantly adding new features, so check the up-to-date docu-
mentation for details.

2 Any attempts to write will block behind this lock, and reads that come after those writes will also block. This
unfortunately includes reads of authentication data, meaning that new connection attempts will also block on
this lock when you’re running with authentication, so keep your connections open when you’re running the
backup process. See https://docs.mongodb.org/manual/reference/method/db.fsyncLock/ for more details.

https://docs.mongodb.org/manual/reference/method/db.fsyncLock/
http://www.it-ebooks.info/

394 CHAPTER 13 Deployment and administration

13.4 Security

Security is an extremely important, and often overlooked, aspect of deploying a pro-
duction database. In this section, we’ll cover the main types of security, including
secure environments, network encryption, authentication, and authorization.

We’ll end with a brief discussion of which security features are only available in the
enterprise edition of MongoDB. Perhaps more than for any other topic, it’s vital to stay
up to date with the current security tools and best practices, so treat this section as an
overview of what to consider when thinking about security, but consult the most
recent documentation at https://docs.mongodb.org/manual/security when putting it
into production.

13.4.1 Secure environments

MongoDB, like all databases, should be run in a secure environment. Production users
of MongoDB must take advantage of the security features of modern operating sys-
tems to ensure the safety of their data. Probably the most important of these features
is the firewall.

The only potential difficulty in using a firewall with MongoDB is knowing which
machines need to communicate with each other. Fortunately, the communication
rules are simple:

= With a replica set, each node must be able to reach every other node.

= All database clients must be able to connect with every replica set node that the
client might conceivably talk to.

= All communication is done using the TCP protocol.

= For a node to be reachable, it means that it’s reachable on the port that it was
configured to listen on. For example, mongod listens on TCP port 27017 by
default, so to be reachable it must be reachable on that port.

A shard cluster consists in part of replica sets. All the replica set rules apply; the client
in the case of sharding is the mongos router. Additionally:

= All shards must be able to communicate directly with one another.
= Both the shards and the mongos routers must be able to talk to the config servers.

Figure 13.2 shows a simplified visualization of these connectivity rules, with the one
addition that any arrow connecting to a boxed replica set or set of config servers means
that the connectivity requirement applies to every individual server inside the box.

For the most part, running MongoDB in a secure environment is completely exter-
nal to MongoDB and is a full topic on its own. But one option, --bind ip, is relevant
here.? By default, MongoDB will listen on all addresses on the machine, B=but you
may want MongoDB to listen on one or more specific addresses instead. For this you

22 Note that as of v2.6, the prebuilt packages for Linux include --bind_ip by default.

https://docs.mongodb.org/manual/security
http://www.it-ebooks.info/

Security 395

can start mongod and mongos with the --bind ip option, which takes a list of one or
more comma-separated IP addresses. For example, to listen on the loopback interface
as well as on the internal IP address 10.4.1.55, you’d start mongod like this:

mongod --bind ip 127.0.0.1,10.4.1.55

Note that data between machines will be sent in the clear unless you have SSL
enabled, which we’ll cover in the next section.

13.4.2 Network encryption

Perhaps the most fundamental aspect of securing your system is ensuring your net-
work traffic is encrypted. Unless your system is completely isolated and no one you
don’t trust can even see your traffic (for example, if all your traffic is already
encrypted over a virtual private network, or your network routing rules are set up such
that no traffic can be sent to your machines from outside your trusted network?), you
should probably use MongoDB with encryption. Fortunately, as of v2.4, MongoDB
ships with a library that handles this encryption—called the Secure Sockets Layer
(SSL)—built in.

To see why this is important, let’s play the role of an eavesdropper using the Unix
command tcpdump. First, use the ifconfig command to find the name of the loop-
back interface, or the interface that programs communicating from the local machine
to the local machine use.

Here’s what the beginning of the output looks like on our machine:

$ ifconfig

lo: flags=73<UP,LOOPBACK, RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0

For us, the loopback interface is 1o. Now we can use the appropriate tcpdump com-
mand to dump all traffic on this interface:

$ sudo tcpdump -i lo -X

NOTE Reading network traffic using tcpdump requires root permissions, so if
you can’t run this command, just read along with the example that follows.

In another terminal on the same machine, start a mongod server without SSL enabled
(change the data path as appropriate):

$ mongod --dbpath /data/db/

2 Many cloud hosting providers have tools to help with this, such as Virtual Private Clouds (VPCs), subnets, and
security groups in AWS.

http://www.it-ebooks.info/

396

Document
sent in
plaintext
over the
network

CHAPTER 13 Deployment and administration

Then, connect to the database and insert a single document:

$ mongo

> db.test.insert ({ "message" : "plaintext" }) > exit

bye

Now, if you look at the tcpdump output in the terminal, you’ll see a number of packets
output, one of which looks something like this:

16:05:10.507867 IP localhost.localdomain.50891 >
localhost.localdomain.27017 ..

0x0000: 4500 007f aa4a 4000 4006 922c 7f00 0001 E....J@.@..,....
0x0010: 7£00 0001 cé6cb 6989 cfl7 1de67 d7e6 c88fi....g....
0x0020: 8018 0156 fe73 0000 0101 080a 0018 062e ...V.s.
0x0030: 0017 b6f6 4b00 0000 0300 0000 ffff ffffK.
0x0040: d207 0000 0000 0000 7465 7374 2e74 6573 test.tes
0x0050: 7400 2400 0000 075f 6964 0054 7f7b 0649 t.—...._id.T.{.I
0x0060: 45fa 2cfc 65c¢5 8402 6d65 7373 6167 6500 E.,.e...message.
0x0070: 0a00 0000 706c 6169 6e74 6578 7400 00plaintext..

There’s our message, right in the clear @! This shows how important network
encryption is. Now, let’s run MongoDB with SSL and see what happens.

RUN MonGoDB wiITH SSL
First, generate the key for the server:
openssl req -newkey rsa:2048 -new -x509 -days 365 -nodes -out mongodbcert.crt

-keyout mongodb-cert.key
cat mongodb-cert.key mongodb-cert.crt > mongodb.pem

Then, run the mongod server with SSL, using the --sslPEMKeyFile and --sslMode
options:
$ mongod --sslMode requireSSL --sslPEMKeyFile mongodb.pem

Now, connect the client with SSL and do exactly the same operation:

$ mongo --ssl

> db.test.insert ({ "message" : "plaintext" }) > exit
bye

If you now go back to the window with tcpdump, you’ll see something completely
incomprehensible where the message used to be:

16:09:26.269944 IP localhost.localdomain.50899 >
localhost.localdomain.27017:
0x0000: 4500 009c 52c3 4000 4006 e996 7f00 0001 E...R.@.@.
0x0010: 7f00 0001 ce6d3 6989 c46a 4267 7ac5 52021..jBgz.R.
0x0020: 8018 0173 f£e90 0000 0101 080a 001b ed4o0 J = @

http://www.it-ebooks.info/

Document
sent over
the
network
securely
encrypted

13.4.3

Security 397

0x0030: 001b 6c4c 1703 0300 637d b671 2e7b 499d ..1lL....c}.q.{I.
0x0040: 3fe8 b303 2933 d04b ff5c 3ccf fac2 023d ?...)3.K.\<....=
0x0050: Db2al 28a0 6d3f f215 S54ea 4396 7f55 f8de .. (.m?..T.C..U..
0x0060: bb8d 2e20 0889 f3db 2229 1645 ceed 2d20 e e e ") L.E..-.
0x0070: 1593 e508 6b33 9ael edb5 f099 9801 55aek3. U.
0x0080: d443 6a65 2345 019f 3121 c570 3d9d 31b4 .Cje#E..1l!.p=.
0x0090: bf80 eal2 e7ca 8c4e 777a 45dd N NwzE.

Success! Is our system secure now? Not quite. Proper encryption is only one aspect of
securing your system. In the next section, we’ll discuss how to verify the identity of ser-
vices and users, and following that we’ll talk about how to get fine-grained control of
what each user is allowed to do.

SSL IN CLUSTERS

Now you know how to set up SSL between the mongo shell and a single mongod, which
raises the obvious question of how this extends to an entire cluster. Fortunately this
is fairly similar to the previous example. Simply start every node in the cluster with
the --sslMode requireSSL option. If you're already running a cluster without SSL,
there’s an upgrade process to ensure that you can upgrade without losing connectivity
between your nodes in the transition; see https://docs.mongodb.org/manual/tuto-
rial/upgrade-cluster-to-ssl/.

Keep your keys safe!

Most of the security mechanisms in this chapter depend on the exchange of keys.
Make sure to keep your keys safe (and stored using the proper permissions) and not
share them between servers except when necessary.

As an extreme example, if you use the same key across all machines, that means all
an attacker has to do is compromise that single key to read all traffic on your network.

If you're ever unsure about whether you should share a key, consult the official doc-
umentation either for MongoDB or the underlying mechanism.

Authentication

The next layer of security is authentication. What good is network encryption if any-
one on the internet can pose as a legitimate user and do whatever they want with
your system?

Authentication allows you to verify the identity of services and users in a secure
way. First we’ll discuss why and how to authenticate services and then users. We’ll then
briefly discuss how these concepts translate to replica sets and sharded clusters. As
always, we’ll cover the core concepts here, but you should consult the latest documen-
tation for your version of MongoDB to ensure you’re up-to-date (https://docs.mongodb
.org/manual/core/authentication).

https://docs.mongodb.org/manual/tutorial/upgrade-cluster-to-ssl/
https://docs.mongodb.org/manual/tutorial/upgrade-cluster-to-ssl/
https://docs.mongodb.org/manual/core/authentication
https://docs.mongodb.org/manual/core/authentication
https://docs.mongodb.org/manual/tutorial/upgrade-cluster-to-ssl/
http://www.it-ebooks.info/

398

CHAPTER 13 Deployment and administration

SERVICE AUTHENTICATION

The first stage of authentication is verifying that the program on the other end of the
connection is trusted. Why is this important? The main attack that this is meant to pre-
vent is the man-in-the-middle attack, where the attacker masquerades as both the client
and the server to intercept all traffic between them. See figure 13.3 for an overview of
this attack.

Client Attacker Server

Figure 13.3 Man-in-the-middle attack

As you can see in the figure, a man-in-the-middle attack is exactly what it sounds like:

= A malicious attacker poses as a server, creating a connection with the client, and
then poses as the client and creates a connection with the server.

= After that, it can not only decrypt and encrypt all the traffic between the client
and server, but it can send arbitrary messages to both the client and the server.

Fortunately, there’s hope. The SSL library that MongoDB uses not only provides encryp-
tion, but also provides something called certificate authentication, which consists of
using a trusted third party not involved in the communication to verify the person
sending the key is who they claim to be. In theory, the attacker hasn’t compromised
the third party.

Generating certificates and getting them signed by the trusted third party, known as
the certificate authority (CA) for online communication, is outside the scope of this
book. There are numerous options here, and each is a topic on its own. To get started,
you can work with a CA directly, such as Symantec, Comodo SSL, GlobalSign, and others,
or you can use tools that have been built to make this process easier, such as SSLMate.

Once you have a certificate, you can use it in MongoDB like this
mongod --clusterAuthMode x509 --sslMode requireSSL --sslPEMKeyFile server.pem

--sslCAFile ca.pem
mongo --ssl --sslPEMKeyFile client.pem

where ca.pem contains the root certificate chain from the CA and client.pem is
signed by that CA. The server will use the contents of ca.pem to verify that client.pem
was indeed signed by the CA and is therefore trusted.

Taking these steps will ensure that no malicious program can establish a connec-
tion to your database. In the next section, you’ll see how to make this more fine-
grained and authenticate individual users in a single database.

USER AUTHENTICATION
Although service authentication is great for preventing attackers from even creating a
connection to your system, sometimes we want to grant or revoke access on the level
of individual users.

http://www.it-ebooks.info/

Security 399

NOTE This API changed dramatically from v2.4 to v2.6, and may change again
in future versions, so be sure to read the documentation for your server ver-
sion when you try to set this up. The examples here are for v2.6 and v3.0,
which support role-based authentication.

In MongoDB a role is essentially a set of privileges, and a privilege is any operation that
can be performed in MongoDB. The role is a useful concept because sometimes our
logical idea of a user “role” doesn’t map exactly to primitive database operations. For
example, the built-in read role doesn’t only allow a user to perform find queries; it
also allows users to run certain commands that display statistics about the databases
and collections for which they have the read role.

MongoDB has a convenient set of built-in roles, but it also supports user-defined
roles if these aren’t enough. We won’t cover roles in detail here; this topic falls into
the category of more advanced and specialized security features, so if you’re in a situ-
ation where you know you need user-defined roles, we recommend that you consult
the most up-to-date documentation for your system and version of MongoDB. For
now, we’ll jump straight into an example of how to set up basic authentication for a
single mongod.

SETTING UP BASIC AUTHENTICATION

First, you should start a mongod node with auth enabled. Note that if this node is in a
sharded cluster or a replica set, you also need to pass options to allow it to authenti-
cate with other servers. But for a single node, enabling authentication requires only
one flag:

$ mongod --auth

Now, the first time you connect to the server, you want to add an administrative user
account:

> use admin
> db.createUser (

{

user: "boss",
pwd: "supersecretpassword",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }]

In our example, we gave this user a role of userAdminAnyDatabase, which essen-
tially gives the user complete access to the system, including the ability to add and
remove new users, as well as change user privileges. This is essentially the superuser
of MongoDB.

Now that we’ve created our admin user, we can log in as this user:

> use admin
> db.auth("boss", "supersecretpassword")

http://www.it-ebooks.info/

400

CHAPTER 13 Deployment and administration

We can now create users for individual databases. Once again we use the createUser
method. The main differences here are the roles:

> use stocks
> db.createUser (

{

user: "trader",
pwd: "youlikemoneytoo",
roles: [{ role: "readWrite", db: "stocks" }]

}
)

> db.createUser (

{

user: "read-only-trader",
pwd: "weshouldtotallyhangout",
roles: [{ role: "read", db: "stocks" }]

Now the trader user has the readWrite role on the stocks database, whereas the
read-only-trader only has the read role. This essentially means that the first user
can read and write stock data, and the second can only read it. Note that because we
added these users to the stocks database, we need to authenticate using that database
as well:

> use stocks
> db.auth("trader", "youlikemoneytoo")

REMOVING A USER
To remove a user, use the dropUser helper on the database it was added to:

> use stocks
> db.dropUser ("trader")

This is a bit heavyweight, so note that you can also revoke user access without com-
pletely dropping them from the system using the revokeRolesFromUser helper, and
grant them roles again using the grantRolesToUser helper.

To close the session you don’t need to explicitly log out; terminating the connec-
tion (closing the shell) will accomplish that just fine. But there’s a helper for logging
out if you need it:

> db.logout ()

Naturally, you can use all the authentication logic we’ve explored here using the driv-
ers. Check your driver’s API for the details.

http://www.it-ebooks.info/

Security 401

Localhost exception

You may have noticed we were able to add a user before authenticating our connec-
tion. This may seem like a security vulnerability, but it’s actually due to a convenience
provided by MongoDB called the localhost exception.

This means that if the server hasn’t yet been configured, any connections from the
local machine get full permissions. After you add your first user, unauthenticated con-
nections don’t have privileges, as you'd expect. You can pass --setParameter
enableLocalhostAuthBypass=0 on the command line to disable this behavior and
set up your first admin user by first starting the server with authentication completely
disabled, adding the user, and then restarting with authentication enabled.

This approach isn’'t any more secure—during the same window where the localhost
exception would’ve been a factor, anyone could’ve come into your system—but it’'s
another option.

13.4.4 Replica set authentication

Replica sets support the same authentication API just described, but enabling authen-
tication for a replica set requires extra configuration, because not only do clients need
to be able to authenticate with the replica set, but replica set nodes also need to be
able to authenticate with each other.

Internal replica set authentication can be done via two separate mechanisms:

= Key file authentication
= X509 authentication

In both cases, each replica set node authenticates itself with the others as a special
internal user that has enough privileges to make replication work properly.

KEY FILE AUTHENTICATION

The simpler and less secure authentication mechanism is key file authentication. This
essentially involves creating a “key file” for each node that contains the password that
replica set node will use to authenticate with the other nodes in the replica set. The
upside of this is that it’s easy to set up, but the downside is that if an attacker compro-
mises just one machine, you’ll have to change the password for every node in the clus-
ter, which unfortunately can’t be done without downtime.

To start, create the file containing your secret. The contents of the file will serve as
the password that each replica set member uses to authenticate with the others. As an
example, you might create a file called secret.txt and fill it with the following (don’t
actually use this password in a real cluster):

tOps3cr3tpa55word

Place the file on each replica set member’s machine and adjust the permissions so
that it’s accessible only by the owner:

sudo chmod 600 /home/mongodb/secret.txt

http://www.it-ebooks.info/

402

13.4.5

13.4.6

13.5

13.5.1

CHAPTER 13 Deployment and administration

Finally, start each replica set member by specifying the location of the password file
using the --keyFile option:

mongod --keyFile /home/mongodb/secret.txt

Authentication will now be enabled for the set. You’ll want to create an admin user in
advance, as you did in the previous section.

X509 AUTHENTICATION

X509 certificate authentication is built into OpenSSL, the library MongoDB uses to
encrypt network traffic. As we mentioned earlier, obtaining signed certificates is out-
side the scope of this book. However, once you have them, you can start each node
like this

mongod --replSet myReplSet --sslMode requireSSL --clusterAuthMode x509 --
sslClusterFile --sslPEMKeyFile server.pem --sslCAFile ca.pem

where server.pem is a key signed by the certificate authority that ca.pem corre-
sponds to.

There’s a way to upgrade a system using key file authentication to use X509 certifi-
cates with no downtime. See the MongoDB docs for the details on how to do this, or
check in the latest MMS documentation to see whether support has been added to
MMS automation.

Sharding authentication

Sharding authentication is an extension of replica set authentication. Each replica set
in the cluster is secured as described in the previous section. In addition, all the config
servers and every mongos instance can be set up to authenticate with the rest of the
cluster in exactly the same way, using either a shared key file or using X509 certificate
authentication. Once you’ve done this, the whole cluster can use authentication.

Enterprise security features

Some security features exist only in MongoDB’s paid enterprise plug-in. For example,
the authentication and authorization mechanisms that allow MongoDB to interact
with Kerberos and LDAP are enterprise. In addition, the enterprise module adds
auditing support so that security-related events get tracked and logged. The MongoDB
docs will explicitly mention if a particular feature is enterprise only.

Administrative tasks

In this section, we’ll cover some basic administrative tasks, including importing and
exporting data, dealing with disk fragmentation, and upgrading your system.

Data imports and exports

If you’re migrating an existing system to MongoDB, or if you need to seed the data-
base with information from, something like a data warehouse, you’ll need an efficient

http://www.it-ebooks.info/

13.5.2

Administrative tasks 403

import method. You might also need a good export strategy, because you may have to
export data from MongoDB to external processing jobs. For example, exporting data
to Hadoop for batch processing has become a common practice.?*

There are two ways to import and export data with MongoDB:

m Use the included tools, mongoimport and mongoexport.

= Write a simple program using one of the drivers.?

MONGOIMPORT AND MONGOEXPORT

Bundled with MongoDB are two utilities for importing and exporting data: mongoimport
and mongoexport. You can use mongoimport to import JSON, CSV, and TSV files. This is
frequently useful for loading data from relational databases into MongoDB:

$ mongoimport -d stocks -c values --type csv --headerline stocks.csv

In the example, you import a CSV file called stocks.csv into the values collection of
the stocks database. The --headerline flag indicates that the first line of the CSV
contains the field names. You can see all the import options by running mongoimport
--help.

Use mongoexport to export all of a collection’s data to a JSON or CSV file:

$ mongoexport -d stocks -c values -o stocks.csv

This command exports data to the file stocks.csv. As with its counterpart, you can see
the rest of mongoexport’s command options by starting it with the --help flag.

CUSTOM IMPORT AND EXPORT SCRIPTS

You’re likely to use MongoDB’s import and export tools when the data you're dealing
with is relatively flat; once you introduce subdocuments and arrays, the CSV format
becomes awkward because it’s not designed to represent nested data.

When you need to export a rich document to CSV or import a CSV to a rich
MongoDB document, it may be easier to build a custom tool instead. You can do this
using any of the drivers. For example, MongoDB users commonly write scripts that
connect to a relational database and then combine the data from two tables into a
single collection.

That’s the tricky part about moving data in and out of MongoDB: the way the data
is modeled may differ between systems. In these cases, be prepared to use the drivers
as your conversion tools.

Compaction and repair

MongoDB includes a built-in tool for repairing a database. You can initiate it from the
command line to repair all databases on the server:

$ mongod --repair

#* There’s also a Hadoop plug-in for MongoDB, sometimes known as the MongoDB Connector for Hadoop.
% You can also use a tool known as mongoconnector to keep a different storage system in sync with MongoDB.

http://www.it-ebooks.info/

404

CHAPTER 13 Deployment and administration

Or you can run the repairDatabase command to repair a single database:

> use cloud-docs
> db.runCommand ({repairDatabase: 1})

Repair is an offline operation. While it’s running, the database will be locked against
reads and writes. The repair process works by reading and rewriting all data files, dis-
carding any corrupted documents in the process. It also rebuilds each index. This
means that to repair a database, you need enough free disk space to store the rewrite
of its data. To say repairs are expensive is an understatement, as repairing a large data-
base can take days and impact traffic to other databases on the same node.

MongoDB'’s repair was originally used as a kind of last-ditch effort for recovering a
corrupted database. In the event of an unclean shutdown, without journaling enabled,
a repair is the only way to return the data files to a consistent state, and even then you
may lose data. Fortunately, if you deploy with replication, run at least one server with
journaling enabled, and perform regular off-site backups, you should never have to
recover by running a repair. Relying on repair for recovery is foolish. Avoid it.

What, then, might a database repair be good for? Running a repair will compact
the data files and rebuild the indexes. As of the v2.0 release, MongoDB doesn’t have
great support for data file compaction. If you perform lots of random deletes, and
especially if you're deleting small documents (less than 4 KB), it’s possible for total
storage size to remain constant or grow despite these regularly occurring deletes.
Compacting the data files is a good remedy for this excess use of space.?

If you don’t have the time or resources to run a complete repair, you have two
options, both of which operate on a single collection:

= Rebuilding indexes
= Compacting the collection

To rebuild indexes, use the reIndex () method:

> use cloud-docs
> db.spreadsheets.reIndex ()

This might be useful, but generally speaking, index space is efficiently reused. The data
file space is what can be a problem, so the compact command is usually a better choice.

compact will rewrite the data files and rebuild all indexes for one collection. Here’s
how you run it from the shell:

> db.runCommand ({ compact: "spreadsheets" })

This command has been designed to be run on a live secondary, obviating the need
for downtime. Once you’ve finished compacting all the secondaries in a replica set, you
can step down the primary and then compact that node. If you must run the compact

% Compacting your data on disk may also result in more efficient use of space in RAM.

http://www.it-ebooks.info/

13.5.3

13.6

Performance troubleshooting 405

command on the primary, you can do so by adding {force: true} to the command
object. Note that if you go this route, the command will write lock the system:

> db.runCommand ({ compact: "spreadsheets", force: true })

On WiredTiger databases, the compact () command will release unneeded disk space
to the operating system. Also note that the paddingFactor field, which is applicable
for the MMAPvI storage engine, has no effect when used with the WiredTiger stor-
age engine.

Upgrading

As with any software project, you should keep your MongoDB deployment as up to
date as possible, because newer versions contain many important bug fixes and
improvements.

One of the core design principles behind MongoDB is to always ensure an upgrade is
possible with no downtime. For a replica set, this means a rolling upgrade, and for a
sharded cluster, this means that mongos routers can still function against mixed clusters.

You can take one of two paths when dealing with upgrades:

= First, you can choose to do the process manually. In this case you should check
the release notes describing the upgrade process and read them carefully.
Sometimes there are important caveats or steps that must be taken to ensure
that the upgrade is safe. The advantage here is that you have complete control
over the process and know exactly what’s happening when.

= The second option is to again use the MongoDB Management Service. MMS
Automation not only can be used to provision your nodes, but can also be used
to upgrade them. Be sure to read the release notes for the version you'’re
upgrading to as well as the MMS documentation to be sure you know what’s
happening under the hood.

Performance troubleshooting

Performance in MongoDB is a complicated issue that touches on nearly every other
topic. It’s nearly impossible to know exactly how your application will perform before
you test it with your specific workload and environment. A node on the Joyent Cloud
will have completely different performance characteristics than a node on EC2, which
will again have completely different performance characteristics than a node that you
installed in your own private datacenter.

In this section, we’ll address some common issues that come up in MongoDB sup-
port, as least up through version 3.0, that are important to watch out for. First, we’ll
reintroduce the working set concept; then we’ll cover two ways the working set can
affect your system: the performance cliff and query interactions.

In the end, it’s up to you to monitor your system closely and understand how it’s
behaving. Good monitoring could be the difference between quickly resolving, or

http://www.it-ebooks.info/

406

13.6.1

CHAPTER 13 Deployment and administration

even predicting and preventing performance issues, and having angry users be the
first to tell you your systems have slowed to a crawl.

Working set

We’ve covered the idea of the working set in various parts of this book, but we’ll
define it here again with a focus on your production deployment.

Imagine you have a machine with 8 GB of RAM, running a database with an on-disk
size of 16 GB, not including indexes. Your working set is how much data you’re access-
ing in a specified time interval. In this example, if your queries are all full collection
scans, your “working set” will be 16 GB because to answer those queries your entire
database must be paged into memory.

But if your queries are properly indexed, and you’re only querying for the most
recent quarter of the data, most of your database can stay on disk, and only the 2 GB
that you need, plus some extra space for indexes, needs to be in memory.

Figure 13.4 shows visually what this means for your disk use.

A O B
Working set smaller
than RAM
[I O D
L [|
Working set larger
than RAM
[N N e

Figure 13.4 The impact on disk usage when the working set exceeds RAM

In the bottom row of the figure, when you’re doing full table scans, you have a lot of
thrashing, or moving blocks of data in and out of RAM, because you can’t keep all 16
GB in your 8 GB of RAM at once.

In the top example, you can bring the 2 GB you need into memory, and then keep
it there, answering all the queries with only minimal disk access. This illustrates not
only why keeping your working set in RAM is extremely important, but also shows how
a simple change, such as adding the right index, can completely change your perfor-
mance characteristics.

http://www.it-ebooks.info/

Performance troubleshooting 407

13.6.2 Performance cliff

Closely related to the working set concept is an unfortunate artifact of the way Mon-
goDB runs queries. As of 3.0, MongoDB doesn’t limit the resources a single operation

can use?’

, nor does it explicitly push back on clients when it’s starting to become over-
whelmed. As long as you aren’t approaching MongoDB’s limits, this won’t be a prob-
lem, but as you reach the limit, you may see a “performance cliff.”

To see why this is the case, imagine you have a system with 8 GB of RAM, running a
database that’s 64 GB on disk. Most of the time, your working set is only 6 GB, and your
application performs perfectly well. Now, fast-forward to Christmas Eve, when you see
a traffic spike big enough to bring you to 8 GB. MongoDB will start to slow down,
because the working set no longer fits in memory and will start thrashing to disk.
Despite this, MongoDB will continue to accept new requests.

The combination of slowing down while still accepting new requests is disastrous
for performance, and you may see a steep drop-off at this point. If you think this will
be a concern for you, we strongly recommend that you understand exactly how
much load your MongoDB deployment can handle, and if possible put some kind of
load balancer in front of it that will ensure that you steer away from the edge of this
precipice.

13.6.3 Query interactions

Another side effect of the fact that MongoDB doesn’t enforce resource limits is that one
badly behaving query can affect the performance of all other queries on the system.

It’s the same drill as before. Assume you have a working set of 2 GB, with a 64 GB
database. Everything may be going well, until someone runs a query that performs a
full collection scan. This query will not only place a huge amount of load on the disk,
but may also page out the data that was being used for the other queries on the sys-
tem, causing slowdown there as well. Figure 13.4 from earlier illustrates this issue,
where the top represents normal query load and the bottom represents the load after
the bad query.

This is actually another reason why access controls are important. Even if you get
everything else right, one table scan by an intern can hose your system. Make sure
everyone who has the ability to query your database understands the consequences of
a bad query.®

7 A crude approximation is the maxTimeMS cursor option, which sets a maximum time limit for processing
operations. This won’t prevent one resource-hungry operation from interfering with others, but it will at least
kill operations that run for longer than expected.

8 You can mitigate this a bit by running your long-running queries on secondaries, but remember from chapter
11 that the secondary must have enough bandwidth to keep up with the primary, otherwise it will fall off the
end of the oplog.

http://www.it-ebooks.info/

408

CHAPTER 13 Deployment and administration

All about the indexes

When you discover a performance issue, indexes are the first place you should
look. Unless your operation is insert only, indexes are a vital part of ensuring good
performance.

Chapter 8 outlines a procedure for identifying and fixing slow operations that involves
enabling the query profiler and then ensuring that every query and update uses an
index efficiently. In general, this means each operation scans as few documents
as possible.

It’s also important to make sure there are no redundant indexes, because a redun-
dant index will take up space on disk, require more RAM, and demand more work on
each write. Chapter 8 mentions ways to eliminate these redundant indexes.

What then? After auditing your indexes and queries, you may discover inefficiencies
that, when corrected, fix the performance problems altogether. You'll no longer see
slow query warnings in the logs, and the iostat output will show reduced utilization.
Adjusting indexes fixes performance issues more often than you might think; this
should always be the first place you look when addressing a performance issue.

13.6.4 Seek professional assistance

13.7

The sources of performance degradations are manifold and frequently idiosyncratic.
Anything from poor schema design to sneaky server bugs can negatively affect perfor-
mance. If you think you’ve tried every possible remedy and still can’t get results, con-
sider allowing someone experienced in the ways of MongoDB to audit your system. A
book can take you far, but an experienced human being can make all the difference
in the world. When you’re at a loss for ideas and in doubt, seek professional assis-
tance. The solutions to performance issues are sometimes entirely unintuitive.

When or if you seek help, be sure to provide all the information you have about
your system when the issue occurred. This is when the monitoring will pay off. The
official standard used by MongoDB is MMS Monitoring, so if you’re using MongoDB
support, being set up with MMS Monitoring will speed up the process significantly.

Deployment checklist

We’ve covered a lot of topics in this chapter. It may seem overwhelming at first, but as
long as you have the main areas covered, your system will keep running smoothly. This
section is a quick reference for making sure you’ve got the important points covered:

= Hardware
— RAM—Enough to handle the expected working set.
— Disk space—Enough space to handle all your data, indexes, and MongoDB
internal metadata.
— Disk speed—Enough to satisfy your latency and throughput requirements. Con-
sider this in conjunction with RAM—Iess RAM usually means more disk usage.

http://www.it-ebooks.info/

Deployment checklist 409

CPU—Usually not the bottleneck for MongoDB, but if you’re getting low disk
utilization but low throughput, you may have a CPU bound workload. Check
this as part of careful performance testing.

Network—Make sure the network is fast and reliable enough to satisfy your
performance requirements. MongoDB nodes communicate with each other
internally, so be sure to test every connection, not just the ones from your cli-
ents to the mongos or mongod servers.

Security

Protection of network traffic—Either run in a completely isolated environment
or make sure your traffic is encrypted using MongoDB’s built-in SSL support
or some external method such as a VPN to prevent man-in-the-middle attacks.
Access control—Make sure only trusted users and clients programs can oper-
ate on the database. Make sure your interns don’t have the “root” privilege.

Monitoring

Hardware usage (disks, CPU, network, RAM)—Make sure you have some kind of
monitoring setup for all your hardware resources that will not only keep
track of the usage, but also alert you if it goes above a certain threshold.
Health checks—Periodically make sure your servers are up and responsive,
and will alert you if anyone stops calling back.

MMS Monitoring—Monitor your services using MMS Monitoring. Not only
does this provide monitoring, health checks, and alerts, but it’s what the
MongoDB support team will use to help you if you run into trouble. Histori-
cally it’s been free to use, so don’t hesitate to add this to your deployment.
Client performance monitoring—Periodically run automated end-to-end tests as
a client to ensure that you’re still performing as well as you expect. The last
thing you want is for a client to be the first one to tell you that your applica-
tion is slow.

Disaster recovery

Evaluate risk—Imagine that you’ve lost all your data. How sad do you feel? In
all seriousness, losing your data may be worse in some applications than oth-
ers. If you’re analyzing Twitter trends, losing your data may cost a week’s
worth of time, whereas if you're storing bank data, losing that may cost quite
a bit more. When you do this evaluation, assume that a disaster of some kind
will happen, and plan accordingly.

Hawve a plan—Create a concrete plan for how you’ll recover in each failure case.
Depending on how your system fails, you may react completely differently.

Test your plan—Be sure to test your plan. The biggest mistake people make
with backups and disaster recovery is assuming that having a backup or a
plan is enough. It’s not enough. Maybe the backup is getting corrupted.
Maybe it’s in a format that’s impossible to reimport into your production sys-
tems. As in a production system, many things can go wrong, so it’s important
to make sure your recovery strategy works.

http://www.it-ebooks.info/

410

13.8

CHAPTER 13 Deployment and administration

— Have a backup plan—Your first disaster recovery plan might fail. When it
does, have a last resort available. This doesn’t have to be an appealing
option, but you’ll be happy it’s there if you get desperate.

= Performance

— Load testing—Make sure you load test your application with a realistic work-
load. In the end, this is the only way to be sure that your performance is what
you expect.

Summary

This chapter has presented the most important considerations for deploying MongoDB
in production. You should have the knowledge you need to select the right hardware
for MongoDB, monitor your deployments, and maintain regular backups. In addition,
you should have some idea about how to go about resolving performance issues. Ulti-
mately, this knowledge will develop with experience. But MongoDB is predictable
enough to be amenable to the simple heuristic presented here—except for when it
isn’t. MongoDB tries to make life simple, but databases and their interactions with live
applications are frankly complex. The guidelines in this chapter can point you in the
right direction, but in the end it’s up to you to take an active role in understanding
your system. Make sure you take full advantage of the resources available, from the
MongoDB documentation all the way to the official and community support from
MongoDB maintainers and users.

http://www.it-ebooks.info/

Al

Al1l

appendix A
Installation

In this appendix you’ll learn how to install MongoDB on Linux, Mac OS X, and
Windows, and you’ll get at an overview of MongoDB’s most commonly used config-
uration options. For developers, there are a few notes on compiling MongoDB from
its source.

We’ll conclude with some pointers on installing Ruby and RubyGems to aid
those wanting to run the Ruby-based examples from the book.

Installation

Before we proceed to the installation instructions, a note on MongoDB version-
ing is in order. Briefly, you should run the latest stable version for your architec-
ture. Stable releases of MongoDB are marked by an even minor version number.
Thus, versions 1.8, 2.0, 2.2, 2.4, 2.6 and 3.0 are stable; 2.1, 2.3, and 2.5 are devel-
opment versions and shouldn’t be used in production. The downloads page at
www.mongodb.org provides statically linked binaries compiled for 32- and 64-bit
systems. But as of MongoDB v3.0, 32-bit binaries will no longer be supported. These
binaries are available for the latest stable releases as well as for the development
branches and nightly builds of the latest revision. The binaries provide an easy
way to install MongoDB across most platforms, including Linux, Mac OS X, Win-
dows, and Solaris, and they’re the method we’ll prefer here. If you run into trou-
ble, you can find more information in the official MongoDB manual at http://
docs.mongodb.org/manual/installation.

Production deployments

Using a package manager installation may be preferable for server deployments of
MongoDB, because the package installation usually includes scripts to start and
stop MongoDB when the machine restarts. In the precompiled binary installation

411

http://docs.mongodb.org/manual/installation
http://docs.mongodb.org/manual/installation
www.mongodb.org
http://www.it-ebooks.info/

412

Al2

A2

A21

APPENDIX A Installation

described here, we demonstrate how to run MongoDB from the command line, which
is perfect for learning and debugging but not ideal if you're running a server that
other people are accessing. Each operating system distribution and package manage-
ment system has small differences and idiosyncrasies, such as where MongoDB’s log
file is placed. If you plan on running MongoDB as a production service, you should
understand MongoDB’s configuration and think through error scenarios, such as
what would happen if the server suddenly goes down. If you’re just learning MongoDB
or experimenting with it, any installation method is fine.

32-bit vs. 64-bit

You can download MongoDB binaries compiled for 32- or 64-bit architectures depend-
ing on the MongoDB version. If you’re installing MongoDB on a 64-bit machine, we
highly recommended that you use the 64-bit binaries because the 32-bit installation is
limited to storing only 2 GB of data. Most machines nowadays are 64-bit, but if you’re
unsure you can check a Linux or Mac OS X machine by running the command

$ uname -a

which prints information about the operating system. If the OS version includes the
text x86_64 (as opposed to 1386), then you're running a 64-bit version. For Windows
machines, check the documentation for how to determine which architecture your OS
is running.

MongoDB on Linux

There are three ways to install MongoDB on Linux. You can download the precom-
piled binaries directly from the mongodb.org website, use a package manager, or
compile manually from source. We’ll discuss the first two in the next sections, and
then provide a few notes on compiling later in the appendix.

Installing with precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the
latest downloadable MongoDB binaries. Select the download URL for the latest sta-
ble version for your architecture. These examples use MongoDB v2.6 compiled for a
64-bit system.

Open a command line and download the archive using your web browser, the curl
utility or the wget utility. (You should check on the downloads page for the most
recent release.) Then expand the archive using tar:

$ curl http://downloads.mongodb.org/linux/mongodb-linux-x86 64-2.6.7.tgz >
mongo. tgz
$ tar xzvfi mongo.tgz

http://www.mongodb.org/downloads
http://mongodb.org
http://www.it-ebooks.info/

A22

MongoDB on Linux 413

To run MongoDB, you’ll need a data directory. By default, the mongod daemon will
store its data files in /data/db. Create that directory, and ensure that it has the proper
permissions:

$ sudo mkdir -p /data/db/
$ sudo chown ~id -u~ /data/db

You're ready to start the server. Change to the MongoDB bin directory and launch the
mongod executable:

cd mongodb-linux-x86_64-2.6.7/bin
. /mongod

If all goes well, you should see something like the following abridged startup log. The
first time you start the server it may allocate journal files, which takes several minutes,
before being ready for connections. Note the last lines, confirming that the server is
listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB starting :

pid=1773 port=27017 dbpath=/data/db/ 64-bit host=iron
Thu Mar 10 11:28:51 [initandlisten] db version v2.6.7

Thu Mar 10 11:28:51 [websvr] web admin console waiting for connections on
port 28017
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017

You should now be able to connect to the MongoDB server using the JavaScript con-
sole by running . /mongo. If the server terminates unexpectedly, refer to section A.6.
At the time of writing this, the most recent MongoDB release is 3.0.6.

Using a package manager

Package managers can greatly simplify the installation of MongoDB. The only major
downside is that package maintainers may not always keep up with the latest MongoDB
releases. It’s important to run the latest stable point release, so if you do choose to use
a package manager, be sure that the version you're installing is a recent one.

If you happen to be running Debian, Ubuntu, CentOS, or Fedora, you’ll always
have access to the latest versions. This is because MongoDB, Inc. maintains and pub-
lishes its own packages for these platforms. You can find more information on install-
ing these particular packages on the mongodb.org website. Instructions for Debian
and Ubuntu can be found at http://mng.bz/Z{fG. For CentOS and Fedora, see http://
mng.bz/JSjC.

Packages are also available for FreeBSD and ArchLinux. See their respective pack-
age repositories for details. There may also be other package managers not listed here
that include MongoDB. Check the downloads page at www.mongodb.org/downloads
for more details.

http://mng.bz/ZffG
http://mng.bz/JSjC
http://mng.bz/JSjC
http://www.mongodb.org/downloads
http://mongodb.org
http://www.it-ebooks.info/

414

A3

A3.1

APPENDIX A Installation

MongoDB on Mac 0S X

If you’re using Mac OS X, you have three options for installing MongoDB. You can
download the precompiled binaries directly from the mongodb.org website, use a
package manager, or compile manually from source. We’ll discuss the first two options
in the next sections, and then provide a few notes on compiling later in the appendix.

Precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the lat-
est downloadable MongoDB binaries. Select the download URL for the latest stable
version for your architecture. The following example uses MongoDB v3.0.6 compiled
for a 64-bit system.

Download the archive using your web browser or the curl utility. You should check
on the downloads page for the most recent release. Then expand the archive using tar:

$ curl https://fastdl.mongodb.org/osx/mongodb-osx-x86 64-3.0.6.tgz >
mongo. tgz
$ tar xzvf mongo.tgz

To run MongoDB, you’ll need a data directory. By default, the mongod daemon will
store its data files in /data/db. Go ahead and create that directory:

$ sudo mkdir -p /data/db/
$ sudo chown ~id -u”~ /data/db

You’re now ready to start the server. Just change to the MongoDB bin directory and
launch the mongod executable:

$ cd mongodb-osx-x86 64-3.0.6/bin
$. /mongod

If all goes well, you should see something like the following abridged startup log. The
first time you start the server it may allocate journal files, which takes several minutes,
before being ready for connections. Note the last lines, confirming that the server is
listening on the default port of 27017:

2015-09-19T08:51:40.214+0300 I CONTROL [initandlisten] MongoDB starting
pid=41310 port=27017 dbpath=/data/db 64-bit host=iron.local
2015-09-19T08:51:40.214+0300 I CONTROL [initandlisten] db version v3.0.6

2015-09-19T08:51:40.215+0300 I INDEX [initandlisten] allocating new ns
file /data/db/local.ns, filling with zeroes...

2015-09-19T08:51:40.240+0300 I STORAGE [FileAllocator] allocating new
datafile /data/db/local.0, filling with zeroes...

2015-09-19T08:51:40.240+0300 I STORAGE [FileAllocator] creating directory /
data/db/_tmp

2015-09-19T08:51:40.317+0300 I STORAGE [FileAllocator] done allocating
datafile /data/db/local.0, size: 64MB, took 0.077 secs

2015-09-19T08:51:40.344+0300 I NETWORK [initandlisten] waiting for
connections on port 27017

http://www.mongodb.org/downloads
http://mongodb.org
http://www.it-ebooks.info/

A3.2

A4

A4.1

MongoDB on Windows 415

You should now be able to connect to the MongoDB server using the JavaScript con-
sole by running . /mongo. If the server terminates unexpectedly, refer to section A.6.

Using a package manager

MacPorts (http://macports.org) and Homebrew (http://brew.sh/) are two package
managers for Mac OS X known to maintain up-to-date versions of MongoDB. To install
via MacPorts, run the following:

sudo port install mongodb

Note that MacPorts will build MongoDB and all its dependencies from scratch. If you
go this route, be prepared for a lengthy compile.

Homebrew, rather than compiling, merely downloads the latest binaries, so it’s
much faster than MacPorts. You can install MongoDB through Homebrew as follows:

$ brew update
$ brew install mongodb

After installing, Homebrew will provide instructions on how to start MongoDB using
the Mac OS X launch agent.

MongoDB on Windows

If you're using Windows, you have two ways to install MongoDB. The easier, pre-
ferred way is to download the precompiled binaries directly from the mongodb.org
website. You can also compile from source, but this option is recommended only for
developers and advanced users. You can read about compiling from source in the
next section.

Precompiled binaries

First navigate to www.mongodb.org/downloads. There you’ll see a grid with all the
latest downloadable MongoDB binaries. Select the download URL for the latest sta-
ble version for your architecture. Here we’ll install MongoDB v2.6 compiled for
64-bit Windows.

Download the appropriate distribution and unzip it. You can do this from the Win-
dows Explorer by locating the MongoDB ZIP file, right-clicking on it, and selecting
Extract All. You’ll then be able to choose the folder where the contents will be
unzipped. Please keep in mind that because MongoDB v2.6, prebuilt MSIs are also
available for download.

Alternatively, you can use the command line. First navigate to your Downloads
directory. Then use the unzip utility to extract the archive:

C:\> cd \Users\kyle\Downloads
C:\> unzip mongodb-win32-x86 64-2.6.7.zip

http://macports.org
http://brew.sh/
http://www.mongodb.org/downloads
http://mongodb.org
http://www.it-ebooks.info/

416

A5

A.6

APPENDIX A Installation

To run MongoDB, you’ll need a data folder. By default, the mongod daemon will store
its data files in C\data\db. Open the Windows command prompt and create the folder
like this:

C:\> mkdir \data
C:\> mkdir \data\db

You're now ready to start the server. Change to the MongoDB bin directory and
launch the mongod executable:
C:\> cd \Users\kyle\Downloads

C:\Users\kyle\Downloads> cd mongodb-win32-x86 64-2.6.7\bin
C:\Users\kyle\Downloads\mongodb-win32-x86_ 64-2.6.7\bin> mongod.exe

If all goes well, you should see something like the following abridged startup log. The
first time you start the server it may allocate journal files, which takes several minutes,
before being ready for connections. Note the last lines, confirming that the server is
listening on the default port of 27017:

Thu Mar 10 11:28:51 [initandlisten] MongoDB starting :

pid=1773 port=27017 dbpath=/data/db/ 64-bit host=iron
Thu Mar 10 11:28:51 [initandlisten] db version v2.6.7

Thu Mar 10 11:28:51 [websvr] web admin console waiting for connections on
port 28017
Thu Mar 10 11:28:51 [initandlisten] waiting for connections on port 27017

If the server terminates unexpectedly, refer to section A.6.
Finally, you’ll want to start the MongoDB shell. To do that, open a second terminal
window, and then launch mongo. exe:

C:\> cd \Users\kyle\Downloads\mongodb-win32-x86_ 64-2.6.7\bin
C:\Users\kyle\Downloads\mongodb-win32-x86 64-2.6.7\bin> mongo.exe

Compiling MongoDB from source

Compiling MongoDB from source is recommended only for advanced users and
developers. If all you want to do is operate on the bleeding edge, without having to
compile, you can always download the nightly binaries for the latest revisions from the
mongodb.org website.

That said, you may want to compile yourself. The trickiest part about compiling
MongoDB is managing the various dependencies. The latest compilation instructions
for each platform can be found at www.mongodb.org/about/contributors/tutorial/
build-mongodb-from-source.

Troubleshooting

MongoDB is easy to install, but users occasionally experience minor problems.
These usually manifest as error messages generated when trying to start the mongod

www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
www.mongodb.org/about/contributors/tutorial/build-mongodb-from-source
http://mongodb.org
http://www.it-ebooks.info/

A.6.1

A.6.2

A.6.3

Troubleshooting 417

daemon. Here we provide a list of the most common of these errors along with their
resolutions.

Wrong architecture

If you try to run a binary compiled for a 64-bit system on a 32-bit machine, you’ll see
an error like the following:

bash: ./mongod: cannot execute binary file

On Windows 7, the message is more helpful:

This version of

C:\Users\kyle\Downloads\mongodb-win32-x86 64-2.6.7\bin\mongod.exe
is not compatible with the version of Windows you're running.
Check your computer's system information to see whether you need
a x86 (32-bit) or x64 (64-bit) version of the program, and then
contact the software publisher.

The solution in both cases is to download and then run the 32-bit binary instead. Bina-
ries for both architectures are available on the MongoDB download site (www.mongodb
.org/downloads).

Nonexistent data directory

MongoDB requires a directory for storing its data files. If the directory doesn’t exist,
you’ll see an error like the following:

dbpath (/data/db/) does not exist, terminating

The solution is to create this directory. To see how, consult the preceding instructions
for your OS.

Lack of permissions

If you’re running on a Unix variant, you’ll need to make sure that the user running
the mongod executable has permissions to write to the data directory. Otherwise, you’ll
see this error

Permission denied: "/data/db/mongod.lock", terminating
or possibly this one:
Unable to acquire lock for lockfilepath: /data/db/mongod.lock, terminating

In either case, you can solve the problem by opening up permissions in the data direc-
tory using chmod or chown.

www.mongodb.org/downloads
www.mongodb.org/downloads
http://www.it-ebooks.info/

418

A.6.4

A7

APPENDIX A Installation

Unable to bind to port
MongoDB runs by default on port 27017. If another process, or another mongod, is
bound to the same port, you’ll see this error:

listen(): bind() failed errno:98
Address already in use for socket: 0.0.0.0:27017

This issue has two possible solutions. The first is to find out what other process is
running on port 27017 and then terminate it, provided that it isn’t being used for
some other purpose. One way of finding which process listens to port number 27017
is the following:

sudo lsof -i :27017

The output of the 1sof command will also reveal the process ID of the process that
listens to port number 27017, which can be used for killing the process using the
kill command.

Alternatively, run mongod on a different port using the --port flag, which seems to
be a better and easier solution. Here’s how to run MongoDB on port 27018:

mongod --port 27018

Basic configuration options

Here’s a brief overview of the flags most commonly used when running MongoDB:

m - -dbpath—The path to the directory where the data files are to be stored. This
defaults to /data/db and is useful if you want to store your MongoDB data
elsewhere.

m --logpath—The path to the file where log output should be directed. Log out-
put will be printed to standard output (stdout) by default.

= --port—The port that MongoDB listens on. If not specified, it’s set to 27017,

m --rest—This flag enables a simple REST interface that enhances the server’s
default web console. The web console is always available 1000 port numbers
above the port the server listens on. Thus if the server is listening at localhost
on port 27017, then the web console will be available at http://localhost:28017.
Spend some time exploring the web console and the commands it exposes; you
can discover a lot about a live MongoDB server this way.

m --fork—Detaches the process to run as a daemon. Note that fork works only
on Unix variants. Windows users seeking similar functionality should look at the
instructions for running MongoDB as a proper Windows service. These are
available at www.mongodb.org.

Those are the most important of the MongoDB startup flags. Here’s an example of
their use on the command line:

$ mongod --dbpath /var/local/mongodb --logpath /var/log/mongodb.log
--port 27018 --rest --fork

http://localhost:28017
http://localhost:28017
http://www.mongodb.org
http://www.it-ebooks.info/

A8

AS8.1

Installing Ruby 419

Note that it’s also possible to specify all of these options in a config file. Create a new
text file (we’ll call it mongodb.conf) and you can specify the config file equivalent' of
all the preceding options:
storage:

dbPath: “/var/local/mongodb”
systemLog:

destination: file

path: “/var/log/mongodb.log”
net:

port: 27018

http:

RESTInterfaceEnabled: true

processManagement :
fork: true

You can then invoke mongod using the config file with the -f option:

$ mongod -f mongodb.conf

If you ever find yourself connected to a MongoDB and wondering which options were
used at startup, you can get a list of them by running the getCmdLineOpts command:

> use admin
> db.runCommand ({getCmdLineOpts: 1})

Installing Ruby

A number of the examples in this book are written in Ruby, so to run them yourself,
you’ll need a working Ruby installation. This means installing the Ruby interpreter as
well as Ruby’s package manager, RubyGems.

You should use a newer version of Ruby, such as 1.9.3 or preferably 2.2.3, which is
the current stable version. Version 1.8.7 is still used by many people, and it works well
with MongoDB, but the newer versions of Ruby offer advantages such as better charac-
ter encoding that make it worthwhile to upgrade.

Linux and Mac 0S X
Ruby comes installed by default on Max OS X and on a number of Linux distributions.

You may want to check whether you have a recent version by running

ruby -v

If the command isn’t found, or if you’re running a version older than 1.8.7, you’ll want
to install or upgrade. There are detailed instructions for installing Ruby on Mac OS X
as well as on a number of Unix variants at https://www.ruby-lang.org/en/downloads/

1 As of 2.6, MongoDB uses a YAML config file format. See docs.mongodb.org/manual/reference/configura-
tion-options for the current documentation on the available options.

https://www.ruby-lang.org/en/downloads/
http://www.it-ebooks.info/

420

A8.2

APPENDIX A Installation

(you may have to scroll down the page to see the instructions for the various plat-
forms). Most package managers (such as MacPorts and Aptitude) also maintain a
recent version of Ruby, and they’re likely to be the easiest avenue for getting a work-
ing Ruby installation.

In addition to the Ruby interpreter, you need the Ruby package manager, Ruby-
Gems, to install the MongoDB Ruby driver. Find out whether RubyGems is installed by
running the gem command:

gem -v

You can install RubyGems through a package manager, but most users download the
latest version and use the included installer. You can find instructions for doing this at

https://rubygems.org/pages/download.

Windows

By far, the easiest way to install Ruby and RubyGems on Windows is to use the Windows
Ruby Installer. The installer can be found here: http://rubyinstaller.org/downloads.
When you run the executable, a wizard will guide you through the installation of both
Ruby and RubyGems.

In addition to installing Ruby, you can install the Ruby DevKit, which permits the
easy compilation of Ruby C extensions. The MongoDB Ruby driver’s BSON library may
optionally use these extensions.

https://rubygems.org/pages/download.
http://rubyinstaller.org/downloads
http://www.it-ebooks.info/

B.1

B.2

appendix B
Design patterns

The early chapters of this book implicitly advocate a certain set of design patterns.
Here I’ll summarize those patterns and augment them with a few patterns that fall
outside the flow of the text.

Embed vs. reference

Suppose you're building a simple application in MongoDB that stores blog posts
and comments. How do you represent this data? Do you embed the comments in
their respective blog post documents? Or is it better to create two collections, one
for posts and the other for comments, and then relate the comments to the posts
with an object ID reference (_1id)?

This is the problem of embedding versus referencing, and it’s a common source
of confusion for new users of MongoDB. Fortunately, there’s a simple rule of thumb
that works for most schema design scenarios: embed when the child objects never
appear outside the context of their parent. Otherwise, store the child objects in a
separate collection.

What does this mean for blog posts and comments? It depends on the applica-
tion. If the comments always appear within a blog post, and if they don’t need to be
ordered in arbitrary ways (by post date, comment rank, and so on), then embed-
ding is fine. But if, say, you want to be able to display the most recent comments,
regardless of which post they appear on, then you’ll want to reference. Embedding
may provide a slight performance advantage, but referencing is far more flexible.

One-to-many

As stated in the previous section, you can represent a one-to-many relationship by
either embedding or referencing. You should embed when the many object
intrinsically belongs with its parent and rarely changes. The schema for a how-to
application illustrates this well. The steps in each guide can be represented as an

421

http://www.it-ebooks.info/

422

APPENDIX B Design patterns

array of subdocuments because these steps are an intrinsic part of the guide and
rarely change:

{ title: "How to soft-boil an egg",

steps: [

{ desc: "Bring a pot of water to boil.",
materials: ["water", "eggs'] },

{ desc: "Gently add the eggs a cook for four minutes.",
materials: ["egg timer"]},

{ desc: "Cool the eggs under running water." },

1

Please note that if you want to guarantee the order of an array, you might need to add
another attribute that will hold the order of the array elements, because some lan-
guages don’t guarantee the order of an array.

When the two related entities will appear independently in the application, you’ll
want to relate them. Many articles on MongoDB suggest that embedding comments in
blog posts is a good idea. But relating is far more flexible. For one thing, you can eas-
ily show users a list of all their comments—using sparse indexes might help here
because sparse indexes only contain entries for documents that have the indexed
field. You can also show all recent comments across all posts. These features, consid-
ered de rigueur for most sites, aren’t possible with embedded documents at this time.'
You typically relate documents using an object ID. Here’s a sample post:

{ _id: ObjectId("4d650d4c£32639266022018d"),

title: "Cultivating herbs",
text: "Herbs require occasional watering..."

And here’s a comment, related by the post_id field:

{ id: ObjectId("4d650d4c£32639266022ac01"),
post_id: ObjectId("4d650d4cf326392660220184"),
username: "zjones",
text: "Indeed, basil is a hearty herb!"

The post and the comment live in their own collections, and it takes two queries to
display a post with its comments. Because you’ll query comments on their post_id
field, you’ll want an index there:

db.comments.createIndex ({post_id: 1})

We used this one-to-many pattern extensively in chapters 4, 5, and 6; look there for
more examples.

1

There’s a popular feature request for virtual collections, which could provide the best of both worlds. See

http://jira.mongodb.org/browse/SERVER-142 to track this issue.

http://jira.mongodb.org/browse/SERVER-142
http://www.it-ebooks.info/

B.3

B.4

Trees 423

Many-to-many

In RDBMSs, you use a join table to represent many-to-many relationships; in MongoDB,
you use array keys. You can see a clear example of this technique earlier in the book
where we relate products and categories. Each product contains an array of category
IDs, and both products and categories get their own collections. If you have two sim-
ple category documents

{ _id: ObjectId("4d6574baa6b804ea563cl32a"),
title: "Epiphytes™"
}

{ _id: ObjectId("4d6574baa6b804ea563c459d"),
title: "Greenhouse flowers"
}

then a product belonging to both categories will look like this:

{ _id: ObjectId("4d6574baaéb804ea563cag982"),
name: "Dragon Orchid",
category_ids: [ObjectId("4d6574baa6b804ea563cl32a"),
ObjectId("4d6574baaéb804ea563c459d")]

For efficient queries, you should index the array of category IDs:
db.products.createIndex ({category ids: 1})

Then, to find all products in the Epiphytes category, match against the category id
field:

db.products.find ({category id: ObjectId("4d6574baa6b804ea563cl32a") })

And to return all category documents related to the Dragon Orchid product, first get
the list of that product’s category IDs:

product = db.products.findOne ({ id: ObjectId("4d6574baaéb804ea563cl32a") })
Then query the categories collection using the $in operator:
db.categories.find ({ id: {$in: product['category ids']}})

You’ll notice that finding the categories requires two queries, whereas the product
search takes just one. This optimizes for the common case, as you’re more likely to
search for products in a category than the other way around.

Trees

Like MySQL, MongoDB has no built-in facility for tree representation and traversal—
Oracle has CONNECT BY and PostgreSQL has WITH RECURSIVE for performing a tree tra-
versal. Thus, if you need tree-like behavior in MongoDB, you’ve got to roll your own
solution. I presented a solution to the category hierarchy problem in chapters 5 and 6.

http://www.it-ebooks.info/

424

APPENDIX B Design patterns

The strategy there was to store a snapshot of the category’s ancestors within each cate-
gory document. This denormalization makes updates more complicated but greatly
simplifies reads.

Alas, the denormalized ancestor approach isn’t great for all problems. Another
common tree scenario is the online forum, where hundreds of messages are fre-
quently nested many levels deep. There’s too much nesting, and too much data, for
the ancestor approach to work well here. A good alternative is the materialized path.

Following the materialized path pattern, each node in the tree contains a path
field. This field stores the concatenation of each of the node’s ancestor’s IDs, and
root-level nodes have a null path because they have no ancestors. Let’s flesh out an
example to see how this works. First, look at the comment thread in figure B.1. This
represents a few questions and answers in thread about Greek history.

A\ 5 points by kbanker 1 hour ago
Who was Alexander the Great's teacher?

A\ 2 points by asophist 1 hour ago
It was definitely Socrates.

A\ 10 points by daletheia 1 hour ago
Oh you sophist...It was actually Aristotle!

A\ 1 point by seuclid 2 hours ago

Figure B.1 Threaded
So who really discarded the parallel postulate? comments in a forum

Let’s see how these comments look as documents organized with a materialized path.
The first is a root-level comment, so the path is null:

{ _id: ObjectId("4d692b5d59e212384d95001"),
depth: 0,
path: null,
created: ISODate("2011-02-26T17:18:01.2512"),
username: "plotinus",
body: "Who was Alexander the Great's teacher?",
thread id: ObjectId("4d692b5d59e212384d95223a")

The other root-level question, the one by user seuclid, will have the same structure.
More illustrative are the follow-up comments to the question about Alexander the
Great’s teacher. Examine the first of these, and note that path contains the _id of
the immediate parent:

{ id: ObjectId("4d692b5d59e212384d951002"),
depth: 1,
path: "4d692b5d59e212384d95001",

http://www.it-ebooks.info/

Trees 425

created: ISODate("2011-02-26T17:21:01.251z"),
username: "asophist",

body: "It was definitely Socrates.",

thread id: ObjectId("4d692b5d59e212384d95223a")

The next deeper comment’s path contains both the IDs of the original and immediate
parents, in that order and separated by a colon:

{ _id: ObjectId("4d692b5d59e212384d95003"),
depth: 2,
path: "4d692b5d59e212384d95001:4d692b5d59e212384d951002",
created: ISODate("2011-02-26T17:21:01.2512"),
username: "daletheia",
body: "Oh you sophist...It was actually Aristotlel!l",
thread id: ObjectId("4d692b5d59e212384d95223a")

At a minimum, you’ll want indexes on the thread id and path fields, as you’ll always
query on exactly one of these fields:

db.comments.createIndex ({thread_id: 1})
db.comments.createIndex ({path: 1})

Now the question is how you go about querying and displaying the tree. One of the
advantages of the materialized path pattern is that you query the database only once,
whether you’re displaying the entire comment thread or only a subtree within the
thread. The query for the first of these is straightforward:

db.comments.find ({thread id: ObjectId("4d692b5d59e212384d95223a") })

The query for a particular subtree is subtler because it uses a prefix query (discussed
in Chapter 5):

db.comments.find ({path: /*4d692b5d59e212384d95001/})

This returns all comments with a path beginning with the specified string. This string
represents the _id of the comment with the username plotinus, and if you examine
the path field on each child comment, it’s easy to see that they’ll all satisty the query.
And they’ll do so quickly because these prefix queries can use the index on path.
Getting the list of comments is easy—it only requires one database query. Display-
ing them is trickier because you need a list that preserves thread order. This requires a
bit of clientside processing, which you can achieve with the following Ruby methods.?

2 This book’s source code includes a complete example of threaded comments with materialized paths using
the display methods presented here.

http://www.it-ebooks.info/

426 APPENDIX B Design patterns

The first method, threaded_list, builds a list of all root-level comments and a map
that keys parent IDs to lists of child nodes:

def threaded list (cursor, opts={})
list = [l
child map = {}
start depth = opts[:start depth] || 0
cursor.each do |comment |
if comment ['depth'] == start_depth
list.push (comment)
else
matches = comment['path'].match(/([d|w]+)$/)
immediate parent id = matches[1]
if immediate parent id
child map[immediate parent id] ||= []
child map[immediate parent id] << comment
end
end
end
assemble (1list, child map)
end

The assemble method takes the list of root nodes and the child map and then builds
a new list in display order:

def assemble (comments, map)
list = []
comments.each do |comment |
list.push (comment)
child comments = map[comment[' id'].to_s]
if child comments
list.concat (assemble (child comments, map))
end
end
list
end

To print the comments, you merely iterate over the list, indenting appropriately for
each comment’s depth:

def print threaded list(cursor, opts={})
threaded list (cursor, opts).each do |item|

indent = " " * item['depth']
puts indent + item['body'l + " #{item['path']}"
end

end

Querying for the comments and printing them is then straightforward:

cursor = @comments.find.sort ("created")
print_threaded_list (cursor)

http://www.it-ebooks.info/

B.5

B.6

Dynamic attributes 427

Worker queues

You can implement worker queues in MongoDB using either standard or capped col-
lections (discussed in chapter 4). In both cases, the findAndModify command will per-
mit you to process queue entries atomically.

A queue entry requires a state and a timestamp plus any remaining fields to con-
tain the payload. The state can be encoded as a string, but an integer is more space-
efficient. We’ll use 0 and 1 to indicate processed and unprocessed, respectively. The
timestamp is the standard BSON date. And the payload here is a simple plaintext mes-
sage but could be anything in principle:

{ state: o,
created: ISODate("2011-02-24T16:29:36.6972Z"),
message: "hello world" }

You’ll need to declare an index that allows you to efficiently fetch the oldest unpro-
cessed entry (FIFO). A compound index on state and created fits the bill:

db.queue.createIndex ({state: 1, created: 1})

You then use findAndModify to return the next entry and mark it as processed:

g = {state: 0}

s = {created: 1}

u = {$set: {state: 1}}

db.queue.findAndModify ({query: q, sort: s, update: u})

If you’re using a standard collection, be sure to remove old queue entries. It’s possible
to remove them at processing time using findAndModify’s {remove: true} option.
But some applications may want to postpone removal for a later time, once the pro-
cessing is complete.

Capped collections may also serve as the basis for a worker queue. Without the
default index on _id, a capped collection has potentially faster insert speed, but
the difference will be negligible for most applications. The other potential advantage
is automatic deletion. But this feature is a double-edged sword: you’ll have to make
sure that the collection is large enough to prevent unprocessed entries from aging
out. Thus if you do use a capped collection, make it extra-large. The ideal collection
size will depend on your queue write throughput and the average payload size.

Once you’ve decided on the size of capped collection to use, the schema, index,
and findAndModify will be identical to those of the standard collection just described.

Dynamic attributes

MongoDB’s document data model is useful for representing entities whose attributes
vary. Products are the canonical example of this, and you saw some ways of modeling
these attributes earlier in the book. One viable way to model these attributes is to

http://www.it-ebooks.info/

428

APPENDIX B Design patterns

scope them to a subdocument. In a single products collection, you can then store dis-
parate product types. You might store a set of headphones

{ _id: ObjectId("4d669c225d3a52568ce07646")
sku: "ebd-123"
name: "Hi-Fi Earbuds",
type: "Headphone",
attrs: { color: "silver",
freq low: 20,
freg_hi: 22000,
weight: 0.5

and an SSD drive:

{ id: ObjectId("4d669c225d3a52568ce07646")

sku: "ssd-456"

name: "Mini SSD Drive",

type: "Hard Drive",

attrs: { interface: "SATA",
capacity: 1.2 * 1024 * 1024 * 1024,
rotation: 7200,
form factor: 2.5

If you need to frequently query on these attributes, you can create sparse indexes
for them. For example, you can optimize for range queries in headphone frequency
response:

db.products.createIndex ({"attrs.freq low": 1, "attrs.freq hi": 1},
{sparse: true})

You can also efficiently search hard disks by rotation speed with the following index:

db.products.createIndex ({"attrs.rotation": 1}, {sparse: true})

The overall strategy here is to scope your attributes for readability and app discover-
ability and to use sparse indexes to keep null values out of the indexes.

If your attributes are completely unpredictable, you can’t build a separate index
for each one. You have to use a different strategy—in this case, arrays of name-value
pairs—as illustrated by the following sample document:

{ id: ObjectId("4d669c225d3a52568ce07646")
sku: "ebd-123"
name: "Hi-Fi Earbuds",
type: "Headphone",
attrs: [{n: "color", v: "silver"},
{n: "freq low", v: 20},
{n: "freq hi", v: 22000},
{n: "weight", v: 0.5}

http://www.it-ebooks.info/

B.7

Transactions 429

Here attrs points to an array of subdocuments. Each of these documents has two
values, n and v, corresponding to each dynamic attribute’s name and value. This
normalized representation allows you to index these attributes using a single com-
pound index:

db.products.createIndex ({"attrs.n": 1, "attrs.v": 1})

You can then query using these attributes, but to do that, you must use the $elem-
Match query operator:

db.products.find ({attrs: {$elemMatch: {n: "color", v: "silver"}}})

Note that this strategy incurs a lot of overhead because it requires storing the key
names in the index. It’d be important to test this for performance on a representative
data set before going into production.

Transactions

MongoDB doesn’t provide ACID guarantees over a series of operations (however, indi-
vidual operations are atomic), and no equivalent of RDBMSs’ BEGIN, COMMIT, and
ROLLBACK semantics exists. When you need these features, use a different database
(either for the data that needs proper transactions or for the application as a whole)
or a different design like executing a series of operations one by one. Still MongoDB
supports atomic, durable updates on individual documents and consistent reads, and
these features, though primitive, can be used to implement transaction-like behavior
in an application.

You saw an extended example of this in chapter 6’s treatments of order authoriza-
tion and inventory management. And the worker queue implementation earlier in
this appendix could easily be modified to support rollback. In both cases, the founda-
tion for transaction-like behavior is the ever versatile findAndModify command, which
is used to atomically manipulate a state field on one or more documents.

The transactional strategy used in all these cases can be described as compensation-
driven.” The compensation process in abstract works like this:

1 Atomically modify a document’s state.
Perform some unit of work, which may include atomically modifying other doc-
uments.

3 Ensure that the system as a whole (all documents involved) is in a valid state. If
so, mark the transaction complete; otherwise, revert each document to its pre-
transaction state.

* Two pieces of literature covering compensation-driven transactions are worth studying. The original is Garcia-
Molina and Salem’s “Sagas” paper (http://mng.bz/73is). The less formal but no less interesting “Your Coffee
Shop Doesn’t Use Two-Phase Commit” by Gregor Hohpe (http://mng.bz/kpAq) is also a great read.

http://mng.bz/73is
http://mng.bz/kpAq
http://www.it-ebooks.info/

430

B.8

APPENDIX B Design patterns

It’s worth noting that the compensation-driven strategy is all but necessary for long-
running and multistep transactions. The whole process of authorizing, shipping, and
canceling an order is one example. For these cases, even an RDBMS with full transac-
tional semantics must implement a similar strategy.

There may be no getting around certain applications’ requirements for multi-
object ACID transactions. But with the right patterns, MongoDB can pull some transac-
tional weight and might support the transactional semantic your application needs.

Locality and precomputation

MongoDB is frequently billed as an analytics database, and plenty of users store analyt-
ics data in MongoDB. A combination of atomic increments and rich documents seems
to work best. For example, here’s a document representing total page views for each
day of the month along with the total for the month as a whole. For brevity, the follow-
ing document contains totals only for the first five days of the month:

{ base: "org.mongodb", path: "/",
total: 99234,

days: {
"1": 4500,
"2": 4324,
"3nr: 2700,
"4gn. 2300,
"5": 0

You can update the totals for the day and month with a simple targeted update using
the $inc operator:
use stats-2011

db.sites-nov.update ({ base: "org.mongodb", path: "/" },
$inc: {total: 1, "days.5": 1 });

Take a moment to notice the collection and database names. The collection, sites-
nov, is scoped to a given month, and the database, stats-2011, to a particular year.
This gives the application good locality. When you query for recent visits, you’re
always querying a single collection that’s relatively small compared with the overall
analytics history. If you need to delete data, you can drop a time-scoped collection
rather than removing some subset of documents from a larger collection. That latter
operation may result in on-disk fragmentation.

The other principle at work here is precomputation. Sometime near the beginning
of the month, you insert a template document with zeroed values for each day of the
month. As a result, the document will never change size as you increment the coun-
ters therein because you’ll never actually add fields; you’ll only change their values in
place. This is important because it keeps the document from being relocated on disk
as you write to it. Relocation is slow and often results in fragmentation.

http://www.it-ebooks.info/

B.9

B.9.1

B.9.2

B.9.3

B.9.4

Antipatterns 431

Antipatterns

MongoDB lacks constraints, which can lead to poorly organized data. Here are a few
issues commonly found in problematic production deployments.

Careless indexing

When users experience performance problems, it’s not unusual to discover a whole
slew of unused or inefficient indexes. The most efficient set of indexes for an applica-
tion will always be based on an analysis of the queries being run. Be disciplined about
the optimization methods presented in chapter 7.

Keep in mind that when you have unnecessary indexes, inserts and updates will
take longer because the related indexes have to be updated. As a rule of thumb, you
should periodically reexamine your indexes to make sure that you’re using the right
ones for the right job.

Motley types

Ensure that keys of the same name within a collection all share the same type. If you
store a phone number, for instance, store it consistently, either as a string or an inte-
ger (but not as both). The mixing of types in a single key’s value makes the applica-
tion logic complex, and makes BSON documents difficult to parse in certain strongly
typed languages.

Bucket collections

Collections should be used for one type of entity only; don’t put products and users in
the same collection. Because collections are cheap, each type within your application
should get its own collection. As a side effect, this also has huge concurrency gains.

Large, deeply nested documents

There are two misunderstandings about MongoDB’s document data model. One is
that you should never build relationships between collections, but rather represent all
relationships in the same document. This frequently degenerates into a mess, but
users nevertheless sometimes try it. The second misunderstanding stems from an
overly literal interpretation of the word document. A document, these users reason, is a
single entity like a real-life document. This leads to large documents that are difficult
to query and update, let alone comprehend.

The bottom line here is that you should keep documents small (well under 100 KB
per document unless you’re storing raw binary data) and that you shouldn’t nest
more than a few levels deep. A smaller size makes document updates cheaper because
in the case where a document needs to be rewritten on disk completely, there’s less to
rewrite. The other advantage is that the documents remain comprehensible, which
makes life easier for developers needing to understand the data model.

It’s also a good practice to put raw binary data into a separate collection and refer-
ence it by _id. Appendix C will help you deal with binary data.

http://www.it-ebooks.info/

432

B.9.5

B.9.6

APPENDIX B Design patterns

One collection per user

It’s rarely a good idea to build out one collection per user. One problem with this is
that the namespaces (indexes plus collections) max out at 24,000 by default. Once
you grow beyond that, you have to allocate a new database. In addition, each collec-
tion and its indexes introduce extra overhead, making this strategy a waste of space.

Unshardable collections

If you expect a collection to grow large enough to merit sharding, be sure that you
can eventually shard it. A collection is shardable if you can define an efficient shard
key for that collection. Review the tips in chapter 12 on choosing a shard key.

http://www.it-ebooks.info/

C.1

appendix C
Binary data and GridFS

For storing images, thumbnails, audio, and other binary files, many applications
rely on the filesystem only. Although filesystems provide fast access to files, filesys-
tem storage can also lead to organizational chaos. Consider that most filesystems
limit the number of files per directory. If you have millions of files to keep track of,
you need to devise a strategy for organizing files into multiple directories. Another
difficulty involves metadata. Because the file metadata is still stored in a database,
performing an accurate backup of the files and their metadata can be incredibly
complicated.

For certain use cases, it may make sense to store files in the database itself
because doing so simplifies file organization and backup. In MongoDB, you can use
the BSON binary type to store any kind of binary data. This data type corresponds
to the RDBMS BLOB (binary large object) type, and it’s the basis for two flavors of
binary object storage provided by MongoDB.

The first uses one document per file and is best for smaller binary objects. If you
need to catalog a large number of thumbnails or binary MD5s, using single-document
binary storage can make life much easier. On the other hand, you might want to
store large images or audio files. In this case, GridFS, a MongoDB API for storing
binary objects of any size, would be a better choice. In the next two sections, you’ll
see complete examples of both storage techniques.

Simple binary storage

BSON includes a first-class type for binary data. You can use this type to store binary
objects directly inside MongoDB documents. The only limit on object size is the
document size limit itself, which is 16 MB since MongoDB v2.0. Because large docu-
ments like this can tax system resources, you're encouraged to use GridFS for any
binary objects you want to store that are larger than 1 MB.

433

http://www.it-ebooks.info/

434

C.11

C.1.2

APPENDIX C Binary data and GridFS

We’ll look at two reasonable uses of binary object storage in single documents.
First, you’ll see how to store an image thumbnail. Then, you’ll see how to store the
accompanying MD5.

Storing a thumbnail

Imagine you need to store a collection of image thumbnails. The code is straightfor-
ward. First, you get the image’s filename, canyon-thumb.jpg, and then read the data
into a local variable. Next, you wrap the raw binary data as a BSON binary object using
the Ruby driver’s BSON: : Binary constructor:

require 'rubygems'

require 'mongo'

image filename = File.join(File.dirname(_ FILE), "canyon-thumb.jpg")
image data = File.open(image filename) .read

bson_image_data = BSON::Binary.new(image_ data)

All that remains is to build a simple document to contain the binary data and then
insert it into the database:

doc = {"name" => "monument-thumb.jpg",

"data" => bson image data }
@con = Mongo::Client.new([‘'localhost:27017’'], :database => ‘images’)
@thumbnails = @con|[:thumbnails]
result = @thumbnails.insert one (doc)

To extract the binary data, fetch the document. In Ruby, the to_s method unpacks
the data into a binary string, and you can use this to compare the saved data to the
original:

@thumbnails.find ({“name” => “monument-thumb-jpg”}).each do |doc|
if image_data == doc["data"].to_s
puts "Stored image is equal to the original file!™"
end
end

If you run the preceding script, you’ll see a message indicating that the two files are
indeed the same.

Storing an MD5

It’s common to store a checksum as binary data, and this marks another potential use
of the BSON binary type. Here’s how you can generate an MD5 of the thumbnail and
add it to the document just stored:

require 'md5'

md5 = Digest::MD5.file(image_filename) .digest

bson md5 = BSON::Binary.new(md5, :md5)

@thumbnails.update one({: id => @image id}, {"$set" => {:md5 => bson md5}})

http://www.it-ebooks.info/

C.2

GridFS 435

Note that when creating the BSON binary object, you tag the data with :md5. The sub-
type is an extra field on the BSON binary type that indicates what kind of binary data is
being stored. This field is entirely optional, though, and has no effect on how the
database stores or interprets the data.'

It’s easy to query for the document just stored, but do notice that you exclude the
data field to keep the return document small and readable:

> use images
> db.thumbnails.findOne ({}, {data: 0})

" id" : ObjectId("4d608614238d3b4ade000001"),
"md5" : BinData (5, "K1ud3EUjT49wdMdkOGjbDg=="),
"name" : "monument-thumb.jpg"

See that the MD5 field is clearly marked as binary data (briefly mentioned in Table 5.6)
with the subtype and raw payload. Keep in mind that MongoDB sorts BinData first by
the length or size of the data, second by the BSON one-byte subtype, and last by the
data, performing a byte-by-byte comparison.

GridFS

GridFs is a convention for storing files of arbitrary size in MongoDB. The GridFS spec-
ification is implemented by all the official drivers and by MongoDB’s mongofiles tool,
ensuring consistent access across platforms. GridFS is useful for storing large binary
objects in the database. It’s frequently fast enough to serve these objects as well, and
the storage method is conducive to streaming.

The term GridFS may lead to confusion, so two clarifications are worth making
right off the bat. The first is that GridFS isn’t an intrinsic feature of MongoDB. As men-
tioned, it’s a convention that all the official drivers (and some tools) use to manage
large binary objects in the database. Second, it’s important to clarify that GridFS
doesn’t have the rich semantics of bona fide filesystems. For instance, there’s no pro-
tocol for locking and concurrency, and this limits the GridFS interface to simple put,
get, and delete operations. This means that if you want to update a file, you need to
delete it and then put the new version.

GridFS works by dividing a large file into small, 255 KB chunks and then storing
each chunk as a separate document—versions prior to MongoDB v2.4.10 use 256 KB
chunks. By default, these chunks are stored in a collection called fs.chunks. Once
the chunks are written, the file’s metadata is stored in a single document in another
collection called fs.files. Figure C.1 contains a simplistic illustration of this

! This wasn’t always technically true. The deprecated default subtype of 2 indicated that the attached binary
data also included four extra bytes to indicate the size, and this did affect a few database commands. The cur-
rent default subtype is 0, and all subtypes now store the binary payload the same way. Subtype can therefore
be seen as a kind of lightweight tag to be optionally used by application developers.

http://www.it-ebooks.info/

436

c21

APPENDIX C Binary data and GridFS

canyon.jpg 1TMB

GridFS#put
Divide into GridFS Interface
chunks (e.g., driver or mongofiles)
\’ B 1. Write to chunks collection (fs.chunks)
{ files_id: 5, n: 0, data: BinData (0, " (256KB binary data)" }
Write file { files_id: 5, n: 1, data: BinData (0, " (256KB binary data)" }
metadata

{ files_id: 5, n: 2, data: BinData (0, " (256KB binary data)" }
{ files_id: 5, n: 3, data: BinData (0, " (256KB binary data)" }

[2. Write to files collection (fs.files)

{ _id: 5, filename: "canyon.jpg" }

Figure C.1 Storing a file with GridFS using 256 KB chunks on a MongoDB server prior to v2.4.10

process applied to a theoretical 1 MB file called canyon.jpg. Note that the use of the
term chunks in the context of GridFS isn’t related to the use of the term chunksin the
context of sharding.

That should be enough theory to use GridFS.” Next we’ll see GridFS in practice
through the Ruby GridFS API and the mongofiles utility.

GridFS in Ruby

Earlier you stored a small image thumbnail. The thumbnail took up only 10 KB and
was thus ideal for keeping in a single document. The original image is almost 2 MB in
size, and is therefore much more appropriate for GridFS storage. Here you’ll store
the original using Ruby’s GridFS API. First, you connect to the database and then ini-
tialize a Grid object, which takes a reference to the database where the GridFsS file
will be stored.

Next, you open the original image file, canyon.jpg, for reading. The most basic
GridFS interface uses methods to put and get a file. Here you use the Grid#put method,
which takes either a string of binary data or an I0 object, such as a file pointer. You pass
in the file pointer and the data is written to the database.

2 You can find more information about GridFS at http://docs.mongodb.org/manual/core/gridfs/ and at
http://docs.mongodb.org/manual/reference/gridfs/.

http://docs.mongodb.org/manual/core/gridfs/
http://docs.mongodb.org/manual/reference/gridfs/
http://www.it-ebooks.info/

GridFS 437

The method returns the file’s unique object ID using the latest Ruby MongoDB
driver:

require 'rubygems'

require 'mongo'

include Mongo

Sclient = Mongo::Client.new(['127.0.0.1:27017'], :database => 'images')
fs = Sclient.database.fs

$file = File.open("canyon.jpg")

$file_id = fs.upload from stream("canyon.jpg", $file)

sfile.close

As stated, GridFS uses two collections for storing file data. The first, normally called
fs.files, keeps each file’s metadata. The second collection, fs.chunks, stores one or
more chunks of binary data for each file. Let’s briefly examine these from the shell.

Switch to the images database, and query for the first entry in the fs.files collec-
tion. You’ll see the metadata for the file you just stored:

> use images
> db.fs.files.find ({filename: "canyon.jpg"}) .pretty()

{

" id" : ObjectId("5612e19a530a6919ed000001"),
"chunkSize" : 261120,

"uploadDate" : ISODate("2015-10-05T20:46:18.849z"),
"contentType" : "binary/octet-stream",

"filename" : "canyon.jpg",

"length" : 281,

"md5" : "597d619c415a4dbl44732aed24b6ff0b"

These are the minimum required attributes for every GridFS file. Most are self-
explanatory. You can see that this file is about 2 MB and is divided into chunks
256 KB in size, which means that it was from a MongoDB server prior to v2.4.10. You’ll
also notice an MD5. The GridFS spec requires a checksum to ensure that the stored
file is the same as the original.

Each chunk stores the object ID of its file in a field called files_id. Thus you can
easily count the number of chunks this file uses:

> db.fs.chunks.count ({"files id" : ObjectId("4d606588238d3b4471000001")})
8

Given the chunk size and the total file size, eight chunks are exactly what you should
expect. The contents of the chunks themselves are easy to see, too. As earlier, you’ll
want to exclude the data to keep the output readable. This query returns the first of
the eight chunks, as indicated by the value of n:

> db.fs.chunks.findOne ({files id: ObjectId("4d606588238d3b4471000001")},
{data: 0})
{

"_id" : ObjectId("4d606588238d3b4471000002"),

http://www.it-ebooks.info/

438

c.2.2

APPENDIX C Binary data and GridFS

llnll : O’
"files id" : ObjectId("4d606588238d3b4471000001")

}

Reading GridFs files is as easy as writing them. In the following example, you create a
text file on-the-fly, give it a name, and store it using GridFS. You then find it in the
database using a find one() statement that returns a Mongo::Grid::File object.
Then you have to get the file ID from the Mongo: :Grid::File object to use it and
retrieve the text file from the database, which is saved using the perfectCopy filename:

require 'rubygems'
require 'mongo'
include Mongo

Sclient = Mongo::Client.new(['127.0.0.1:27017'], :database => 'garden')
fs = S$client.database.fs

To create a text file with raw data
file = Mongo::Grid::File.new('I am a NEW file', :filename => 'aFile.txt')
$client.database.fs.insert_one(file)

Select the file from scratch
$fileObj = $client.database.fs.find one(:filename => 'aFile.txt')
$file id = $fileObj.id

And download it
$file to write = File.open('perfectCopy', 'w')
fs.download to stream($file id, s$file to_write)

You can then verify for yourself that perfectCopy is a text file with the correct data
in it:

$ cat perfectCopy
I am a NEW filei

That’s the basics of reading and writing GridFsS files from a driver. The various GridFS
APIs vary slightly, but with the foregoing examples and the basic knowledge of how
GridFS works, you should have no trouble making sense of your driver’s docs. At the
time of writing, the latest Ruby MongoDB Driver is v2.1.1.

GridFS with mongofiles

The MongoDB distribution includes a handy utility called mongofiles for listing, put-
ting, getting, and deleting GridFS files using the command line. For example, you can
list the GridFsS files in the images database:

$ mongofiles -d images list
connected to: 127.0.0.1
canyon.jpg 2004828

http://www.it-ebooks.info/

GridFS 439

You can also easily add files. Here’s how you can add the copy of the image that you
wrote with the Ruby script:

$ mongofiles -d images put canyon-copy.jpg

connected to: 127.0.0.1

added file: { _id: ObjectId('4d61783326758d4e6727228f"),
filename: "canyon-copy.Jjpg",
chunkSize: 262144, uploadDate: new Date(1298233395296),
md5: "9725ad463b646ccbd287be87cb9blfee", length: 2004828 }

You can again list the files to verify that the copy was written:

$ mongofiles -d images list
connected to: 127.0.0.1
canyon.jpg 2004828
canyon-copy.jpg 2004828

mongofiles supports a number of options, and you can view them with the --help
parameter:

$ mongofiles --help
Usage:
mongofiles <options> <command> <filename or _id>

Manipulate gridfs files using the command line.

Possible commands include:

list - list all files; 'filename' is an optional prefix which listed
filenames must begin with

search - search all files; 'filename' is a substring which listed
filenames must contain

put - add a file with filename 'filename’

get - get a file with filename 'filename'

get_id - get a file with the given ' id'

delete - delete all files with filename 'filename'

delete_id - delete a file with the given '_id'

See http://docs.mongodb.org/manual/reference/program/mongofiles/ for more
information.

general options:
--help print usage
--version print the tool version and exit

verbosity options:

-v, --verbose more detailed log output (include multiple times for more
verbosity, e.g. -vvvvv)
--quiet hide all log output
connection options:
-h, --host= mongodb host to connect to (setname/hostl,host2 for
replica sets)
--port= server port (can also use --host hostname:port)

authentication options:
-u, --username= username for authentication
-p, --password= password for authentication

http://www.it-ebooks.info/

440

--authenticationDatabase=
--authenticationMechanism=

storage options:

-d, --db=

-1, --local=

-t, --type=

-r, --replace
--prefix=
--writeConcerns=

APPENDIX C Binary data and GridFS

database that holds the user's credentials
authentication mechanism to use

database to use (default is 'test')

local filename for put|get

content/MIME type for put (optional)

remove other files with same name after put
GridFS prefix to use (default is 'fs')

write concern options e.g. --writeConcern majority,
--writeConcern '{w: 3, wtimeout: 500, fsync: true,

(defaults to 'majority')

e

http://www.it-ebooks.info/

Symbols

mdex

aggregation framework

. (dot operator), with queries
108-109

. character 88,93

@tweets variable 67

$+* field 257

$ character 57, 93, 193

=> character 55

> character 32

Numerics

-9 command-line option 387
10gen, subscription services 5-6
32-bit integer type 116

64-bit integer type 116

A

operators
$sort 138
$unwind 139

overview 121

pipeline performance 146
aggregation cursor option 151
allowDiskUse option 151
explain() function 147
options 147

reshaping documents 140
arithmetic functions 142
date functions 142
logical functions 143
miscellaneous functions 145
set operators 144
string functions 141

See also e-commerce aggregation example

agile development 22-23

ad hoc queries 10
$add function 142
additionalOptions object 147
address already in use (error message)
418
address_length field 112
addshard command 371
addShard () method 346
add_to_cart function 168-169, 175-177
$addToSet operator 137-138, 159-160,
180, 185, 193
administrative tasks 402-405
compaction and repair 403-405
data imports and exports 402-403
upgrading 405
aggregate () function 147, 252, 267

AGPL (GNU-Affero General Public

License) 15

$all operator 105-106
$allElementsTrue function 144
allowDiskUse option 147, 151
allPlans key 240
allPlansExecution mode 238
Amazon EC2 336

analytics 22-23

ancestor_list array 164
ancestors attribute 164

$and operator 106-107, 143
antipatterns 431-432

441

bucket collections 431

careless indexing 431

large, deeply nested documents 431
motley types 431

http://www.it-ebooks.info/

442

antipatterns (continued)
one collection per user 432
unshardable collections 432
$anyElementTrue function 144
Apache license 17
AppEngine 5
application data, storage of 337-338
arbiterOnly option 302, 316-317
arbiters 300
architecture
hardware 379-380
installation problems and 417
ArchLinux 413
arithmetic functions 142
Array type 116
arrays 110-112
querying for, by size 112
update operators for 183-187
atime, disabling 382
atomic document processing 171-179
inventory management 174-179
failure 178-179
inventory fetcher 175-176
inventory management 176-178
order state transitions 172-174
finishing order 173-174
preparing order for checkout 172-173
verifying order and authorization 173
attributes, dynamic 427-429
authentication 397-400
basic, setting up 399-400
removing user 400
service authentication 398
user authentication 398-399
authors field 254
average product ratings 162-163
average review, calculating 126
$avg function 127, 137

INDEX

Binary type 116
-bind_ip option 394
$bit operator 186, 193
BLOB (binary large object) type 433
book index example 198-201
compound index 199-201
indexing rules 201
simple index 198-199
books collection 255-256, 268
Boolean operators 106-107
Bostic, Keith 276
BSON (Binary JSON) 7
BSON files, restoring 392
bson gem 54
BSON types, min key and max key 351
BSON::Binary constructor 434
bsondump tool 18, 314, 389-390
bson_ext gem 54
BSON::OrderedHash class 109
BtreeCursor 225
B-trees 205-206
estimating storage size 206
maximum key size 206
node structure 206
bucket collections 431
buildIndexes option 318

Cc

caching 23

Cahill, Michael 276
capacity planning 369
capped collections 88-90
careless indexing 431
case-insensitive search 246
Cassandra database 19
categorical failures 321
categories collection 99, 423
categories field 254
category hierarchy 163-166

background indexing 215
backups 391-393
data file-based backups 392-393
for sharded clusters 373
indexes 216
MMS backups 393
mongodump and mongorestore 391-392
balancer 373
BasicCursor 223, 240
Bayer, Rudolf 292
binary data, simple binary storage 433-435
storing an MD5 434-435
storing thumbnails 434
Binary JSON. See BSON

category_id field 423

category_ids field 79-80

CentOS 413

certificate authentication 398

changelog collection 354

chmod 417

chown 417

chunks
as data unit 339, 341
collection storing chunk ranges 350
counting 350
pre-splitting for faster distribution 370
problem when too large to split 365
splitting and migrating of 342

clean failures 321

http://www.it-ebooks.info/

clocks 383
close field 224
cluster topology 377
$cmd collection 48
coarse granularity 362
collectionConfig.blockCompressor option 277
collections 7, 87-92
as data unit 339
automatic creation of 31
capped collections 88-90
drop() method 38
listing 46
managing collections 87-88
sharding existing 369
sharding within 341-342
stats 47
system collections 91-92
time-to-live (TTL) collections 90-91
See also system collections
collstats command 48, 390
command method 58
command shell 16
command-line options 418-419
commands 48
implementation of 48
runCommand () method 48
running from MongoDB Ruby driver 58-59
Comma-Separated Values. See CSV (Comma-
Separated Values)
commits 314
compact command 216, 404
compaction and repair 403-405
compensation-driven mechanisms 429
compiling MongoDB, from source 416
compound-key indexes 199-203, 242
$concat function 141-142
$cond function 143-144
config database 350
config servers 337-338
deployment of 367
two-phase commit and 338
config variable 63, 316
configdb option 346
configsvr option 346
configuration, basic options 418-419
connecting MongoDB Ruby driver 53-54
core server 15-16
CouchDB (Apache document-based data
store) 22
count command 32
count field 125
count function 163
.count() function 153
count() command 40
countsByCategory collection 131

INDEX

countsByRating variable 127
covering indexes, query patterns and 204,
242-243

CPU, performance issues and 380
createIndex () command 43, 211
createUser method 400
CSV (Comma-Separated Values) 18
curl utility 414
currentOp() command 214, 371
cursor field 223, 225
cursor option 147
cursor.explain() function 243
cursor.forEach () function 152
cursor.hasNext() function 152
cursor.itcount() function 152
cursor.map() function 152
cursor.next() function 152
cursor.pretty() function 37, 152
cursors

BtreeCursor (explain output) 225

MongoDB Ruby driver 56-57
cursor.toArray() function 152
custom import and export scripts 403

D

443

data centers, multiple with sharding 368
data directory 413
data imports and exports 402-403
database commands, running from MongoDB
Ruby driver 58-59
database drivers 17
databases 84-87
allocating initial data files 32
as data unit 339
automatic creation of 31
creating 31
data files and allocation 85-87
document databases 22
listing 46
managing 84-85
MongoDB shell and 31-32
others vs. MongoDB 19-22
document databases 22
relational databases 21
simple key-value stores 19-20
sophisticated key-value stores 20-21
relational databases 21
stats 47
dataSize field 87
date functions 142
Date type 116
$dayOfMonth function 143
$dayOfWeek function 143
$dayOfYear function 143

http://www.it-ebooks.info/

444

db.collection.stats() function 335
db.currentOp() method 388, 393
db.currentOp(true) command 388
db.getReplicationInfo() method 310, 322
db.help() method 49
db.isMaster() method 95, 302
dbpath does not exit (error message) 417
dbPath option 277
—dbpath option 335
dbpath option 418
db.runCommand ({top:1}) command
388
db.serverStatus() command 387
db.spreadsheets.createIndex() command
357
dbstats command 48, 390
db.stats() command 335, 388
Debian 413
dedicated text search engines, vs. text
search 250-253
deeply nested documents 431
defragmenting, indexes 216
DELETE command 38
deleteIndexes command 212
deletes 57-58, 189
denormalizing data model 128
deployment environment 378-385
architecture 379-380
clocks 383
CPU 380
disks 380-381
file descriptors 382-383
filesystems 382
journaling 383-385
locks 381-382
RAM 380
description field 77, 80
design patterns 421-432
antipatterns 431-432
bucket collections 431
careless indexing 431
large, deeply nested documents 431
motley types 431
one collection per user 432
unshardable collections 432
dynamic attributes 427-429
embedding vs. referencing 421
locality 430
many-to-many relationships 423
one-to-many relationships 421-422
precomputation 430
transactions 429-430
trees 423-426
worker queues 427
details attribute 78, 108

INDEX

diagnostics
commands 387-388
tools 388-390
bsondump 389-390
mongosniff 389
mongostat 388
mongotop 388-389
web console 390
See also monitoring
dictionary (Python primitive) 17
—directoryperdb flag 381
disks, performance issues and 380-381
.distinct() function 153
$divide function 142
document data model 5-9
document databases 22
document updates 158-162
modifying by operator 159-162
modifying by replacement 159-162
document-oriented data 73-97
bulk inserts 96
collections 87-92
capped 88-90
managing 87-88
system collections 91-92
time-to-live (TTL) collections 90-91
databases 84-87
data files and allocation 85-87
managing 84-85
documents
limits on 95-96
serialization 92, 96
numeric types 93-94
schema design principles 74-75
string values 93
virtual types 95

See also e-commerce data model, designing

documents 15
advantages of 5, 8
as data unit 339
example social news site entry 6
inserting in Ruby 55-56
lack of enforced schema 8
limits on 95-96
nested 78-79
relation to agile development 8
reshaping 140
arithmetic functions 142
date functions 142
logical functions 143
miscellaneous functions 145
set operators 144
string functions 141
serialization 92-96
dollar sign ($) 125

http://www.it-ebooks.info/

Double type 116
drivers 17
how they work 59-61
replication and 324-332
connections and failover 324-326
read scaling 328-330
tagging 330
write concern 327-328
See also MongoDB Ruby driver
—drop flag 392
drop() method 38, 58
drop_collection method 59
dropDatabase () method 85
dropDups option 207-208
dropIndex() function 212, 257
dump directory 392
duplicate key error 207
durability 12-13
dynamic attributes 427-429
dynamic queries 10
Dynamo 20

E

each iterator 57
$each operator 183, 185, 193
e-commerce 9
e-commerce aggregation example 123
product information summaries 125
calculating average review 126
counting reviews by rating 127
joining collections 128
$out operator 129
$project operator 129
$unwind operator 130
user and order summaries 132

finding best Manhattan customers 133
summarizing sales by year and month

132

e-commerce data model, designing 75-84

product reviews 83

schema basics 76-80
many-to-many relationships 79
nested documents 78-79
one-to-many relationships 79
relationship structure 79-80
slugs 78

users and orders 82, 84

e-commerce queries 99-103
findone vs. find queries 99-100
partial match queries in users 102

products, categories, and reviews 99-101

querying specific ranges 102-103

skip, limit, and sort query options 100-101

users and orders 101-103

INDEX 445

e-commerce updates 162-171
average product ratings 162-163
category hierarchy 163-166
orders 168-171
reviews 167-168
Elasticsearch in Action (Gheorghe, Hinman and
Russo) 245
$elemMatch operator 110, 112, 429
email attribute 159
embedding, vs. referencing 421
emit() function 154
enablesharding command 347
engine option 277
engineConfig.cacheSize option 277
engineConfig journalCompressor option 277
ensurelndex() function 43, 211-212
enterprise security features 402
entity-attribute-value pattern 9
$eq function 143
error messages 416
eventual consistency 19
executionStats keyword 41, 224, 243
$exists operator 106-107
expireAfterSeconds setting 91
explain() function 39, 44, 110, 147, 149-150,
222-224, 228, 230, 357-359
output of 222
viewing attempted query plans 238
exports, data. See data imports and exports

F

-f option 419

facets 250

failover 306, 313-322

Fedora 413

fields option 189

file descriptors 382-383

files_id field 437

fileSize field 87

filesystems 382

find method 17, 56, 99

find queries, vs. findone queries 99-100

find() command 258, 260-261, 263

findAndModify command 158, 171-173, 177-178,
188-189, 429

for implementing a queue 427
implementing transactional semantics with 174

findmnt command 382

findOne method 99

find_one method 99

findone queries, vs. find queries 99-100

findOne () function 129, 253

find_one() function 438

$first function 137

http://www.it-ebooks.info/

446 INDEX

force option 323

forEach function 129
—fork option 344

fork option 418

FreeBSD 413

FROM command 123
from_mongo method 95
fs.chunks collection 435
fs.files collection 435, 437

G

gem command 420
generate_ancestors() method 165
generation_time method 61
$geoNear operator 122, 135
geospatial indexes 211
getCmdLineOpts command 419
getIndexes() method 43, 47, 348
getIndexKeys() function 232
getIndexSpecs() method 212
getLastError command 326-327, 331
getLastErrorDefaults option 319
getLastErrorModes 331
getLastErrorModes option 320
getSiblingDB() method 347
global queries 355
GNU-Affero General Public License. See AGPL
grantRolesToUser helper 400
granularity, coarse 362
greater than ($gte) operator 102-103
grep command 218
Grid object 436
Grid#put method 436
GridFS 435-440

in Ruby 436-438

with mongofiles 438-440
GROUP BY clause, SQL 122
GROUP BY command 123
$group operator 122-123, 125-126, 133, 135-136,

152

$gt (greater than) operator 41, 103, 107, 143
$gte (greater than or equal) operator 102-103

H

halted replication 312
hash (Ruby primitive) 17
hashed indexes 209-211
hashed shard keys 361
HAVING command 123
Hazard pointers 276
-headerline flag 403
heartbeat 313

—help flag 403

help() method 49
hidden option 318
hint() function 238, 240, 260
history of MongoDB 5-6, 25-27
version 1.8.x 25
version 2.0.x 25
version 2.2.x 26
version 2.4.x 26
version 2.6.x 26-27
version 3.0.x 27
Homebrew 415
horizontal scaling 14
—host option 388
host option 317
hotspots 360-362
$hour function 143

/1 modifier 115
iregex flag 114
_id field 17, 59, 64, 79-80, 100, 117, 137, 342, 357,
360-361
ifconfig command 395
$ifNull function 143
imbalanced writes 360-362
imports, data. See data imports and exports
$in operator 104-107, 423
$inc operator 161, 163, 167, 169-170, 181, 191,
193, 430
IN_CART state 176, 179
index locality 364
indexBounds field 225
indexConfig.prefixCompression option 277
indexes 10-11
administration of 211-216
background indexing 215
backing up 216
book example 198-201
B-trees 205-206
building 213-215
caution about building online 213
compaction of 216
compound-key indexes 203, 242
cookbook analogy 11, 198, 201
core concepts 201-205
compound-key indexes 202-203
index efficiency 203-205
single-key indexes 201
covering indexes 242-243
creating and deleting 211-212
defragmenting 216
efficiency issues 203, 205
ensurelndex() method 43
getIndexes() method 43

http://www.it-ebooks.info/

indexes (continued)
in sharded cluster 356-357
maximum key size 206
multikey indexes 211
offline 215
ordering of keys 203
performance cost 203
RAM requirements 204
sharding and 356-357, 359
single-key 201, 241-242
sparse 209
text search indexes 255-257
assigning index name 256-257
text index size 255-256
types of 207-211
geospatial indexes 211
hashed indexes 209-211
multikey indexes 209
sparse indexes 208-209
unique indexes 207
unique indexes 207

INDEX

inventory management 174-179
failure 178-179
inventory fetcher 175-176
InventoryFetcher 177
InventoryFetchFailure exception 178
iostat command 390
irb shell 55
isbn field 254

isMaster command 317-318, 324-326, 389

ISODate object 115
$isolated operator 190-191
it command 40

itcount() function 152
items array 177

J

447

j option 327

JavaScript Object Notation. See JSON
JavaScript query operators 112-113
JavaScript shell. See MongoDB shell

when to declare them 213
write lock when building 215
indexOnly field 243
indexSizes field 256
infix notation 160
initialize method 63
injection attacks 113
insert() method 50, 56 K
insert_one function 84
inserts, MongoDB shell and 32-34
installation 411 ad hoc queries 10
basic configuration options document data model 6-9
418-419 indexes 10-11
MongoDB on Linux 412-413 replication 11-12
installing with precompiled binaries scaling 14-15
412-413 speed and durability 12-13
using package manager 413 key file authentication 401-402
MongoDB on Mac OS X 414-415 —keyFile option 402
precompiled binaries 414-415 key-value stores 19
using package manager 415 query model 10
MongoDB on Windows 415-416 simple 19-20
MongoDB Ruby driver 53-54 sophisticated 20-21
MongoDB versioning and 411-412 use cases 20
on Linux 412-413 kill command 387, 418
on OS X 414-415 KVEngine 291-292
on Windows 415-416 KVStorageEngine class 290
Ruby 419
troubleshooting 416-418 L

JavaScript type 116

JOIN command 123

joins, complexity of 4, 10
journal.enabled option 277

journaling 13, 383-385

JSON (JavaScript Object Notation) 4, 31

key features of MongoDB 6-15

lack of permissions 417
nonexistent data directory 417
unable to bind to port 418
wrong architecture 417
with Linux package managers 413
with OS X package managers 415

languages, text search 267-272
available languages 271
specifying in document 269
specifying in index 267-268
specifying in search 269-271

http://www.it-ebooks.info/

448 INDEX

large, deeply nested documents 431
$last function 137
less than ($1t) operator 102-103
$let function 145-146
licensing, core server 15
$limit operator 122, 135
limit query option 100-101, 118
Linux

installing MongoDB on

installing with precompiled binaries
412-413
using package manager 413

installing Ruby on 419
listDatabases command 58
listshards command 347
$literal function 145-146
load distribution 335-336
localhost exception 401
locality 430
:local_threshold option 329
locking 294, 381-382
locks element 215
-logappend option 387
logging 23, 217
logical functions 143
-logpath option 387
logpath option 344, 418
logrotate command 387
long polling 311
longDescription field 254, 266
Is command 62
LSM (log-structured merge-trees) 11, 289
Isof command 418
$lt (less than) operator 41, 102-103, 143
$lte (less than or equal) operator 103, 143, 160

M

Mac OS X
installing MongoDB on 414-415
precompiled binaries 414-415
using package manager 415
installing Ruby on 419
MacPorts 415
mainCategorySummary collection 129-130
man-in-the-middle attacks 398
many-to-many relationships 79, 423
$map function 145-146
map-reduce function 132, 153-154
master-slave replication 297, 311
$match operator 121-123, 126-127, 133, 135, 139,
146, 156, 264
materialized views 140
$max function 137
max parameter 90

maxBsonObjectSize field 95
maxElement 225
$maxElement field 225
$maxKey 351, 361
Maxkey type 116
McCreight, Ed 292
:mdb5 435
MD?5, storing 434-435
Memcached 19
$meta function 145
$meta:"textScore" field 263
metadata, storage of 338
method chaining 100
migration rounds 353
millis field 222
$millisecond function 143
$min function 137
$minElement field 225
$minKey 351
Minkey type 116
$minute function 143
mmap() function 204
MMAPv1, WiredTiger compared with 278-289
benchmark conclusion 288-289
configuration files 279-281
insertion benchmark results 283-284
insertion script and benchmark script 281-283
read performance results 286-288
read performance scripts 285-286
MMAPV1DatabaseCatalogEntry class 291
MMAPV1Engine class 290
MMS Automation 386
MMS Monitoring 390, 409
$mod operator 115, 142
modifying document updates
by operator 159
by replacement 159-162
mongo (executable) 16, 30
mongo gem 54, 62
Mongo::Client constructor 328
mongoconnector tool 403
mongod (executable) 16
MongoDB
additional resources 27-28
core server 15-16
definition of 4
design philosophy 18
document-oriented data model 6
history of 5-6, 25-27
version 1.8.x 25
version 2.0.x 25
version 2.2.x 26
version 2.4.x 26
version 2.6.x 26-27
version 3.0.x 27

http://www.it-ebooks.info/

INDEX 449

MongoDB (continued)
installing on Linux
installing with precompiled binaries 412-413
using package manager 413
installing on Mac OS X 414-415
precompiled binaries 414-415
using package manager 415
installing on Windows 415-416
key features of 6-15
ad hoc queries 10
document data model 6-9
indexes 10-11
replication 11-12
scaling 14-15
speed and durability 12-13
open source status 6
operating system support 15
reasons for using 18-23
tips and limitations 24-25
tools
command-line tools 18
database drivers 17
JavaScript shell 16-17
uniqueness of data model 4
use cases and production deployments 22-23
agile development 22-23
analytics and logging 23
caching 23
variable schemas 23
web applications 22
user’s manual 27
vs. other databases 19-22
document databases 22
relational databases 21
simple key-value stores 19-20
sophisticated key-value stores 20-21
with object-oriented languages 5
See also MongoDB shell
Mongo:DB class 84
MongoDB Management System Automation. See
MMS Automation
MongoDB Monitoring Service 390
MongoDB Ruby driver 53-59
database commands 58-59
inserting documents in Ruby 55-56
installing and connecting 53-54
queries and cursors 56-57
updates and deletes 57-58
MongoDB shell 30-39
administration 46-49
commands 48-49
getting database information 46—48
collections 31-32
databases 31-32
deleting data 38

documents 31-32
help 49
indexes 39-41
explain() method 41-46
range queries 41
inserts and queries 32-34
_id fields in MongoDB 32
pass query predicate 33-34
other shell features 38-39
starting 30
updating documents 34-38
advanced updates 37-38
operator update 34-35
replacement update 35
updating complex data 35-37
MongoDB user groups 28
mongod.lock file 417
mongodump command 389
mongodump utility 18, 216, 391-392
mongoexport utility 403
mongofiles utility 435-436, 438-440
Mongo::Grid::File object 438
mongoimport utility 23, 403
Mongo::OperationFailure exception 178
mongooplog utility 18
mongoperf utility 18
mongorestore utility 18, 216, 391-392
mongos routers 337
mongosniff utility 18, 389
mongostat utility 18, 386, 388
mongotop utility 18, 388-389
monitoring
external applications for 390-391
logging 387
MongoDB Monitoring Service 390
See also diagnostics
$month function 133, 143
motley types 431
movechunk command 370-371
moveprimary command 372
msg field 215
multi parameter 166
multi: true parameter 180
multidocument updates 180
multikey indexes 209
$multiply function 142
Munin monitoring system 390
MySQL 13, 19, 21

N

n integer 89

Nagios monitoring system 390
name attribute 166

name field 77, 80

http://www.it-ebooks.info/

450

name parameter 212
namespaces 256, 340
NASDAQ (example data set) 217
$natural operator 219
$ne (not equal to) operator 106, 144
nearest setting, MongoDB driver 328
nested documents 78-79
network encryption 395-397

running MongoDB with SSL.

396-397

SSL in clusters 397
new option 189
next() function 126
$nin (notin) operator 105-106
noatime directive 382
—-nojournal flag 384
nonexistent data directory 417
—noprealloc option 86
$nor operator 106-107
normalization 3,7
NoSQL 5
not equal to ($ne) operator 106, 144
$not function 144
notin ($nin) operator 105
$not operator 106
nReturned 230
nscanned 230-232, 240-241
—nssize option 86
NTP (Network Time Protocol) 383
ntpd daemon 383
Null type 116
null value 208
num key 43
num_1 field 44
NumberInt() function 187
numbers collection 39, 43, 94
numeric types 93-94

o

object IDs, generation of 59-61
Object type 116
offline indexing 215
one collection per user 432
one-to-many relationships 79, 421-422
op field 309
operations, router of 338
operators 181-188
aggregation framework operators 135
$group 136
$limit 138
$match 138
$out 139
$project 136
$skip 138

INDEX

$sort 138
$unwind 139
array update operators 183-187
modifying document updates by 159
positional updates 187-188
standard update operators 181-183
oplog, querying manually 308
oplog.rs collection 92, 308
—oplogSize option, mongod 313
optimistic locking 161
$options operator 114
$or operator 105-107, 144
Oracle database 19
order state transitions 172-174
finishing order 173-174
preparing order for checkout 172-173
verifying order and authorization 173
orders 168-171
$out operator 122, 131, 135, 139-140

P

p method, Ruby 56

padding factor 192

paddingFactor field 405

page faults 204

pageCount field 254

pagination 100

parent_id attribute 164

partial match queries in users 102
path field 424-425

pattern matching, vs. text search 246-247
patterns, design. See design patterns

PCRE (Perl Compatible Regular Expressions) 114

Percona 290
performance troubleshooting 405-408
performance cliff 407
query interactions 407-408
seeking professional assistance 408
working set 406
Perl Compatible Regular Expressions. See PCRE
permission denied (error message) 417
permissions, lack of 417
pluggable storage engines
classes to deal with storage modules 290-292
data structure 292-294
examples of 289-290
locking 294
storage engine API 273-275
poor targeting 360, 362-363
$pop operator 185-186, 193
—port flag 418
port option 418
ports, inability to bind to 418
positional updates 187-188

http://www.it-ebooks.info/

PostgreSQL 19
post_id field 7, 422
precomputation 430
prefix notation 160
pretty() function 37, 152
primary key field. See_id fields
primary setting, MongoDB driver 328
primaryPreferred setting, MongoDB driver 328
priority option 317
privileges 399
product information summaries 125
calculating average review 126
counting reviews by rating 127
joining collections 128
$out operator 129
$project operator 129
$unwind operator 130
product reviews. See reviews, product
product_id field 101

production deployments. See use cases and produc-

tion deployments
products collection 169, 252
programs, writing 52-69
building simple application 61-69
gathering data 62-65
setting up 61-62
viewing archive 65
how drivers work 59-61
MongoDB Ruby driver 53-59
database commands 58-59
inserting documents in Ruby 55-56
installing and connecting 53-54
queries and cursors 56-57
updates and deletes 57-58

$project operator 121, 123, 130-131, 135, 264, 266

Project Voldemort 19
projections 117-118
provisioning 385-386
cloud and 385-386
Management System (MMS) Automation 386
ps command 387
publishedDate field 254
$pull operator 187, 193
$pullAll operator 179, 187, 193
$push operator 137-138, 167, 183, 185, 191, 193
$pushAll operator 183, 193

Q

INDEX

queries 33, 98-119
e-commerce queries 99-103
findone vs. find queries 99-100
partial match queries in users 102
products, categories, and reviews 99-101
querying specific ranges 102-103

skip, limit, and sort query options 100-101
users and orders 101-103
explain() method 41
_id lookups 99
matching sub-documents 108
MongoDB Ruby driver 56-57
MongoDB shell and 32-34
_id fields in MongoDB 32
pass query predicate 33-34
object id reference lookups 99
range 41
ranges 103
vs. updates 159
query language, MongoDB’s 103-119
query criteria and selectors 103-117
arrays 110, 112
Boolean operators 106-107
JavaScript query operators 112-113
matching subdocuments 108-109
miscellaneous query operators 115, 117
querying for an array by size 112
querying for document with specific
key 107-108
ranges 103-104
regular expressions 113, 115
selector matching 103
set operators 104, 106
query options 117, 119
projections 117-118
skip and limit 118
sorting 118
See also queries
query optimization 216, 243
common query patterns and indexes for 243
query patterns 241-243
compound-key indexes and 242
covering indexes and 242-243
single-key indexes and 241-242
slow queries
adding index and retrying 224-227
explain() method 222-224
identifying 217-221
indexed key use 227-230
MongoDB's query optimizer 230-238
query plan cache 240-241
showing query plans 238-240
with compound-key indexes 242
with single-key indexes 242
query optimizer
caching and expiring query plans 240-241
internal 230, 241
running queries in parallel 232
query selectors 33, 103
queryPlanner mode 238
queues, implementing 427

451

http://www.it-ebooks.info/

452 INDEX

R overview 377
setup 300-307
RAM sizing replication oplog 312-313
in-memory databases 12 tagging 330
page size 204 replication 11-12, 296-332
performance issues and 380 drivers and 324-332
range queries, optimizing indexes for 242 connections and failover 324-326
ranges 103-104 read scaling 328-330
rating field 163 tagging 330
ratingSummary variable 127 write concern 327-328
:read parameter 324-325 failure modes it protects against 297
read role 400 importance of 297-298
read scaling 328-330 overview 297-300
readWrite role 400 use cases and limitations 298-300
RecordStore class 291 See also replica sets
recovery, from network partitions 321 -replSet flag 323
$redact operator 122, 135 replSetGetStatus command 320
reduce() function 154 replSetlnitiate command 316
referencing, vs. embedding 421 replset.minvalid 308
$regex operator 114 replSetReconfig command 316
Regex type 116 reshaping documents 140
regular expressions 113-115 arithmetic functions 142
relndex command 216 date functions 142
relndex() method 404 logical functions 143
rejectedPlans list 240 miscellaneous functions 145
relational databases 21 set operators 144
relationships string functions 141
many-to-many 79, 423 REST interface 418
one-to-many 79 rest option 418
structure of 79-80 reviewing update operators 192-193
releases 15, 411 reviews, product 167-168
remove method 38, 57, 189 average review, calculating 126
remove option 189 counting by rating 127
removeshard command 372 revokeRolesFromUser helper 400
$rename operator 182, 193 Riak 19
renameCollection method 88 roles 399
repairDatabase command 404 rollback 314
replacement, modifying document updates rs.add () function 302, 315-316
by 159-162 rs.conf() method 316
replica sets 300-324 rs.help() command 316
administration 314-324 rs.initiate() command 302, 315-316, 345
configuration details 315-320 rs.reconfig() command 316, 321
deployment strategies 322-324 rs.slaveOk () function 306
failover and recovery 321-322 rs.status() command 303-304, 313, 320, 322, 345
replica set status 320 Ruby
and automated failover 12 GridFS in 436-438
authentication 401-402 installing 419
key file authentication 401-402 Ruby driver. See MongoDB Ruby driver
X509 authentication 402 runCommand () method 48-49
commits and rollback 314
connecting to 324 [
halted replication 312
heartbeat and failover 313 —s option 382
how failover works 313 save () method 50, 64

oplog capped collection 307 save_tweets_for method 64

http://www.it-ebooks.info/

scalability, as original design goal 6
scaling 14-15

See also read scaling; sharding
scanAndOrder field 223, 225, 230
scatter/gather queries 355
schema design, principles of 74-75
schema-less model, advantages of 8-9
schemas, variable 23
Scoped JavaScript type 116
score attribute 264
$search parameter 258
secondary indexes 11
secondary setting, MongoDB driver 328

secondaryPreferred setting, MongoDB driver 328

Secure Sockets Layer. See SSL
security 394-402
authentication 397-400
basic, setting up 399-400
removing user 400
service authentication 398
user authentication 398-399
enterprise security features 402
network encryption 395-397
running MongoDB with SSL. 396-397
SSL in clusters 397
replica set authentication 401-402
key file authentication 401-402
X509 authentication 402
secure environments 394-395
sharding authentication 402
SELECT command 123
selectors, query 103-117
arrays 110, 112
Boolean operators 106-107
JavaScript query operators 112-113
matching subdocuments 108-109
miscellaneous query operators 115, 117
querying for an array by size 112
querying for document with specific
key 107-108
ranges 103-104
regular expressions 113, 115
selector matching 103
set operators 104, 106
sequential vs. random writes 13
serialize method 92
serverStatus command 371, 388, 390
service authentication 398
$set operator 159, 163, 180-181, 193
$setDifference function 144
$setEquals function 144
$setIntersection function 144
$setlsSubset function 144
$setOnlnsert operator 182-183, 193
setProfilingLevel command 219

INDEX

$setUnion function 144
sh helper object 346
sh.addShard () command 346
shard clusters
backing up 373
checking chunk distribution 352
failover and recovery of 375
querying and indexing 355, 359
unsharding a collection 373
shard keys, examples of 347
shardcollection command 347
sharding 14, 333, 366-375
across data centers 368
authentication 402
building sample shard cluster 343-355
sharding collections 347-349
starting mongod and mongos servers
343-347
writing to sharded cluster 349-355

checking which collections are sharded 348

choosing shard key 359-365
ideal shard keys 363
imbalanced writes 360-362
inherent design trade-offs 364-365
poor targeting 362-363
unsplittable chunks 362
components of 336-338
Mongos router 338
shards 337-338
storage of metadata 338

distributing data in sharded cluster 339-342

distributing databases to shards 341
methods of 340-341
sharding within collections 341-342
estimating cluster size 369
how it works 342
in production 365-375
deployment 369-370
maintenance 370-375
provisioning 366-369
overview 334-336
problem definition 334
processes required 343
production deployment techniques 375

query types 355

453

querying and indexing shard cluster 355-359

aggregation in sharded cluster 359

explain() tool in sharded cluster 357-359

indexing in sharded cluster 356-357
query routing 355-356
sample deployment topologies 367-368
when to use 335-336
load distribution 335-336
storage distribution 335
shardsvr option 344

http://www.it-ebooks.info/

454

shell. See MongoDB shell
sh.enableSharding() method 347
sh.help() function 346
sh.moveChunk() method 370
shortDescription field 254, 266
sh.shardCollection() method 347
sh.splitAt() method 370
sh.status() method 347, 352-353
sh.stopBalancer() function 374
siblings 101
simple index 198-199
simple key-value stores 19-20
sinatra gem 62
single nodes 377
single point of failure. See SPOF
single-key indexes 201, 241-242
$size operator 110, 112, 145-146
$skip operator 122, 135
skip option 100-101, 118
sku field 77, 208
slaveDelay option 318
slaves collection 327
Sleepycat Software 276
$slice operator 117-118, 183-184, 193
slow queries
adding index and retrying 224-227
explain() method 222-224
identifying 217-221
indexed key use 227-230
MongoDB's query optimizer 230-238
query plan cache 240-241
showing query plans 238-240
slowms flag 218
slug field 80
slugs 78
-smallfiles option 86
snappy compression algorithm 279
snapshotting live systems 393
sophisticated key-value stores 20-21
$sort operator 122, 133, 135, 146, 185, 193, 264
sort option 100-101, 189
sort() function 133
sorting, optimizing indexes for 100, 118,
241-242
sparse indexes 208-209
sparse option 209
speed 12-13
split command 370-371
SPOF (single point of failure) 15
SQL 10, 103
SSL (Secure Sockets Layer) 395
in clusters 397
running MongoDB with 396-397
-sslMode option 396-397
-ssIPEMKeyFile option 396

INDEX

Stack Overflow 27
standard update operators 181-183
state field 111, 429
state machines 172
stateStr field 305
stats() command 47-48, 86, 205, 255
status field 254
stemming 247, 250, 267
Stirman, Kelly 245
stop words 255
storage distribution 335
storage engines. See pluggable storage engines
storage, binary 433-435

storing an MD5 434-435

storing thumbnails 434
StorageEngine class 290
storageSize field 87
$strcasecmp function 141
String (UTF-8) type 116
string functions 141
string values 93
StringlO class 93
subdocuments, matching in queries 108-109
$substr function 141-142
$subtract function 142
$sum function 125, 127, 137
Symbol type 116
symlink (symbolic link) 384
synonym libraries 250
system collections 91-92
system.indexes collection 47, 92, 211
system.namespaces collection 92
system.profile collection 219
system.replset collection 308, 316

T

table scans. See collection scans
tagging replica sets 330
tags field 110
tags option 319
targeted queries 355
targetedCustomers collection 139-140
tcpdump command 395
test database 31
$text operator 115, 258, 264
text search 244-272
aggregation framework text search 263-267
basic 257-259
book catalog data download 253-254
complex 259-261
excluding documents with specific words or
phrases 260
specifications 260-261
costs vs. benefits 251-252

http://www.it-ebooks.info/

text search (continued)
defining indexes 255-257
assigning index name 256-257
indexing all text fields in collection 256-257
text index size 255-256
languages 267-272
available languages 271
specifying in document 269
specifying in index 267-268
specifying in search 269-271
scores 261-263
simple example 252-253
vs. dedicated text search engines 250-253
vs. pattern matching 246-247
vs. web page searches 247-249
textSearchScore 263
this keyword 112, 154
thrashing 204, 406
thread_id field 425
thumbnails, storing 434
thumbnailUrl field 254
Time object 61, 94
time_field 91
Timestamp type 116
title field 254
toArray() method 152
TokuFT key-value store 289
TokuMXse Pluggable Storage API 290
$toLower function 141
to_mongo method 95
tools
command-line tools 18
database drivers 17
JavaScript shell 16-17
tools tag 186
to_s method 434
totalDocsExamined 230, 243
$toUpper function 141-142
transaction logging. See journaling
transactions 429-430
transition_state method 177, 179
trees 423-426
category hierarchy example 163
denormalized ancestor pattern 424
representing threaded comments with 424
troubleshooting, installation problems 416-418
lack of permissions 417
nonexistent data directory 417
unable to bind to port 418
wrong architecture 417
See also performance troubleshooting
ts field 309
TTL (time-to-live) collections 90-91
TweetArchiver class 62
TWEETS constant 66

INDEX

tweets.erb file 67
twitter gem 62
Twitter, storing tweets 23
$type operator 115
types
numeric types 93-94
string values 93
virtual types 95

u

455

Ubuntu 413
ulimit comman 383
unique indexes 207
unique key 348
$unset operator 35, 182, 193
unshardable collections 432
unsplittable chunks 360
$unwind operator 122-123, 129-131, 135
unzip utility 415
update () method 34, 50, 62, 64, 159, 189
update_many method 57
updates
atomicity 190-191
by replacement vs. by operator 162
concurrency 190-191
findAndModify command 188-189
isolation 190-191
MongoDB Ruby driver 57-58
operators 181-188
array update operators 183-187
positional updates 187-188
standard update operators 181-183
performance notes 191-192
types and options 179-181
multidocument updates 180
upserts 180-181
vs. queries 159
See also document updates
upgrading 405
upsert option 189
upsert: true parameter 180
upserts 168, 180-181
use cases and production deployments 22-23
agile development 22-23
analytics and logging 23
caching 23
variable schemas 23
web applications 22
use command 347
user authentication 398-399
user groups, MongoDB 28
user’s manual, MongoDB 27
user_actions collection 89
userAdminAnyDatabase 399

http://www.it-ebooks.info/

456

user_id attribute 81

user_id field 101, 113, 208

username field 33, 117, 342, 356, 362-363
users collection 32, 36, 54, 102, 159, 206-207

Vv

INDEX

WiredTiger 275-278
migrating database to 277-278
MMAPv1 compared with 278-289
benchmark conclusion 288-289
configuration files 279-281
insertion benchmark results 283-284

variable schemas 23
versioning 15, 411
See also releases
versions of MongoDB
version 1.8.x 25
version 2.0.x 25
version 2.2.x 26
version 2.4.x 26
version 2.6.x 26-27
version 3.0.x 27
vertical scaling 14
virtual types 95
votes setting 317
-vvvvv option 387

w

insertion script and benchmark script
281-283
read performance results 286-288
read performance scripts 285-286
switching to 276-277
wiredTiger option, MongoDB configuration
file 277
WiredTigerFactory class 291
WiredTigerKVEngine class 291
WiredTigerRecordStore class 291
wiredtiger-snappy.conf file 280
worker queues 427
working data set 205
write concern 327-328
write speed 12
wtimeout parameter 327

w parameter 327

web applications 3, 22

web console tool 390

web page searches, vs. text search 247-249
$week function 143

weight, for fields 262

wget utility 412

WHERE command 123

$where operator 112, 139

wildcard field name 257

Windows, installing MongoDB on 415-416

X

-x option 390
X509 authentication 402

Y

$year function 133, 143

Y4

Zlib compression algorithm 279

http://www.it-ebooks.info/

DATABASE

MongoDB in AcTION Second Edition

Banker Bakkum e Verch e Garrett « Hawkins

his document-oriented database was built for high avail-
T ability, supports rich, dynamic schemas, and lets you eas-

ily distribute data across multiple servers. MongoDB 3.0
is flexible, scalable, and very fast, even with big data loads.

MongoDB in Action, Second Edition is a completely revised

and updated version. It introduces MongoDB 3.0 and the
document-oriented database model. This perfectly paced book
gives you both the big picture you'll need as a developer and
enough low-level detail to satisfy system engineers. Lots of ex-
amples will help you develop confidence in the crucial area of
data modeling. You'll also love the deep explanations of each
feature, including replication, auto-sharding, and deployment.

What's Inside

e Indexes, queries, and standard DB operations

* Aggregation and text searching

* Map-reduce for custom aggregations and reporting
* Deploying for scale and high availability

e Updated for Mongo 3.0

Written for developers. No previous MongoDB or NoSQL
experience is assumed.

After working at MongoDB, l(yle Banker is now at a startup.
Peter Bakkum is a developer with MongoDB expertise. Shaun
Verch has worked on the core server team at MongoDB. A
Genentech engineer, Doug Garrett is one of the winners of the
MongoDB Innovation Award for Analytics. A software archi-
tect, |im Hawkins has led search engineering at Yahoo Europe.

Technical Contributor: Wouter Thielen
Technical Editor: Mihalis Tsoukalos

To download their free in PDF, ePub, and Kindle formats,
owners of this book should visit
manning.com/books/mongodb-in-action-second-edition

/“ MOANNING $44.99/Can $51.99 [INCLUDING]

et
SEE INS

¢CA thorough manual for
learning, practicing, and
implementing MongoDB.??
—Jeet Marwah, Acer Inc.

¢¢A must-read to properly
use MongoDB and model
your data in the best
possible way.??

—Hernan Garcia, Betterez Inc.

¢ Provides all the necessary
details to get you
jump-started with
MongoDB.??

—Gregor Zurowski, Independent
Software Development Consultant

¢ Awesome!
MongoDB in a nutshell.??

—Hardy Ferentschik, Red Hat

ISBN L3: 978-1-b1729-1k0-9
ISBN L0: L-LEL729-1k0-9

“ ‘ “H““ |‘ Il
9781617291609

http://www.it-ebooks.info/

	Front cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	How to use this book
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online

	about the cover illustration
	Part 1—Getting started
	1 A database for the modern web
	1.1 Built for the internet
	1.2 MongoDB’s key features
	1.2.1 Document data model
	1.2.2 Ad hoc queries
	1.2.3 Indexes
	1.2.4 Replication
	1.2.5 Speed and durability
	1.2.6 Scaling

	1.3 MongoDB’s core server and tools
	1.3.1 Core server
	1.3.2 JavaScript shell
	1.3.3 Database drivers
	1.3.4 Command-line tools

	1.4 Why MongoDB?
	1.4.1 MongoDB versus other databases
	1.4.2 Use cases and production deployments

	1.5 Tips and limitations
	1.6 History of MongoDB
	1.7 Additional resources
	1.8 Summary

	2 MongoDB through the JavaScript shell
	2.1 Diving into the MongoDB shell
	2.1.1 Starting the shell
	2.1.2 Databases, collections, and documents
	2.1.3 Inserts and queries
	2.1.4 Updating documents
	2.1.5 Deleting data
	2.1.6 Other shell features

	2.2 Creating and querying with indexes
	2.2.1 Creating a large collection
	2.2.2 Indexing and explain()

	2.3 Basic administration
	2.3.1 Getting database information
	2.3.2 How commands work

	2.4 Getting help
	2.5 Summary

	3 Writing programs using MongoDB
	3.1 MongoDB through the Ruby lens
	3.1.1 Installing and connecting
	3.1.2 Inserting documents in Ruby
	3.1.3 Queries and cursors
	3.1.4 Updates and deletes
	3.1.5 Database commands

	3.2 How the drivers work
	3.2.1 Object ID generation

	3.3 Building a simple application
	3.3.1 Setting up
	3.3.2 Gathering data
	3.3.3 Viewing the archive

	3.4 Summary

	Part 2—Application development in MongoDB
	4 Document-oriented data
	4.1 Principles of schema design
	4.2 Designing an e-commerce data model
	4.2.1 Schema basics
	4.2.2 Users and orders
	4.2.3 Reviews

	4.3 Nuts and bolts: On databases, collections, and documents
	4.3.1 Databases
	4.3.2 Collections
	4.3.3 Documents and insertion

	4.4 Summary

	5 Constructing queries
	5.1 E-commerce queries
	5.1.1 Products, categories, and reviews
	5.1.2 Users and orders

	5.2 MongoDB’s query language
	5.2.1 Query criteria and selectors
	5.2.2 Query options

	5.3 Summary

	6 Aggregation
	6.1 Aggregation framework overview
	6.2 E-commerce aggregation example
	6.2.1 Products, categories, and reviews
	6.2.2 User and order

	6.3 Aggregation pipeline operators
	6.3.1 $project
	6.3.2 $group
	6.3.3 $match, $sort, $skip, $limit
	6.3.4 $unwind
	6.3.5 $out

	6.4 Reshaping documents
	6.4.1 String functions
	6.4.2 Arithmetic functions
	6.4.3 Date functions
	6.4.4 Logical functions
	6.4.5 Set Operators
	6.4.6 Miscellaneous functions

	6.5 Understanding aggregation pipeline performance
	6.5.1 Aggregation pipeline options
	6.5.2 The aggregation framework’s explain() function
	6.5.3 allowDiskUse option
	6.5.4 Aggregation cursor option

	6.6 Other aggregation capabilities
	6.6.1 .count() and .distinct()
	6.6.2 map-reduce

	6.7 Summary

	7 Updates, atomic operations, and deletes
	7.1 A brief tour of document updates
	7.1.1 Modify by replacement
	7.1.2 Modify by operator
	7.1.3 Both methods compared
	7.1.4 Deciding: replacement vs. operators

	7.2 E-commerce updates
	7.2.1 Products and categories
	7.2.2 Reviews
	7.2.3 Orders

	7.3 Atomic document processing
	7.3.1 Order state transitions
	7.3.2 Inventory management

	7.4 Nuts and bolts: MongoDB updates and deletes
	7.4.1 Update types and options
	7.4.2 Update operators
	7.4.3 The findAndModify command
	7.4.4 Deletes
	7.4.5 Concurrency, atomicity, and isolation
	7.4.6 Update performance notes

	7.5 Reviewing update operators
	7.6 Summary

	Part 3—MongoDB mastery
	8 Indexing and query optimization
	8.1 Indexing theory
	8.1.1 A thought experiment
	8.1.2 Core indexing concepts
	8.1.3 B-trees

	8.2 Indexing in practice
	8.2.1 Index types
	8.2.2 Index administration

	8.3 Query optimization
	8.3.1 Identifying slow queries
	8.3.2 Examining slow queries
	8.3.3 Query patterns

	8.4 Summary

	9 Text search
	9.1 Text searches—not just pattern matching
	9.1.1 Text searches vs. pattern matching
	9.1.2 Text searches vs. web page searches
	9.1.3 MongoDB text search vs. dedicated text search engines

	9.2 Manning book catalog data download
	9.3 Defining text search indexes
	9.3.1 Text index size
	9.3.2 Assigning an index name and indexing all text fields in a collection

	9.4 Basic text search
	9.4.1 More complex searches
	9.4.2 Text search scores
	9.4.3 Sorting results by text search score

	9.5 Aggregation framework text search
	9.5.1 Where’s MongoDB in Action, Second Edition?

	9.6 Text search languages
	9.6.1 Specifying language in the index
	9.6.2 Specifying the language in the document
	9.6.3 Specifying the language in a search
	9.6.4 Available languages

	9.7 Summary

	10 WiredTiger and pluggable storage
	10.1 Pluggable Storage Engine API
	10.1.1 Why use different storages engines?

	10.2 WiredTiger
	10.2.1 Switching to WiredTiger
	10.2.2 Migrating your database to WiredTiger

	10.3 Comparison with MMAPv1
	10.3.1 Configuration files
	10.3.2 Insertion script and benchmark script
	10.3.3 Insertion benchmark results
	10.3.4 Read performance scripts
	10.3.5 Read performance results
	10.3.6 Benchmark conclusion

	10.4 Other examples of pluggable storage engines
	10.5 Advanced topics
	10.5.1 How does a pluggable storage engine work?
	10.5.2 Data structure
	10.5.3 Locking

	10.6 Summary

	11 Replication
	11.1 Replication overview
	11.1.1 Why replication matters
	11.1.2 Replication use cases and limitations

	11.2 Replica sets
	11.2.1 Setup
	11.2.2 How replication works
	11.2.3 Administration

	11.3 Drivers and replication
	11.3.1 Connections and failover
	11.3.2 Write concern
	11.3.3 Read scaling
	11.3.4 Tagging

	11.4 Summary

	12 Scaling your system with sharding
	12.1 Sharding overview
	12.1.1 What is sharding?
	12.1.2 When should you shard?

	12.2 Understanding components of a sharded cluster
	12.2.1 Shards: storage of application data
	12.2.2 Mongos router: router of operations
	12.2.3 Config servers: storage of metadata

	12.3 Distributing data in a sharded cluster
	12.3.1 Ways data can be distributed in a sharded cluster
	12.3.2 Distributing databases to shards
	12.3.3 Sharding within collections

	12.4 Building a sample shard cluster
	12.4.1 Starting the mongod and mongos servers
	12.4.2 Configuring the cluster
	12.4.3 Sharding collections
	12.4.4 Writing to a sharded cluster

	12.5 Querying and indexing a shard cluster
	12.5.1 Query routing
	12.5.2 Indexing in a sharded cluster
	12.5.3 The explain() tool in a sharded cluster
	12.5.4 Aggregation in a sharded cluster

	12.6 Choosing a shard key
	12.6.1 Imbalanced writes (hotspots)
	12.6.2 Unsplittable chunks (coarse granularity)
	12.6.3 Poor targeting (shard key not present in queries)
	12.6.4 Ideal shard keys
	12.6.5 Inherent design trade-offs (email application)

	12.7 Sharding in production
	12.7.1 Provisioning
	12.7.2 Deployment
	12.7.3 Maintenance

	12.8 Summary

	13 Deployment and administration
	13.1 Hardware and provisioning
	13.1.1 Cluster topology
	13.1.2 Deployment environment
	13.1.3 Provisioning

	13.2 Monitoring and diagnostics
	13.2.1 Logging
	13.2.2 MongoDB diagnostic commands
	13.2.3 MongoDB diagnostic tools
	13.2.4 MongoDB Monitoring Service
	13.2.5 External monitoring applications

	13.3 Backups
	13.3.1 mongodump and mongorestore
	13.3.2 Data file–based backups
	13.3.3 MMS backups

	13.4 Security
	13.4.1 Secure environments
	13.4.2 Network encryption
	13.4.3 Authentication
	13.4.4 Replica set authentication
	13.4.5 Sharding authentication
	13.4.6 Enterprise security features

	13.5 Administrative tasks
	13.5.1 Data imports and exports
	13.5.2 Compaction and repair
	13.5.3 Upgrading

	13.6 Performance troubleshooting
	13.6.1 Working set
	13.6.2 Performance cliff
	13.6.3 Query interactions
	13.6.4 Seek professional assistance

	13.7 Deployment checklist
	13.8 Summary

	Appendix A—Installation
	A.1 Installation
	A.1.1 Production deployments
	A.1.2 32-bit vs. 64-bit

	A.2 MongoDB on Linux
	A.2.1 Installing with precompiled binaries
	A.2.2 Using a package manager

	A.3 MongoDB on Mac OS X
	A.3.1 Precompiled binaries
	A.3.2 Using a package manager

	A.4 MongoDB on Windows
	A.4.1 Precompiled binaries

	A.5 Compiling MongoDB from source
	A.6 Troubleshooting
	A.6.1 Wrong architecture
	A.6.2 Nonexistent data directory
	A.6.3 Lack of permissions
	A.6.4 Unable to bind to port

	A.7 Basic configuration options
	A.8 Installing Ruby
	A.8.1 Linux and Mac OS X
	A.8.2 Windows

	Appendix B—Design patterns
	B.1 Embed vs. reference
	B.2 One-to-many
	B.3 Many-to-many
	B.4 Trees
	B.5 Worker queues
	B.6 Dynamic attributes
	B.7 Transactions
	B.8 Locality and precomputation
	B.9 Antipatterns
	B.9.1 Careless indexing
	B.9.2 Motley types
	B.9.3 Bucket collections
	B.9.4 Large, deeply nested documents
	B.9.5 One collection per user
	B.9.6 Unshardable collections

	Appendix C—Binary data and GridFS
	C.1 Simple binary storage
	C.1.1 Storing a thumbnail
	C.1.2 Storing an MD5

	C.2 GridFS
	C.2.1 GridFS in Ruby
	C.2.2 GridFS with mongofiles

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

