

Lección 4

OLEADAS DE LA IA

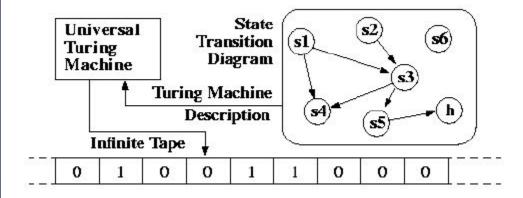
Oleadas de la Inteligencia Artificial

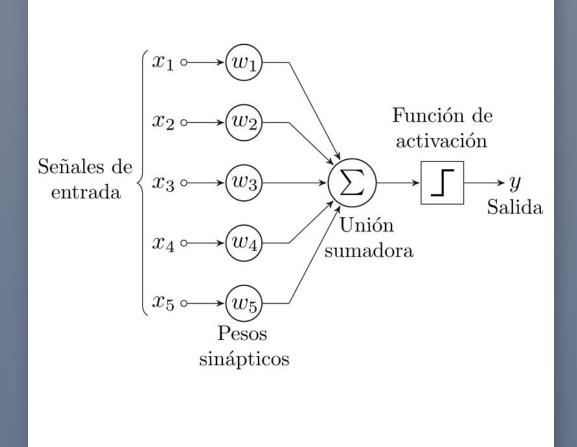
En el actual recurso se explorarán las diferentes oleadas que han caracterizado el desarrollo de la IA, incluyendo enfoques y paradigmas distintivos en cada fase.

También se destacará la evolución desde sistemas basados en reglas hasta modelos de aprendizaje automático.




- * Exploración de la cibernética como un campo interdisciplinario que influyó en la concepción de la inteligencia artificial.
- * Destacar las contribuciones de Norbert Wiener y otros pioneros de la cibernética.




- * Exploración de la cibernética como un campo interdisciplinario que influyó en la concepción de la inteligencia artificial.
- * Destacar las contribuciones de Norbert Wiener y otros pioneros de la cibernética.

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

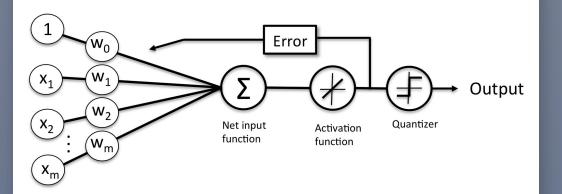
Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

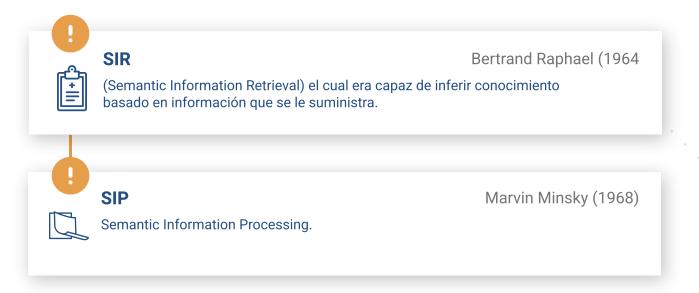
Oliver Selfridge



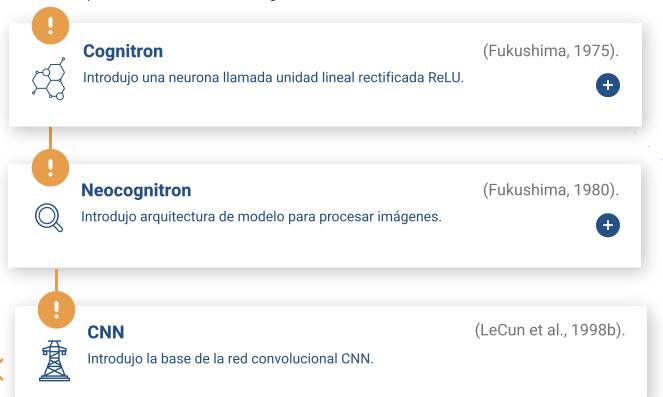
Nathaniel Rochester

Trenchard More

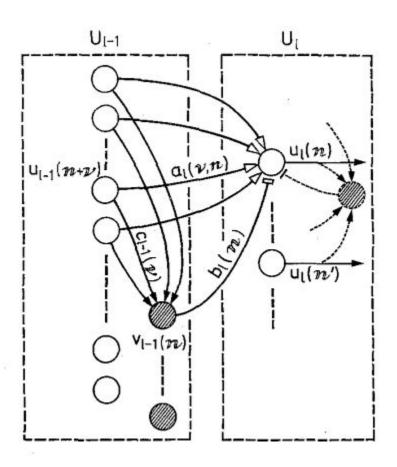
- * Exploración de la cibernética como un campo interdisciplinario que influyó en la concepción de la inteligencia artificial.
- * Destacar las contribuciones de Norbert Wiener y otros pioneros de la cibernética.

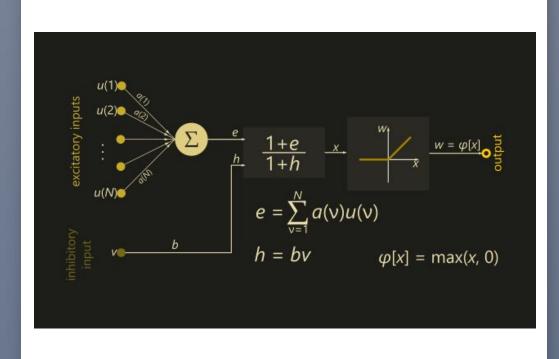


- * Exploración de la cibernética como un campo interdisciplinario que influyó en la concepción de la inteligencia artificial.
- * Destacar las contribuciones de Norbert Wiener y otros pioneros de la cibernética.


Ola 2 de 1980's y 1990's conocido como:

CONEXIONISMO


- * Profundización en el paradigma del conexionismo y su enfoque en la simulación de redes neuronales artificiales.
- * Ejemplos de aplicaciones prácticas del conexionismo en el desarrollo de sistemas inteligentes.
- * Varias unidades computacionales se vuelven inteligentes a través de sus interacciones mutuas.



Ola 2 de 1980's y 1990's conocido como:

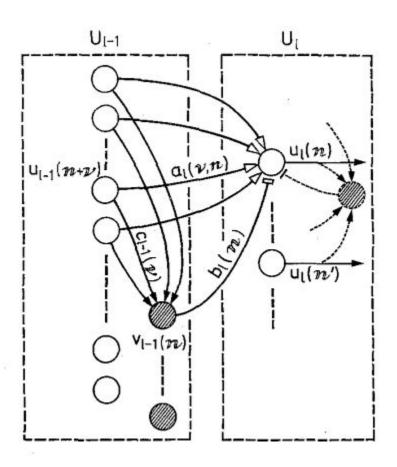
CONEXIONISMO

- * Ejemplos de aplicaciones prácticas del conexionismo en el desarrollo de sistemas inteligentes.
- * Varias unidades computacionales se vuelven inteligentes a través de sus interacciones mutuas.

Algoritmo hacia atrás

(Rumelhart et al., 1986a; LeCun, 1987)

Popularizaron el algoritmo de propagación hacia atrás. Enfoque dominante para entrenar modelos profundos a pesar de los altibajos.



Decaimiento y Ola 3, a partir de 2006 resurgió el:

APRENDIZAJE PROFUNDO

- * Análisis del ciclo de decaimiento y resurgimiento de las redes neuronales, explorando las razones detrás de cada fase.
- * Destacar los avances tecnológicos y teóricos que llevaron al resurgimiento de las redes neuronales en la actualidad.

Redes neuronales

(LeCun et al., 1998b; Bengio et al., 2001)

Desde otras metodologías, las redes neuronales obtuvieron rendimientos impresionantes en algunas tareas

NCAP

(CIFAR)

Canadian Institute for Advanced Research (CIFAR), mantuvo viva la investigación de redes neuronales a través de Neural Computation and Adaptive Perception (NCAP) reuniendo grupos de investigación en ML liderados por:

(Hinton et al. 2006)

Mostró que un tipo de red neuronal llamada Deep Belief Network podría ser entrenada de manera eficiente mediante una estrategia llamada Greedy Layer-wise Pretraintng.

(Bengio et al., 2007; Ranzato et al., 20074)

profundas.

Mostraron que la misma estrategia podría usarse para entrenar otros tipos de redes

Decaimiento y Ola 3, a partir de 2006 resurgió el:

×

APRENDIZAJE PROFUNDO

- * Análisis del ciclo de decaimiento y resurgimiento de las redes neuronales, explorando las razones detrás de cada fase.
- * Destacar los avances tecnológicos y teóricos que llevaron al resurgimiento de las redes neuronales en la actualidad.

Deep Learning

Actualidad

* Esta ola de investigación de redes neuronales popularizó el uso del término "Deep Learning"

- * Ahora las redes neuronales profundas superaron a sistemas de Al basados en otras tecnologías de ML.
- * DL ha tenido éxito en diversas aplicaciones desde los 90's, pero se consideraba más un arte que una tecnología y algo que solo un experto podría usar.

TALENTO AZ PROYECTOS EDUCATIVOS

