

Lección 4

REDES CON MÚLTIPLES CAPAS OCULTAS

Redes con Múltiples Capas Ocultas

Las redes con múltiples capas ocultas son una extensión del Perceptrón Multicapa (MLP), que incorpora más de una capa oculta en la arquitectura. La adición de múltiples capas ocultas ofrece varias ventajas, permitiendo una representación más profunda y compleja de los datos.

También conocidas como redes de feedforward o perceptrones multicapa (MLP).

Modela una salida y en función a los datos de entrada x:

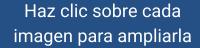
$$y = f^*(x)$$

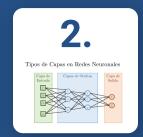
El modelos aprende un conjunto de parámetros $\boldsymbol{\theta}$:

$$\mathbf{y} = f(\mathbf{x}; \boldsymbol{\theta})$$

Las NNs están compuestos de funciones en cadena

$$f(x) = f^{(3)} \left(f^{(2)} \left(f^{(1)}(x) \right) \right)$$


$$x \Longrightarrow f(1) \Longrightarrow f(2) \Longrightarrow y$$



Redes con Múltiples Capas Ocultas

En una red con múltiples capas ocultas, además de la capa de entrada y la capa de salida, se incluyen dos o más capas ocultas entre ellas.

Cada capa oculta realiza transformaciones no lineales de las características aprendidas en la capa anterior.

Capa de Salida Softmax

Unidades Softmax

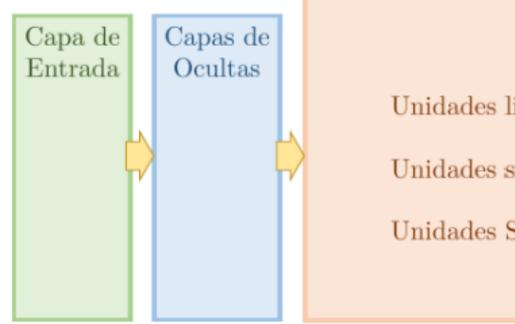
(Distribuciones de Salida Multinoulli)

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}.$$

Capa de Salida sigmoidal

Unidades sigmoidales (distribuciones de salida de Bernoulli)

$$P(y = 1 \mid \boldsymbol{x}) = \max \left\{ 0, \min \left\{ 1, \boldsymbol{w}^{\top} \boldsymbol{h} + b \right\} \right\}$$


Capa de Salida lineal

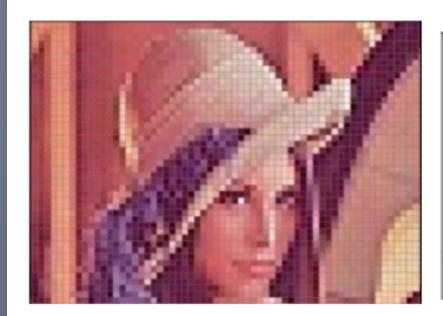
Unidades lineales (distribuciones de salida gaussianas)

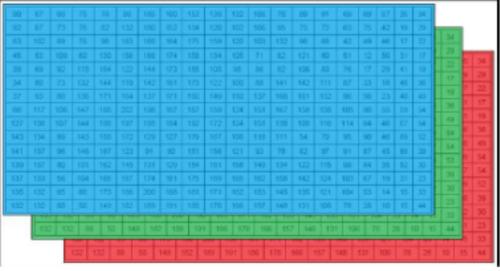
$$p(\boldsymbol{y} \mid \boldsymbol{x}) = \mathcal{N}(\boldsymbol{y}; \hat{\boldsymbol{y}}, \boldsymbol{I})$$

Capa de Salida

La elección de la función de costo está unida a la elección de la unidad de salida.

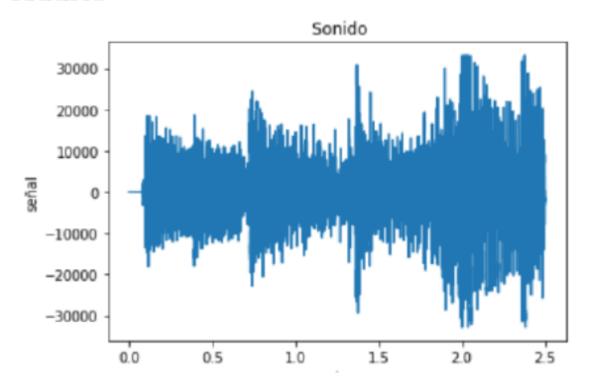
Capa de Salida


Unidades lineales


Unidades sigmoidales

Unidades Softmax

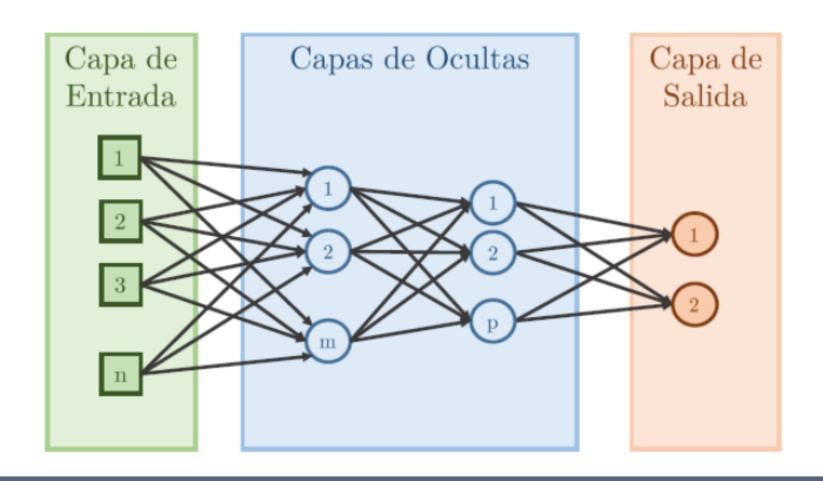
Pixeles de imágenes



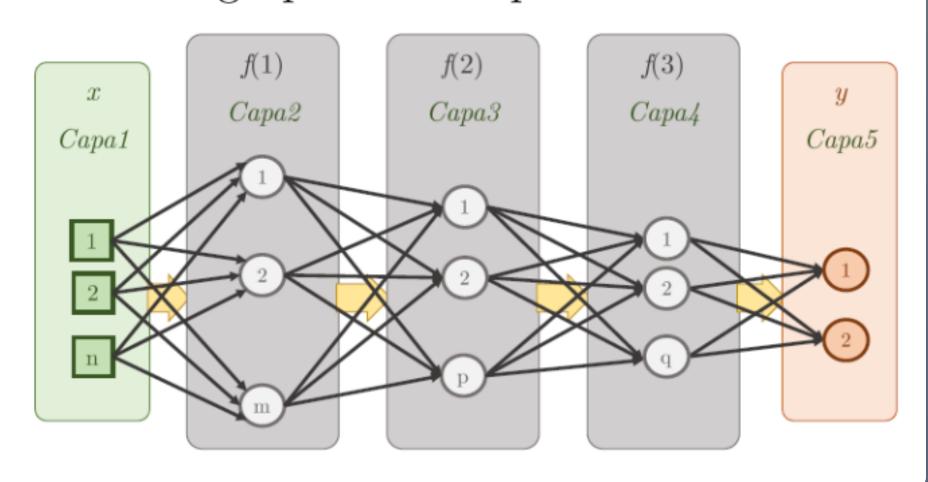
Pixeles de imágenes (Grises)

90	67	68	75	78	98	185	180	153	139	132	106	70	80	81	69	69	67	35	34
92	97	73	78	02	132	100	162	134	120	102	106	96	76	72	63	79	42	19	29
63	102	89	76	90	163	166	164	175	159	120	103	132	96	68	42	49	46	17	22
45	83	109	80	130	158	166	174	158	134	105	71	82	121	80	51	12	50	31	17
39	69	92	115	154	122	144	173	155	105	98	86	82	106	83	76	17	29	41	19
34	80	73	132	144	110	142	181	173	122	100	88	141	142	111	87	33	18	46	38
37	93	88	136	171	164	137	171	190	149	110	137	168	161	132	96	58	23	48	49
66	117	106	147	188	202	198	187	187	159	124	151	167	158	138	105	80	55	59	54
127	138	107	144	188	197	188	184	192	172	124	151	138	108	116	114	84	46	67	54
143	134	99	143	188	172	129	127	179	167	106	118	111	54	70	95	90	46	69	52
141	137	96	146	167	123	91	90	151	196	121	93	78	82	97	91	87	45	66	39
139	137	80	131	162	145	131	129	154	191	198	149	134	122	115	99	84	36	52	30
137	133	50	104	163	167	174	101	175	109	105	162	158	142	124	103	67	19	31	23
135	132	65	85	173	106	200	195	101	171	162	153	145	135	121	104	53	14	15	33
132	132	88	50	149	182	189	191	186	178	166	157	148	131	106	78	28	10	15	44

Audios



Características tabuladas


LS	A S	L P	ΑP	Especie
4.3	3.0	1.1	0.1	I Setosa
5.1	3.5	1.4	0.2	I Setosa
5.6	3.0	4.5	1.5	I Versicolor
6.1	2.9	4.7	1.4	I Versicolor
6.5	3.2	5.1	2.0	I Virginica
6.0	2.2	5.0	1.5	I Virginica

Capa de Entrada Capas de Capa de Salida Ocultas Características tabuladas Pixeles de imágenes Videos Audios

Tipos de Capas en Redes Neuronales

Neuronas agrupadas en capas

Arquitecturas Populares

ResNet (Redes Residuales): introduce conexiones de salto para abordar el problema del desvanecimiento/exploración del gradiente.

Redes Neuronales Convolucionales (CNN) profundas: utilizadas en tareas de visión por computadora.

Consideraciones

La elección de la profundidad debe equilibrarse con la complejidad del problema y la cantidad de datos disponibles para el entrenamiento.

Las redes con múltiples capas ocultas han demostrado ser fundamentales para el éxito de muchas aplicaciones de aprendizaje profundo, proporcionando una herramienta flexible y poderosa para la representación y extracción de características en datos complejos.

TALENTO AZ PROYECTOS EDUCATIVOS

