
Unidad 1

Optimization and SecurityOptimization and Security
in Smart Contracts.in Smart Contracts.

LECCIÓN 2LECCIÓN 2

7.Before the reading activity, explain the
inference reading comprehension.

Inference reading comprehension involves drawing logical
conclusions or making educated guesses based on information
provided in a text, even when the information is not explicitly stated.
It requires readers to use their background knowledge, contextual
clues, and reasoning skills to infer meanings, relationships, or details
that may be implied rather than directly expressed in the text.

This reading comprehension skill goes beyond understanding the
literal meaning of the words and sentences. Instead, it involves
making connections between what is stated explicitly and what can
be logically inferred from the information presented. Inferences often
require readers to consider the author's intentions, the context of the
text, and the relationships between different pieces of information

Effective inference reading comprehension allows readers to grasp
the deeper meaning of a text, fill in gaps in information, and
understand the implications of what is being communicated. It is a
critical skill for comprehending complex texts, making predictions,
and engaging with written material in a more nuanced and insightful
manner.

8. Socialize key words about "Smart
Contracts Redefined: Innovations in

Blockchain Technology"

1. Smart Contracts: Self-
executing contracts with terms
directly written into code,
operating autonomously on
blockchain networks.

2. Decentralized Autonomous
Organizations (DAOs):
Organizations governed by code,
enabling decentralized decision-
making and resource allocation
through smart contracts.

7. Use Cases in Finance:
Application of smart contracts in
decentralized finance (DeFi),
automating financial services
like lending, borrowing, and
trading.

9. Real Estate and Property
Transactions: Streamlining and
securing property transactions
through smart contracts,
automating the transfer of
ownership with predefined
conditions.

3. Interoperability: The
capability of smart contracts to
operate seamlessly across
different blockchain networks,
enhancing collaboration and
connectivity.

4. Blockchain: A decentralized
and distributed ledger
technology that underpins
cryptocurrencies, ensuring
transparency and immutability in
transactions.

5. Programmable Money: The
concept within smart contracts
where regulations dictating the
flow and utilization of funds are
integrated directly into the
contract code.

6. Security Considerations:
Critical aspects ensuring the
secure functioning of smart
contracts, involving robust code,
secure infrastructure, and
regular audits.

8. Supply Chain Management:
Utilization of smart contracts to
enhance transparency and
traceability in supply chains by
automating and validating
transactions.

10. Scalability Issues:
Challenges faced by smart
contracts in managing a
substantial volume of
transactions concurrently, with
ongoing exploration for solutions
like layer 2 scaling strategies.

Smart Contracts Redefined: Innovations in
Blockchain Technology

Smart contracts represent a groundbreaking advancement in the
realm of blockchain technology, revolutionizing the way agreements
are executed in a secure, transparent, and decentralized manner. At
their core, smart contracts are self-executing contracts with the
terms of the agreement directly written into code. This eliminates the
need for intermediaries, such as banks or legal entities, streamlining
processes and reducing the risk of fraud.

ISmart contracts operate on the principles of autonomy, efficiency,
and trust. They automatically enforce and execute the terms of an
agreement when predefined conditions are met, ensuring a tamper-
proof and reliable execution of transactions.

Utilizing blockchain’s distributed ledger technology, smart contract
development services are stored across a network of nodes,
enhancing transparency and minimizing the risk of manipulation.
This autonomy and transparency make smart contracts particularly
well-suited for a myriad of applications, from financial transactions
to supply chain management.

9. Reading comprehension #2: "Smart
Contracts Redefined: Innovations in

Blockchain Technology"

Introduction

Smart Contracts Redefined: Innovations in
Blockchain Technology

Overview of Smart Contracts

Evolution of Smart Contracts in Blockchain
The evolution of smart contract development services can be traced
back to the inception of blockchain technology with Bitcoin.
However, it was the introduction of Ethereum in 2015 that truly
propelled the development and widespread adoption of smart
contract development services.

Ethereum’s blockchain development services provide a
programmable platform, allowing developers to create decentralized
applications (DApps) and smart contracts using its native scripting
language, Solidity.

Since then, various blockchain platforms have emerged, each
enhancing the capabilities and features of smart contracts,
contributing to their evolution, and expanding their potential
applications beyond simple financial transactions. As technology
continues to mature, Smart Contract Development Company are
poised to play a pivotal role in reshaping traditional business
processes across diverse industries.

Smart contracts function as automated programs within blockchain
networks, eradicating the need for intermediaries by autonomously
executing pre-established terms and conditions. Composed in
computer languages, frequently employing languages such as
Solidity for Ethereum, these programs reside on decentralized and
distributed ledgers.

The primary objective of a smart contract is to optimize,
authenticate, or enforce the negotiation and fulfillment of a contract,
ultimately elevating efficiency, transparency, and trustworthiness
across diverse processes.

Foundations of Smart Contracts
What Are Smart Contracts?

How Smart Contracts Work
Smart contracts function based on conditional logic, operating on the
principle of “if-then” statements. When specific predefined
conditions are satisfied, the contract automatically initiates the
designated actions.

This automated process is facilitated by the decentralized structure
of blockchain development services, where the contract code is
dispersed across numerous nodes, ensuring both transparency and
security.

External events or transactions that meet the criteria set by the
contract trigger the execution of Smart Contract Development
Company, with the outcomes recorded on the blockchain
development for verification by all participants.

The adoption of smart contracts comes with a range of benefits.
Automation reduces the need for intermediaries, cutting costs and
expediting processes. The decentralized and transparent nature of
blockchain ensures security and trust, as all participants can
independently verify the contract’s execution. Additionally, Smart
Contract Development Company are highly versatile, finding
applications in various industries beyond finance, such as supply
chain management and legal agreements.

Benefits and Challenges

Blockchain Technology Overview

Blockchain development services is a decentralized and distributed
ledger technology that underpins various cryptocurrencies and has
found extensive applications beyond digital currencies. At its core, a
blockchain consists of a chain of blocks, each containing a list of
transactions. These blocks are linked together using cryptographic
hashes, forming a secure and tamper-resistant chain. The
decentralized nature of blockchain development company means
that copies of the entire ledger are maintained across a network of
nodes, ensuring transparency and immutability.

Basics of Blockchain

Role of Blockchain in Smart Contracts
Blockchain assumes a crucial role in enabling and elevating the
capabilities of smart contract development company India. The
decentralized and transparent characteristics inherent in blockchain
establish a secure foundation for executing smart contract
development company India.

Through a distributed ledger system, the terms and conditions of
smart contracts are documented and authenticated by numerous
participants, mitigating the potential risks associated with fraud or
manipulation. Moreover, integrating blockchain into smart contracts
instills a heightened sense of trust and efficiency, given that contract
execution becomes automated and verifiable by all pertinent parties
involved in the process.

Numerous blockchain platforms have surfaced, each distinguished
by its unique features and applications. Ethereum, a trailblazer in
supporting smart contract development company India, serves as a
decentralized arena for developers to construct and launch
decentralized applications (DApps).

Alternatives like Binance Smart Chain, Polkadot, and Cardano
present diverse options, featuring distinct consensus mechanisms,
scalability solutions, and interoperability features. These platforms
contribute significantly to the expanding ecosystem of blockchain
technology, meeting a spectrum of needs across various industries,
encompassing finance, supply chain, healthcare, and beyond.

As the landscape of blockchain technology undergoes continuous
evolution, these platforms are poised to play a pivotal role in shaping
the trajectory of decentralized applications and smart contract
development company India.

Popular Blockchain Platforms

Building Tomorrow: Exploring Blockchain
Development Platforms
Introduction Brief overview of the role of blockchain development
platforms Blockchain development platforms play a…
www.linkedin.com

One of the primary innovations in smart contract development lies in
its self-executing nature. These contracts are designed to
automatically enforce the terms and conditions encoded within their
code. When predefined conditions are met, the contract executes the
specified actions without the need for intermediaries or manual
intervention.

This automation not only streamlines processes but also enhances
the efficiency and reliability of contract execution. Self-executing
contracts reduce the risk of errors and fraud, providing a secure and
tamper-resistant way to facilitate various transactions and
agreements.

Self-executing Contracts

Programmable Money

Innovations in Smart Contracts

smart contract development introduce the concept of programmable
currency, wherein the regulations dictating the flow and utilization of
funds are integrated directly into the contract code. This innovation
heralds a heightened degree of financial automation and
adaptability.

For instance, smart contract development can automate payment
distribution, enforce regulations for crowdfunding initiatives, or
facilitate intricate financial agreements, all without relying on
conventional intermediaries. Programmable money expands the
horizons, enabling the creation of dynamic and customizable
financial instruments that can adjust to specific conditions and
criteria.

Decentralized Autonomous Organizations
(DAOs)
IDecentralized Autonomous Organizations (DAOs) represent a
groundbreaking innovation facilitated by smart contract
development. DAOs are organizations governed by code, where the
rules for decision-making and resource allocation are encoded in
smart contracts.

Participants in a DAO have voting rights proportional to their
contributions, and decisions are executed automatically based on the
consensus reached through smart contract development. DAOs
provide a decentralized and transparent framework for collaborative
decision-making, funding allocation, and project governance,
eliminating the need for centralized authorities.

Interoperability and Cross-Chain Contracts
Interoperability has become a key focus in the evolution of smart
contract development. Innovations in this area involve enabling
smart contracts to operate seamlessly across different blockchain
networks. Cross-chain contracts, facilitated by protocols like
Polkadot and Cosmos, allow smart contracts to interact with assets
and data on disparate blockchains.

This advancement opens the door to a more interconnected and
collaborative blockchain ecosystem. Interoperability not only
enhances the flexibility of smart contracts but also promotes a more
inclusive and interconnected blockchain landscape, where assets
and information can flow seamlessly across different blockchain
networks.

Security is paramount in the realm of smart contracts, given their
automated and irreversible nature. Several factors contribute to the
security of smart contracts. The programming code must be robust
and free from vulnerabilities to prevent potential exploits.
Additionally, the infrastructure supporting the smart contract,
including the underlying blockchain network, must be secure.
Ensuring secure key management, employing secure development
practices, and regularly auditing the smart contract’s code are crucial
aspects of enhancing security.

Common Smart Contract Vulnerabilities

Trustless Execution and Auditing

Despite their potential, smart contract development is susceptible to
various vulnerabilities. Common issues include reentrancy attacks,
where an external contract manipulates the flow of execution, and
arithmetic overflow/underflow, leading to unintended consequences.
Inadequate input validation and insecure random number generation
are other vulnerabilities that can be exploited. Smart contract
developers must be vigilant in addressing these issues during the
coding phase and conduct thorough testing to identify and rectify
vulnerabilities before deployment.

Security and Trust in Smart Contracts
Security Considerations

Trustless execution is a key feature of blockchain smart contract
development meaning that participants can engage in transactions
without relying on trust in a centralized authority. The transparent
and decentralized nature of blockchain ensures that the execution of
smart contracts is open to scrutiny by all participants, fostering trust
in the system. However, achieving true trustlessness requires careful
consideration of security measures and regular audits.

Blockchain smart contract development has found extensive
applications in the financial sector, revolutionizing traditional
processes. In decentralized finance (DeFi), smart contracts automate
various financial services, including lending, borrowing, and trading.
For example, decentralized lending platforms utilize smart contracts
to facilitate peer-to-peer lending without the need for intermediaries
like banks.

Smart contracts also enable the creation of financial instruments
such as decentralized autonomous organizations (DAOs), which
manage funds and make decisions through programmable rules
encoded in blockchain smart contract development. This not only
enhances efficiency but also reduces the costs associated with
traditional financial transactions.

Supply Chain Management

Real Estate and Property Transactions
In the real estate industry, smart contracts streamline and secure
property transactions. Blockchain smart contract development can
automate the transfer of property ownership, ensuring that all
conditions (such as payment and verification) are met before the
transfer is executed.

Use Cases and Applications
Smart Contracts in Finance

Supply chain management is another domain where smart contracts
are making a significant impact. Smart contracts enhance
transparency and traceability in supply chains by automating and
validating transactions at each stage.

For instance, smart contracts can automatically trigger payments
when goods are delivered, ensuring that payment is made only after
fulfilling predefined conditions. This reduces the risk of fraud,
minimizes delays, and establishes a more reliable and efficient
supply chain.

This reduces the need for intermediaries like title companies and
expedites the often complex process of buying and selling real
estate. The transparency and immutability of blockchain ensure a
trustworthy and auditable record of property transactions.

Healthcare and Identity Management
Smart contracts play a crucial role in healthcare, particularly in the
management of patient data and identity. Patient records stored on a
blockchain can be accessed securely through blockchain smart
contract development, ensuring data integrity and privacy.

Access to medical records can be granted or revoked based on
predefined conditions, giving patients greater control over their
health information. Moreover, smart contracts in identity
management can streamline processes such as identity verification
for healthcare services, making them more efficient and secure.

Secure Healthcare Data with Blockchain

Elevate Data Security in Healthcare with Our Expert Blockchain
Solutions. Discover More Today!
comfygen112.hashnode.dev

Challenges and Future Directions
Scalability Issues
The extensive adoption of smart contract company faces a notable
hurdle in the form of scalability. As blockchain networks expand, the
ability to manage a substantial volume of transactions concurrently
becomes imperative. Existing scalability constraints may lead to
delayed transaction processing times and increased fees.

To mitigate these challenges and bolster the efficiency of smart
contract platforms, ongoing exploration is focused on potential
solutions, including layer 2 scaling strategies and advancements in
consensus mechanisms. These endeavors aim to overcome
scalability issues, ensuring a more seamless and cost-effective
operation of smart contract platforms as they evolve.

Legal and Regulatory Challenges
The legal and regulatory landscape surrounding smart contracts is
still evolving, presenting challenges to their broader acceptance.
Questions regarding the enforceability of smart contracts in
traditional legal systems and the jurisdictional aspects of blockchain
transactions are areas that need clarity.

Regulatory frameworks need to adapt to accommodate the unique
characteristics of smart contracts while providing legal certainty and
consumer protection. Collaborative efforts between the technology
sector and regulatory bodies are essential to establish a balanced
and supportive legal framework.

Future Developments in Smart Contracts
The future of smart contract company holds exciting possibilities.
Interoperability between different blockchain networks is likely to
improve, allowing for seamless communication between smart
contracts on various platforms.

Advances in privacy features, such as zero-knowledge proofs, may
enhance the confidentiality of smart contract transactions without
compromising transparency. Additionally, improvements in user
interfaces and developer tools will contribute to a more user-friendly
experience, encouraging broader adoption.

Mastering the Code: A Deep Dive into Blockchain Smart Contracts
Dive deep into the world of Blockchain Smart Contracts. Learn the
ropes, make them work for you. A comprehensive guide…
comfygen112.hashnode.dev

Case Studies

The legal and regulatory landscape surrounding smart contracts is
still evolving, presenting challenges to their broader acceptance.
Questions regarding the enforceability of smart contracts in
traditional legal systems and the jurisdictional aspects of blockchain
transactions are areas that need clarity.

Regulatory frameworks need to adapt to accommodate the unique
characteristics of smart contracts while providing legal certainty and
consumer protection. Collaborative efforts between the technology
sector and regulatory bodies are essential to establish a balanced
and supportive legal framework.

Read Also

Creating Your Own DApp with Ethereum Smart Contract
Development: A Step-by-Step Guide!

Ethereum and the Rise of Smart Contracts

Binance Smart Chain: A New Approach
Binance Smart Chain (BSC) emerged as a new player in the
blockchain space, offering an alternative approach to smart
contracts. Launched by the cryptocurrency exchange Binance, BSC
prioritizes high performance and low transaction fees. Its
compatibility with the Ethereum Virtual Machine (EVM) allows
developers to easily port Ethereum-based applications to BSC,
fostering interoperability.

BSC’s rapid rise underscores the diverse strategies employed in the
blockchain ecosystem and the ongoing evolution of smart contract
platforms. The case of Binance Smart Chain highlights the industry’s
responsiveness to addressing scalability and cost concerns,
providing users with alternative platforms for smart contract
execution.

Create Your Unique BEP20 Token on Binance Smart Chain
Create a unique and catchy BEP20 token on Binance Smart Chain
with the help of our expert developers. Our comprehensive…
www.comfygen.com

Implementing Smart Contracts

Smart contract development involves a set of tools tailored to
streamline the creation process. Developers commonly utilize
integrated development environments (IDEs) such as Remix and
Truffle. Remix, a web-based IDE, simplifies smart contract
development by offering features like real-time code compilation and
debugging.

Truffle, on the other hand, provides a development framework with
built-in testing and deployment functionalities. These tools empower
developers to efficiently code, test, and deploy smart contracts by
offering a conducive environment and essential utilities.

Smart Contract Development Tools

The coding of smart contracts is typically done using specific
programming languages supported by blockchain platforms. For
instance, Solidity is the language predominantly used for Ethereum
smart contracts. Developers define the contract’s logic and
conditions within the code, specifying how the contract should be
executed under different circumstances.

Coding Smart Contracts

Proper coding practices are
crucial to avoiding vulnerabilities
and ensuring the secure
functioning of smart contracts.
Developers need to consider
factors like input validation, gas
optimization, and adherence to
best practices during the coding
phase.

Testing and Deployment

Conclusion

Testing is a critical phase in the smart contract development
lifecycle. Tools like Ganache and Remix offer testing environments
where developers can simulate blockchain conditions and evaluate
how their smart contracts perform. Comprehensive testing helps
identify and address potential vulnerabilities, ensuring the security
and reliability of the contract.

Once thoroughly tested, smart contracts are deployed to the
blockchain network. Ethereum, for example, provides a
straightforward deployment process using tools like Remix or Truffle.
The deployment phase involves submitting the contract code to the
blockchain, creating a new instance of the contract, and making it
accessible for interaction.

The redefinition of smart contracts through innovations in blockchain
technology marks a transformative era in digital agreements. From
Ethereum’s pioneering role in popularizing smart contracts to the
dynamic approach of platforms like Binance Smart Chain, these
innovations showcase the versatility and potential of decentralized
automation.

Overcoming challenges such as scalability and regulatory
uncertainties remains pivotal, while ongoing advancements promise
a future where smart contracts seamlessly integrate with emerging
technologies. As this evolution continues, smart contracts stand
poised to revolutionize industries, providing secure, efficient, and
trustless solutions to redefine the way transactions and agreements
unfold in the digital age.

Taken from: https://medium.com/@comfygenpvt/smart-contracts-
redefined-innovations-in-blockchain-technology-
2cd7b498a9b5#:~:text=Smart%20contracts%20represent%20a%20gr
oundbreaking,agreement%20directly%20written%20into%20code.

https://medium.com/@comfygenpvt/smart-contracts-redefined-innovations-in-blockchain-technology-2cd7b498a9b5#:~:text=Smart%20contracts%20represent%20a%20groundbreaking,agreement%20directly%20written%20into%20code
https://medium.com/@comfygenpvt/smart-contracts-redefined-innovations-in-blockchain-technology-2cd7b498a9b5#:~:text=Smart%20contracts%20represent%20a%20groundbreaking,agreement%20directly%20written%20into%20code
https://medium.com/@comfygenpvt/smart-contracts-redefined-innovations-in-blockchain-technology-2cd7b498a9b5#:~:text=Smart%20contracts%20represent%20a%20groundbreaking,agreement%20directly%20written%20into%20code
https://medium.com/@comfygenpvt/smart-contracts-redefined-innovations-in-blockchain-technology-2cd7b498a9b5#:~:text=Smart%20contracts%20represent%20a%20groundbreaking,agreement%20directly%20written%20into%20code

10. Inference multiple choice
activity.

11. Socialize key words about "How to
develop secure and optimized blockchain

smart contracts?"

Cuestionario Online

1. Smart Contract Testing:
Automated verification to ensure
proper smart contract
functionality, detect security
gaps, and identify irregularities in
early development.

2. Tool Configuration: Set up
tools like solidity-coverage and
slither to measure code quality,
perform static analysis, and
enhance security in blockchain
software.

3. Open Zeppelin Library:
Trusted collection of secure
smart contracts, used in DeFi
protocols, providing
implementations for ERC
standards and access control
extensions.

4. Solidity Language Versions:
Use the latest Solidity language
versions for access to new
features, bug fixes, and security
updates, enhancing overall
smart contract safety.

5. Learning from Mistakes: Gain
security insights by studying
real-world smart contract
vulnerabilities, understanding
past developer mistakes, and
learning from documented cases
for improved coding practices.

12. Reading comprehension #3: "How to
develop secure and optimized blockchain

smart contracts?"

How to develop secure and optimized blockchain smart contracts? –
5 rules | Nextrope Academy

How to develop secure and optimized
blockchain smart contracts? – 5 rules |

Nextrope Academy

Table of contents

Why is the security of smart contracts important?

1. Accurate testing of smart contracts
2. Configuration of additional tools
3. Openzeppelin smart contract library
4. Using new versions of the Solidity language
5. Learning from other people's mistakes

Summary

Why is the security of smart contracts important?

Smart contracts are a major part of applications based on blockchain
technology. In the development process of smart contracts, we
should maintain the highest security standards because of factors
such as:

In many systems, they are responsible for the most critical
functionality, the incorrect operation of which can be associated with
a number of very unpleasant consequences, including irreversible
loss of funds, a logical error ruining the operation of the entire
application/protocol,a smart contract that has already been
published on the web cannot be modified.

This feature means that bugs and vulnerabilities that are diagnosed
after the contract is launched productionally cannot be fixed. (There
is an advanced technique to create "upgradeable contracts," which
allows the contract logic to be modified later, but it also has a
number of other drawbacks and limitations that do not relieve the
developer from writing secure code. For the purposes of this article,
we will skip a detailed analysis of this solution).

The source code of most contracts is publicly available. It is good
practice to publish the source code in services such as Etherscan
which significantly increases the credibility of the application data or
defi protocols. However, making the code publicly available entails
that anyone can verify such code for security, and use any
irregularities to their advantage.

Learning to write secure smart contracts is a process that requires
learning many advanced aspects of the Solidity language. In this
article, we will present 5 tips to simplify this process and secure our
software from the most common mistakes.

1. Accurate testing of smart contracts

The first, and at the same time the most important factor that allows
us to verify that our contract works properly is writing automated
tests. The testing process usually allows us to reveal various security
gaps or irregularities at an early stage of development.

Another advantage of automated
tests is protection against code
regression, i.e. a situation when
during implementation of new
functionalities bugs are created in
previously written code. In such
tests we should check all possible
scenarios, 100% code coverage
with tests should not be a goal in
itself, but only a measure to help
us make sure that tests
scrupulously check every method
on our contract.

2. Configuration of additional tools

It is worthwhile to make use of tools that are able to measure and
check the quality of the software we provide. Tools you should use in
your daily work are:

A plugin for measuring code coverage e.g. solidity-coverage.
Expanding on the thought from the first point that code coverage
should not be an end in itself, it is nevertheless worth having such
analytics in the testing process. By analyzing code coverage with
tests, we are able to easily see which code fragments require us to
write additional tests.

Framework for static code analysis e.g. slither, mythril. These are
tools that, with the help of static analysis, are able not only to point
out places in our code where a vulnerability exists, but also to offer a
number of tips. Following these tips can improve not only the
security, but also the quality of our software.

3. Openzeppelin smart contract library

There are many libraries and ready-made contracts that have been
prepared for later use by developers of blockchain applications.
However, each of these libraries needs to be verified before use to
see if it has any vulnerabilities. The most popular library at the
moment is open zeppelin. It is a collection of secure, tested smart
contracts used in many of DeFi's most popular protocols such as
uniswap. It allows us to use the most commonly used
implementations of ERC (Ethereum Request For Comments)
standards and reusable contracts.

The library has a large range of
components that can be used to
implement the most popular
functionalities on the smart contract
side. I will give two applications of
the library as examples. However, we
believe it is worth exploring all the
capabilities and contracts that are
provided there.

Ownable and Access Control extensions.
These extensions allow us to very easily add access control to
functions that, according to business requirements, should only be
available for execution to authorized addresses. An example from
the documentation showing the use of the Ownable extension in
practice:

As you can see, using the open zeppelin library is not only very easy,
but also allows you to write more concise code that other developers
can understand.

Implementations of the popular token standards ERC-20, ERC-721
and ERC-1155.
Many decentralized applications and protocols are based on ERC-20
or NFT tokens. Each token must have an implemented interface that
works according to the specification. Implementing a token entirely
on your own is associated with a high risk of error, so our token may
have security holes or problems with operation on various exchanges
and wallets. With the help of the open zeppelin library we are able to
prepare a standard, functional token and enrich it with the most
popular extensions with little effort.

A good place to start is the interactive token configurator in the open
zeppelin documentation, it allows us to generate token source code
that will meet functional requirements and security standards.

4. Using new versions of the
Solidity language

An important safety tip is that
projects should use new versions
of the Solidity language. The
compiler requires us to include
Solidity version information at the
beginning of each source file with
a .sol extension:
Pragma solidity 0.8.17

5. Learning from other people's mistakes

An essential factor for delivering secure software is the sheer
knowledge of the advanced aspects of the Solidity language, as well
as awareness of potential threats. In the past, we have witnessed
many vulnerabilities where multi-million dollar assets fell prey to the
attacker.

Many examples of such incidents can be found on the Internet, along
with detailed information on what mistake was made by the
developers and how it could have been prevented. An example of the
above is an article explaining the "reentrancy" attack, with the help of
which the attacker stole $150 million worth of ETH.

Along with new versions of the language, new features are
introduced, but in addition to this, it is also important that fixes are
added to various kinds of known bugs. A list of the bugs found in
each version can be found in this file. As you can see, with newer
versions of the language the number of bugs decreases and is
successively fixed.

The language's developers in the official documentation also
recommend using the latest version in newly implemented smart
contracts:

“When deploying contracts, you should use the latest released
version of Solidity. Apart from exceptional cases, only the latest
version receives security fixes”.

Summary
In conclusion, software security of decentralized applications is a
very important, but also difficult issue requiring knowledge of not
only the programming language itself.

Also required are testing skills, a willingness to constantly explore
the topic of smart contract vulnerabilities, knowledge of new libraries
and tools.

This topic is vast and complicated and the above 5 points are just
guidelines that can help improve the security of our code and with
the associated learning. Also take a look at other articles in the
Nextrope Academy series, where we take a closer look at other
technical issues.

Taken from: https://nextrope.com/security-of-smart-contracts-5-
rules-for-writing-safe-smart-contracts-nextrope-academy/

13. True/Flase - Activity
Actividad Online

The list of possibilities for attacking smart contracts is definitely
longer, so it is worth reading the list of the most popular
vulnerabilities in Solidity. A good way to learn security is also to take
on the role of an attacker, for this purpose the Ethernaut service is
worth a look.

There you will find a collection of tasks involving hacking various
smart contracts, these tasks will help consolidate previously
acquired security knowledge and learn new advanced aspects of the
Solidity language.

https://nextrope.com/security-of-smart-contracts-5-rules-for-writing-safe-smart-contracts-nextrope-academy/
https://nextrope.com/security-of-smart-contracts-5-rules-for-writing-safe-smart-contracts-nextrope-academy/

