
A Guide on Word Embeddings
in NLP

Taken from: https://www.turing.com/kb/guide-on-
word-embeddings-in-nlp

A Guide on Word
Embeddings in

NLP

Word embedding or word vector is an approach with
which we represent documents and words. It is
defined as a numeric vector input that allows words
with similar meanings to have the same
representation. It can approximate meaning and
represent a word in a lower dimensional space.

Word embedding in NLP is an important term that
is used for representing words for text analysis in
the form of real-valued vectors. It is an
advancement in NLP that has improved the ability
of computers to understand text-based content in
a better way. It is considered one of the most
significant breakthroughs of deep learning for
solving challenging natural language processing
problems.
In this approach, words and documents are
represented in the form of numeric vectors
allowing similar words to have similar vector
representations.
The extracted features are fed into a machine
learning model so as to work with text data and
preserve the semantic and syntactic information.
This information once received in its converted
form is used by NLP algorithms that easily digest
these learned representations and process
textual information.

Due to the perks this technology brings on the table,
the popularity of ML NLP is surging making it one of
the most chosen fields by the developers.
Now that you have a basic understanding of the topic,
let us start from scratch by introducing you to word
embeddings, its techniques, and applications.

1. What is word embedding?

Given a supervised learning task to predict
which tweets are about real disasters and
which ones are not (classification). Here the
independent variable would be the tweets (text)
and the target variable would be the binary
values (1: Real Disaster, 0: Not real Disaster).
Now, Machine Learning and Deep Learning
algorithms only take numeric input. So, how do
we convert tweets to their numeric values? We
will dive deep into the techniques to solve such
problems, but first let’s look at the solution
provided by word embedding.

1.2. The solution
Word Embeddings in NLP is a technique where
individual words are represented as real-
valued vectors in a lower- dimensional space
and captures inter-word semantics. Each word
is represented by a real-valued vector with
tens or hundreds of dimensions.

These can be trained much faster than the hand-built models
that use graph embeddings like WordNet. For instance, a word
embedding with 50 values holds the capability of representing
50 unique features. Many people choose pre-trained word
embedding models like Flair, fastText, SpaCy, and others. We
will discuss it further in the article. Let’s move on to learn it
briefly with an example of the same.

1.1. The problem
2. Applications Of Artificial Intelligence in
Education

Term frequency-inverse document frequency is the machine
learning algorithm that is used for word embedding for text. It
comprises two metrics, namely term frequency (TF) and inverse
document frequency (IDF).
This algorithm works on a statistical measure
of finding word relevance in the text that can
be in the form of a single document or various
documents that are referred to as corpus.
The term frequency (TF) score measures the frequency of
words in a particular document. In simple words, it means that
the occurrence of words is counted in the documents.
The inverse document frequency or the IDF score measures
the rarity of the words in the text. It is given more importance
over the term frequency score because even though the TF
score gives more weightage to frequently occurring words, the
IDF score focuses on rarely used words in the corpus that may
hold significant information.

TF-IDF algorithm finds
application in solving simpler
natural language processing
and machine learning problems
for tasks like information
retrieval, stop words removal,
keyword extraction, and basic
text analysis.
However, it does not capture
the semantic meaning of words
efficiently in a sequence.

2. Term frequency-inverse
document frequency (TF-IDF)

The rows represent each document,
the columns represent the
vocabulary, and the values of tf-idf(i,j)
are obtained through the above
formula. This matrix obtained can be
used along with the target variable to
train a machine learning/deep learning
model. Let us now discuss two
different approaches to word
embeddings. We’ll also look at the
hands-on part!

Now let’s understand it further with an example. We will
see how vectorization is done in TF-IDF.

To create TF-IDF vectors, we use Scikit-learn’s TF-IDF
Vectorizer. After applying it to the previous 4 sample tweets, we
obtain -

2.1. Output of TfidfVectorizer

Eliminate any stop words or
punctuation.
Then, convert all the words to
lowercase.

The Word2Vec method was developed by Google
in 2013. Presently, we use this technique for all
advanced natural language processing (NLP)
problems. It was invented for training word
embeddings and is based on a distributional
hypothesis.

Next, the sentences tokenized in the first step
have further tokenized words.

Finally, move to create a frequency distribution
chart of the words.

In the first step, you have to tokenize the text into
sentences.

We will discuss BOW with proper examples in the
continuous bag of word selection below.

A bag of words is one of the popular word embedding
techniques of text where each value in the vector would
represent the count of words in a document/sentence. In
other words, it extracts features from the text. We also refer
to it as vectorization. To get you started, here’s how you can
proceed to create BOW.

4. Word2Vec

3. Bag of words (BOW)

The continuous bag of words variant includes various inputs
that are taken by the neural network model. Out of this, it
predicts the targeted word that closely relates to the context
of different words fed as input.

Word2Vec has two neural network-based variants: Continuous
Bag of Words (CBOW) and Skip-gram.

In this hypothesis, it uses skip-grams or a continuous bag of
words (CBOW).
These are basically shallow neural networks that have an input
layer, an output layer, and a projection layer. It reconstructs the
linguistic context of words by considering both the order of
words in history as well as the future.
The method involves iteration over a corpus of text to learn the
association between the words. It relies on a hypothesis that
the neighboring words in a text have semantic similarities with
each other. It assists in mapping semantically similar words to
geometrically close embedding vectors.
It uses the cosine similarity metric to measure semantic
similarity. Cosine similarity is equal to Cos(angle) where the
angle is measured between the vector representation of two
words/documents.
So if the cosine angle is one, it means that the
words are overlapping.
And if the cosine angle is a right angle or 90°, It
means words hold no cntextual similarity and are
independent of each other.
To summarize, we can say that this metric
assigns similar vector representations to the
same boards.

4.1. Two variants of Word2Vec

1. CBOW -

It is fast and a great way to find better numerical representation
for frequently occurring words. Let us understand the concept
of context and the current word for CBOW.

In CBOW, we define a window size. The middle word is the
current word and the surrounding words (past and future
words) are the context. CBOW utilizes the context to predict
the current words. Each word is encoded using One Hot
Encoding in the defined vocabulary and sent to the CBOW
neural network.

‘kind true sadly’,

‘swear jam set world ablaze’,

‘swear true car accident’,

‘car sadly car caught up fire’

The hidden layer is a standard fully-
connected dense layer. The output layer
generates probabilities for the target word
from the vocabulary. As we have discussed
earlier about the bag of words (BOW) and it
being also termed as vectorizer, we will
take an example here to clarify it further.
Let's take a small part of disaster tweets, 4
tweets, to understand how BOW works:-

To create BOW, we use Scikit-learn’s CountVectorizer,
which tokenizes a collection of text documents, builds a
vocabulary of known words, and encodes new documents
using that vocabulary.

is a slightly different word
embedding technique in
comparison to CBOW as it
does not predict the current
word based on the context.
Instead, each current word is
used as an input to a log-
linear classifier along with a
continuous projection layer.
This way, it predicts words in
a certain range before and
after the current word. This
variant takes only one word
as an input and then predicts
the closely related context
words. That is the reason it
can efficiently represent rare
words.

Here the rows represent each document
(4 in our case), the columns represent the
vocabulary (unique words in all the
documents) and the values represent the
count of the words of the respective
rows. In the same way, we can apply
CountVectorizer to the complete training
data tweets (11,370 documents) and obtain
a matrix that can be used along with the
target variable to train a machine
learning/deep learning model.

Output of Count Vectorizer

2. Skip-gram —

from gensim.models import
Word2Vec import nltk import re
from nltk.corpus import
stopwords

The end goal of Word2Vec (both variants) is
to learn the weights of the hidden layer. The
hidden consequences will be used as our
word embeddings!! Let's now see the code
for creating custom word embeddings using
Word2Vec-
Import Libraries

#Word2Vec inputs a corpus of documents
split into constituent words. corpus = [] for i
in range(0,len(X)): tweet = re.sub(“[^a-zA-
Z]”,” “,X[i]) tweet = tweet.lower() tweet =
tweet.split() corpus.append(tweet) Here is
the exciting part! Let's try to see the most
similar words (vector representations) of
some random words from the tweets -
model.wv.most_similar(‘disaster’)

Output -

Preprocess the Text

List of tuples of words and their predicted probability. The
embedding vector of ‘disaster’ -

List of tuples of words and their predicted probability. The
embedding vector of ‘disaster’ -

dimensionality = 100

Massive amount of weights: Large amounts of input vectors
invite massive amounts of weight for a neural network. No
meaningful relations or consideration for word order: The bag
of words does not consider the order in which the words
appear in the sentences or a text. Computationally intensive:
With more weight comes the need for more computation to
train and predict. While the TF-IDF model contains the
information on the more important words and the less
important ones, it does not solve the challenge of high
dimensionality and sparsity, and unlike BOW it also makes no
use of semantic similarities between words.

Now let’s discuss the challenges with the two text vectorization
techniques we have discussed till now. In BOW, the size of the
vector is equal to the number of elements in the vocabulary. If
most of the values in the vector are zero then the bag of words
will be a sparse matrix. Sparse representations are harder to
model both for computational reasons and also for informational
reasons. Also, in BOW there is a lack of meaningful relations
and no consideration for the order of words. Here’s more that
adds to the challenge with this word embedding technique.

5. Challenges with the bag of
words and TF-IDF

The GloVe method of word embedding in NLP
was developed at Stanford by Pennington, et
al. It is referred to as global vectors because
the global corpus statistics were captured
directly by the model. It finds great
performance in world analogy and named
entity recognition problems.
This technique reduces the computational
cost of training the model because of a
simpler least square cost or error function
that further results in different and improved
word embeddings. It leverages local context
window methods like the skip-gram model of
Mikolov and Global Matrix factorization
methods for generating low dimensional word
representations.
Latent semantic analysis (LSA) is a Global
Matrix factorization method that does not do
well on world analogy but leverages
statistical information indicating a sub-
optimal vector space structure.

On the contrary, the skip-gram method
performs better on the analogy task.
However, it does not utilize the statistics of
the corpus properly because of no training
on global co-occurrence counts.
So, unlike Word2Vec, which creates word
embeddings using local context, GloVe
focuses on global context to create word
embeddings which gives it an edge over
Word2Vec. In GloVe, the semantic
relationship between the words is obtained
using a co-occurrence matrix.

6. GloVe: Global Vector for
word representation

Consider two sentences -

I am a data science
enthusiast I am looking for
a data science job

The co-occurrence matrix involved in GloVe would look like this
for the above sentences -

Each value in this matrix represents the count of co-
occurrence with the corresponding word in row/column.
Observe here - this co-occurrence matrix is created using
global word co-occurrence count (no. of times the words
appeared consecutively; for window size=1). If a text corpus
has 1m unique words, the co-occurrence matrix would be 1m x
1m in shape. The core idea behind GloVe is that the word co-
occurrence is the most important statistical information
available for the model to ‘learn’ the word representation.

Window Size = 1

Let's take k = solid i.e, words
related to ice but unrelated to
steam. The expected Pik /Pjk
ratio will be large. Similarly, for
words k which are related to
steam but not to ice, say k = gas,
the ratio will be small. For words
like water or fashion, which are
either related to both ice and
steam or neither to both
respectively, the ratio should be
approximately one.

Let's now see an example from Stanford’s GloVe paper of how
the co- occurrence probability rations work in GloVe. “For
example, consider the co- occurrence probabilities for target
words ice and steam with various probe words from the
vocabulary. Here are some actual probabilities from a corpus of
6 billion words:”

Her
e,

Import Libraries import nltk import re
from nltk.corpus import stopwords
from glove import Corpus, Glove Text
Preprocessing #GloVe inputs a
corpus of documents splitted into
constituent words corpus = [] for i in
range(0,len(X)): tweet = re.sub(“[^a-
zA-Z]”,” “,X[i]) tweet = tweet.lower()
tweet = tweet.split()
corpus.append(tweet)

The probability ratio is able tn the raw probability. It is also able
to better discriminate between two relevant words. Hence in
GloVe, the starting point for word vector learning is ratios of co-
occurrence probabilities rather than the probabilities
themselves.

Enough of the theory. Time for
the code!

Train the word Embeddings
corpus = Corpus()
corpus.fit(text_corpus,window = 5)
glove = Glove(no_components=100,
learning_rate=0.05)
#no_components = dimensionality
of word embeddings = 100
glove.fit(corpus.matrix, epochs=100,
no_threads=4, verbose=True)
glove.add_dictionary(corpus.diction
ary) Find most similar -
glove.most_similar(“storm”,number=1
0)

List of tuples of words and their predicted
probability

Output -

This natural language processing
(NLP) based language algorithm
belongs to a class known as
transformers. It comes in two
variants namely BERT-Base,
which includes 110 million
parameters, and BERT-Large,
which has 340 million parameters.

It relies on an attention mechanism for generating
high- quality world embeddings that are
contextualized. So when the embedding goes
through the training process, they are passed
through each BERT layer so that its attention
mechanism can capture the word associations
based on the words on the left and those on the
right. It is an advanced technique in comparison to
the discussed above as it creates better word
embedding. The credit goes to the pre-trend model
on Wikipedia data sets and massive word corpus.
This technique can be further improved for task-
specific data sets by fine-tuning the embeddings.

It finds great application in language translation tasks.

7. BERT (Bidirectional encoder
representations from transformers)

Word embeddings can train deep learning models like GRU,
LSTM, and Transformers, which have been successful in NLP
tasks such as sentiment classification, name entity recognition,
speech recognition, etc. Here’s a final checklist for a recap.

Bag of words: Extracts features from the text
TF-IDF: Information retrieval, keyword
extraction Word2Vec: Semantic analysis task
GloVe: Word analogy, named entity recognition
tasks BERT: language translation, question
answering system

8. Conclusion

