
REGIÓN 3
CAUCA - NARIÑO

LESSON 1

Lesson1: Identifying and Mitigating Vulnerabilities based on OWASP Top 10.

1)Idiom of the day

Digital footprint: The trail of data left behind by users online.

Example: "Be careful about your digital footprint—it can be used against you."

2)ACTIVITY 1: Warmup activity: "Spot the Vulnerability"

Objective: Engage participants in identifying potential vulnerabilities and raise
awareness of the OWASP Top 10 as a framework for mitigating them.

Instructions1.
Create a short, fictional scenario about a poorly secured application. Include 2-3
examples of vulnerabilities from the OWASP Top 10 (e.g., SQL injection, weak
authentication, or insecure APIs).
Prepare a slide or handout listing the OWASP Top 10 categories briefly.

2. Scenario Example 1: “Imagine you are reviewing the security of an online shopping website.
The site allows users to log in, view products, and make purchases. While testing, you notice the
following issues:

Users can input anything into the search bar, and the website returns an error with detailed
database information.
The admin login page is publicly accessible, and it accepts simple passwords like ‘12345.’
The checkout process sends credit card data in plain text over the internet.

 What vulnerabilities can you identify?”

Scenario Example 2: An online store allows customers to browse products, register accounts,
and complete purchases.

The search bar allows users to type any query, but entering '; DROP TABLE products;--
causes the website to crash, indicating no input sanitization.
The admin portal uses a default username (admin) and a weak password (password123) that
hasn’t been updated since deployment.
During checkout, customers’ credit card information is sent in plain text over HTTP instead of
HTTPS.

Scenario example 3: A new social media app encourages users to share photos and connect
with friends.

The comment section doesn’t sanitize input, allowing users to post malicious JavaScript,
which executes when others view the comment.
The API endpoint /user/profile returns all user details, including email, phone number, and
address, even when accessed by unauthenticated users.
The application’s debug mode is enabled in production, exposing sensitive stack traces when
errors occur.

Scenario example 4: A fitness tracker app syncs user data with a backend API to show stats
and provide personalized recommendations.

The API endpoint /update-stats allows unauthenticated requests, letting attackers alter any
user’s data by submitting arbitrary values.
The endpoint /admin/dashboard can be accessed by any logged-in user without proper role
verification.
The app uses an outdated version of an open-source library with publicly documented
vulnerabilities.

.

3) Group Discussion: Ask participants to work in pairs or small groups to:
● Identify the vulnerabilities in the scenario.
● Relate them to any OWASP Top 10 category (if familiar).
● Discuss why these vulnerabilities are problematic.

4) Debrief: Invite groups to share their findings. Highlight key points and connect their
observations to specific OWASP Top 10 categories, such as:
● SQL injection (e.g., the search bar issue).
● Weak authentication controls (e.g., simple admin passwords).
● Insecure data transmission (e.g., unencrypted credit card data).

Here is a brief listing of the OWASP Top 10 categories:
Injection: Occurs when untrusted data is sent to an interpreter, leading to the execution of malicious
commands (e.g., SQL injection).

1.

Broken Authentication: Insecure authentication mechanisms that allow attackers to impersonate users
or gain unauthorized access.

2.

Sensitive Data Exposure: Inadequate protection of sensitive data, such as passwords, credit card
numbers, or personal information.

3.

XML External Entities (XXE): Vulnerabilities in XML parsers that allow attackers to interfere with the
processing of XML documents, potentially exposing internal files or services.

4.

Broken Access Control: Flaws that allow unauthorized users to access resources or perform actions
outside their intended permissions.

5.

Security Misconfiguration: Insecure configurations in applications, servers, or databases, often due to
default settings or incomplete setups.

6.

Cross-Site Scripting (XSS): Attacks where malicious scripts are injected into web pages viewed by
other users, enabling data theft or unauthorized actions.

7.

Insecure Deserialization: Issues related to deserializing data that can lead to remote code execution,
authentication bypass, or other exploits.

8.

Using Components with Known Vulnerabilities: Using outdated or vulnerable software components, such
as libraries or frameworks, which attackers can exploit.

9.

Insufficient Logging & Monitoring: A lack of proper logging and monitoring makes it difficult to detect,
respond to, and investigate security breaches.

10.

