
REGIÓN 3 
CAUCA - NARIÑO

LESSON 3



Lesson 3. Reading
OWASP Top 10 Vulnerabilities

The OWASP Top 10 is a list of the 10 most common web application security risks. By writing code and
performing robust testing with these risks in mind, developers can create secure applications that keep
their users’ confidential data safe from attackers.

What is OWASP?
OWASP, or the Open Web Application Security Project, is a nonprofit organization focused on software
security. Their projects include a number of open-source software development programs and toolkits,
local chapters and conferences, among other things. One of their projects is the maintenance of the
OWASP Top 10, a list of the top 10 security risks faced by web applications.

Meeting OWASP Compliance to Ensure Secure Code
The OWASP Top 10 is a great foundational resource when you’re developing secure code. In our State of
Software Security 2023, a scan of 759,445 applications found that nearly 70% of apps had a security flaw
that fell into the OWASP Top 10.



The OWASP Top 10 isn't just a list. It assesses each flaw class using the OWASP Risk Rating methodology
and provides guidelines, examples, best practices for preventing attacks, and references for each risk. By
learning the flaws on the OWASP Top 10 chart and how to resolve them, application developers can take
concrete steps toward a more secure application that helps keep users safe when it comes to malicious
attacks.
Of course, the vulnerabilities listed by OWASP aren't the only things developers need to look at. Check our
guide on Application Security Fallacies and Realities to learn about common misconceptions, errors, and
best practices for application security testing and production.



A Guide to OWASP Top 10 Testing
Testing for OWASP vulnerabilities is a crucial part of secure application development. The sheer number
of risks and potential fixes can seem overwhelming but are easy to manage if you follow a few simple
steps:
Build security into your development process, rather than making it an afterthoughtTest your code against
security standards repeatedly throughout developmentUse IDE and CI Pipeline integrations to automate
testingIdentify known vulnerabilities in third-party code to ensure your program does not rely on insecure
dependencies
OWASP Top 10 Vulnerabilities
¿So, what are the top 10 risks according to OWASP? We break down each item, its risk level, how to test
for them, and how to resolve each.
A01. Broken Access Control
If authentication and access restrictions are not properly implemented, it's easy for attackers to take
whatever they want. With broken access control flaws, unauthenticated or unauthorized users may have
access to sensitive files and systems, or even user privilege settings.
Penetration testing can detect missing authentication but cannot determine the misconfigurations that
lead to the exposure. One of the benefits of the increasing use of Infrastructure as Code (IaC) tools is the
ability to use scanning tools to detect configuration errors leading to access control failures.
Weak access controls and issues with credentials management in applications are preventable with
secure coding practices, as well as preventative measures like locking down administrative accounts and
controls and using multi-factor authentication.



A02: Cryptographic Failures
Common errors such as using hardcoded passwords, outdated cryptographic algorithms, or weak
cryptographic keys can result in the exposure of sensitive data (the previous name for this category).
Scanning images for hard coded secrets, and ensuring that data is properly encrypted at rest and in
transit can help mitigate exposing sensitive data to attackers.
A03: Injection
Injection attacks occur when attackers exploit vulnerabilities in web applications that accept untrusted
data. Common types include SQL injection and OS command injection. This category now also includes
Cross Site Scripting (XSS). By inserting malicious code into input fields, attackers can execute
unauthorized commands, access sensitive databases, and potentially gain control over systems.
Application security testing can reveal injection flaws and suggest remediation techniques such as
stripping special characters from user input or writing parameterized SQL queries.
A04: Insecure Design
Insecure design is a new category in the 2021 OWASP Top Ten which focusses on fundamental design
flaws and ineffective controls as opposed to weak or flawed implementations.
Creating secure designs and secure software development lifecycles requires a combination of culture,
methodologies and tools. Developer training, robust threat modelling, and an organizational library of
secure design patterns should all be implemented to reduce the risks of insecure designs creating critical
vulnerabilities.



A05: Security Misconfiguration
Application servers, frameworks, and cloud infrastructure are highly configurable, and security
misconfigurations such as too broad permissions, insecure default values left unchanged, or too revealing
error messages can provide attackers easy paths to compromise applications.
The 2023 Veracode State of Software Security reported that misconfiguration errors were reported in
70% or more applications that had introduced a new vulnerability in the last year.
To reduce misconfiguration risks organizations should routinely harden deployed application and
infrastructure configurations and should scan all infrastructure as code components as part of a secure
SDLC.
A06: Vulnerable and Outdated Components
Modern applications are built using a large number of third-party libraries (which themselves are
dependent on other libraries), and frequently run on open-source frameworks. In a modern application
there may be orders of magnitude more code from libraries and components than written by an
organization’s developers.
As might be expected with any software, vulnerabilities in libraries and components will routinely be discovered,
patched, and new versions released. The challenges of identifying all the components in use, keeping track of
their vulnerability status, and routinely rebuilding and testing deployed software is both essential and onerous.
Perhaps this is why so many organizations are still running vulnerable software in production.
A critical mitigation step is to build a Software Bill of Materials (SBoM) for all the software deployed or
supplied to customers. Veracode Software Composition analysis and Container Scanning tools can
produce SBoMs in standardized formats to give organizations a view of their exposure to vulnerabilities in
third-party components.



A07 Identification and Authentication Failures
Identifying and authorizing users and non-human clients is a fundamental security practice. It goes without
saying that weaknesses in a way an application allows access or identifies users is a critical vulnerability.
While mitigation starts with secure coding practices, tools to detect and prevent credential stuffing and
brute force attacks are also useful protections.
A08: Software and Data Integrity Failures
The tools used to build, manage, or deploy software are increasingly common vectors of attack. A CI’CD
pipeline that routinely builds, tests and deploys software can also be used to inject malicious code (or
libraires), create insecure deployments, or steal secrets.
As discussed above in ‘Vulnerable and Outdated Components’ modern applications use many third-party
components, often pulling them from third party repositories.
Organizations can mitigate this threat by ensuring both the security of the build process, and the
components pulled into the build. Adding in code scanning and software component analysis steps into a
software build pipeline can identify malicious code or libraries. Ensuring the build and



A09: Security Logging and Monitoring Failures
Having adequate logging and monitoring in place is essential in both detecting a breach early, hopefully
limiting the damage, and in incident forensics to establish the scope of the breach, and to determine the
method of compromise.
Simply generating the data is obviously insufficient, organizations must have adequate collection, storage,
alerting and escalation processes. Organizations should also verify that these processes are working
correctly – using Dynamic Application Security Testing (DAST) tools like Veracode DAST, for instance,
should produce significant logging and alerting events.
A10: Server-Side Request Forgery (SSRF)
Modern web applications commonly fetch additional content or data from a remote resource. If an attacker
can influence the destination resource, and the application does not validate the supplied URL, then a
crafted request may be sent to a target destination.
Mitigating SSRF attacks is done using familiar methods such as sanitizing user input, using explicit allow
lists, and inspecting request responses before they are returned to clients.

Comprehensive AppSec Guides and Services
Veracode offers comprehensive guides for training developers in application security, along with scalable
web-based tools to make developing secure applications easy. Download one of our guides or contact our
team to learn more about our demo today.


