
Lesson 3
Principles of Cloud Native

design - 12 Factor apps



Socialize keywords of the reading below
"Principles of Cloud Native design - 12 Factor apps"

Cloud Native Architecture
Refers to the software
model for building,
deploying, and managing
modern applications in
cloud computing
environments, focusing on
scalability, flexibility, and
resilience.

Immutable Infrastructure
Servers for hosting cloud-native
applications remain unchanged after
deployment, allowing for predictable
and automated deployment processes.

Microservices
Small, independent software components
that work collectively as complete cloud-
native software, promoting modularity,
scalability, and agility.



+ I N F O

12 Factor Application
A set of principles for building
microservices-based cloud-native
applications, emphasizing modularity,
scalability, and agility.

Application Configuration
Storing configuration in the
environment rather than hard-coding
it in the source code, ensuring
dynamic modifiability and
consistency across environments.

Logs
Treating logs as event streams,
writing log entries to stdout and
stderr, and decoupling applications
from log storage, processing, and
analysis.

Dependencies
Explicitly declaring and isolating
project dependencies, including
packages, platforms, and SDKs, to
enhance compatibility and
reproducibility.



Reading: "Principles of Cloud Native design - 12 Factor apps"

Cloud Native architecture
Organizations the world over are working through application
modernization programs of various sizes. Business systems are not
only complex but there is a demand now for them to be responsive,
provide innovative features, embrace rapid change , provide
resilience and scale. These systems are expected to accelerate
business velocity and growth through strategic transformations.
Organizations plan to achieve these though their app modernization
programs. A critical part of these application modernization
programs is the decision to refactor or rebuild existing applications
amongst other considerations such as replatform, replace, lift and
shift etc. Designing applications in the new cloud native world
requires thinking through the underlying principles, patterns and best
practices of systems architecture.



Traditional architectures optimized for fixed, high-cost infrastructure with lower
number of components. Monolithic architectures were popular, often due to the
cost of physical resources and the slow velocity in which applications were
developed and deployed. Cloud-native architectures take advantage of the
distributed, scalable and loosely coupled nature of public, private and hybrid cloud
environments. Cloud-native architecture focuses on achieving resilience and
throughput through horizontal scaling, distributed processing, and automating the
replacement of failed components. This architecture treats the underlying
infrastructure as disposable. The infrastructure can be provisioned in minutes and
resized, scaled, or destroyed on demand – via automation. The architecture
favors the development of small, independent, loosely coupled services which can
be delivered quickly. A loosely coupled architecture is an application design
strategy in which the various parts of an application are developed, deployed and
operated independently of each other.



The Cloud Native Computing Foundation - CNCF provides an official definition of Cloud Native -

A widely accepted methodology to build cloud native applications is the 12 factor application.

“Cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this approach.”

“These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they
allow engineers to make high-impact changes frequently and predictably
with minimal toil.”



+ I N F O

The Twelve Factors
The twelve-factor app principles are a collection of best
practices for building microservices-based cloud-native
applications. These applications are modular, scalable,
and agile. They are designed to perform at web scale
and provide high resiliency. These principles are applied
to cloud-native applications and are programming
language and platform agnostic. The 12 Factors were
published in 2012 by Adam Wiggins, founder of Heroku.
It is hosted here . This methodology presents a thought
process on how to develop applications and is
complementary to other methodologies and thought
processes such as the reactive manifesto.



Codebase
One codebase tracked in
revision control, many deploys.

Configuration
Store configuration in the environment.
Backing Services
Treat backing services as attached resources.

Processes
Execute the app as one or
more stateless processes.

Port binding
Export services via port binding.

Presionar cada factor para ver su contenido

Concurrency
Scale out via the process model.
Disposability
Maximize robustness with fast
startup and graceful shutdown.
Dev/prod parity
Keep development, staging, and
production as similar as possible.
Logs
Treat logs as event streams
Admin processes
Run admin/management
tasks as one-off processes

Build, release, run
Strictly separate build and run stages.

Dependencies
Explicitly declare and isolate dependencies.

The 12 factors are

Taken from: https://pradeepl.com/blog/12-factor-cloud-native-apps/ 

https://pradeepl.com/blog/12-factor-cloud-native-apps/


“A twelve-factor app is always tracked in a version control system… A codebase is any
single repo (in a centralized revision control system like Subversion), or any set of repos
who share a root commit (in a decentralized revision control system like Git).”

This principle advocates a single codebase tracked in revision control with many
deployments across multiple environments. There can only be one codebase per
microservice. The codebase must be managed by a version control system. Various
deploys are generated from this codebase, each one for a different environment
development, staging, production and maybe others. This looks too simplistic and
nonsensical but if you think about it in the world of SOA and microservices we have to
think through our version control strategies . Each service should be maintained as its
own codebase and should be version controlled independently.

Codebase



Every developer clones their copy of the codebase
to make changes or run locally. The platform will
pull source code from a single repository and use
this code to build a single deployable unit.
Individual branches or tags are used based on the
branching and release strategy. However, there is
no one size fits all with codebase strategies and
teams generally tend to move from Mono repo to
Multi repos based on various factors. Mono Repo
is where all Microservices are housed within a
single repository. In multi repo each microservice
codebase is tracked in its independent repo.



Dependencies

“A twelve-factor app never relies on the implicit existence of system-wide packages.”
Dependencies used by a project and their versions must be explicitly declared and
isolated from code. Explicitly stating versions results in lower compatibility issues
across environments. This also results in better reproducibility of issues occurring in
specific version combinations. Dependencies not only include packages but also
platforms, SDK’s etc. Package dependencies can be managed using package
management tools like Nuget, NPM etc. Container technology simplifies this further
by explicitly specifying all installation steps. It also specifies versions of base images,
so that image builds are idempotent. .Net core provides the project file as a container
to declare all dependencies. It uses nuget as the package manager to download the
necessary packages.



Application configuration

“Apps sometimes store config
as constants in the code. This is
a violation of twelve-factor,
which requires strict separation
of config from code. Config
varies substantially across
deployments, code does not.”



Application configurations that differ across environments such as external dependencies,
databases, credentials, ports etc are only manifested at runtime. This configuration should not be
hard coded in the source code but should be externalized and dynamically modifiable from outside
the application. There should be no hard-coded credentials and no configuration in the code. This
ensures that the application is not modified to update configuration to deploy it across
environments and is completely agnostic of the environment. This also ensures that sensitive
information is not mixed in with code. The use of environment variables that can be injected when
deploying an application in a specific environment is highly recommended. This ensures that the
developer can focus on code with the assurance that the necessary configuration and credentials
are available consistently across all environments. In addition to environment variables tools such
as consul and vault enable configuration to be stored in a secure way across environments. An
example of externalizing configuration is here.



“The code for a twelve-factor app makes no distinction between local and third-party services…Each
distinct backing service is a resource.”

Databases, API’s and other external systems that are accessed from the application are called
resources. The application should be abstracted away from its external resources. These resources
should be attached to the application in a loosely coupled manner. Backing services should be
abstracted into individual components with clean interfaces. They should be replaceable by different
instances without any impact on the application using the application configuration principle above.
The generic implementation should allow backing services to be attached and detached at will.
Administrators should be able to attach or detach these backing services to quickly replace failing
services without the need for code changes or deployments.Other patterns such as circuit breaker ,
retries and fallback are also recommended when using these backing services.

Backing Services



“The twelve-factor app uses strict separation between the build, release, and run stages.”

This principle is closely tied in with the previous principles. A single codebase is taken through the
build process to produce a compiled artifact. The output of the build stage is combined with
environment specific configuration information to produce another immutable artifact, a release.
Each release is labelled uniquely. This immutable release is then delivered to an environment
(development, staging , production, etc.) and run. If there are issues this gives us the ability to audit a
specific release and roll back to a previously working release. All of these steps should be ideally
performed by the CI/CD tools provided by the platform. This ensures that the build, release and run
stages are performed in a consistent manner across all environments.

Build, Release, Run



Processes

“Twelve-factor processes are stateless and share-nothing.”

All processes and components of the application must be stateless and share-nothing. An
application can create and consume a transient state while handling a request or processing a
transaction, but that state should all be gone once the client has been given a response. All long-
lasting states must be external to the application and provided by backing services. Processes come
and go, scale horizontally and vertically, and are highly disposable. This means that anything shared
among processes could also vanish, potentially causing a cascading failure. This principle is key to
characteristics such as fault-tolerance, resilience, scalability, and availability.



Port Binding

“The twelve-factor app is completely self-contained and does not rely on runtime injection of a
webserver into the execution environment to create a web-facing service.”
A twelve-factor app is fully self-contained and does not depend on any runtime such as application
servers, web servers etc to be available as a service. It is self-contained and exposes its functionality
via a protocol that best fits it such as HTTP, MQTT, AMQP etc. A twelve-factor app must export the
service by port-binding, meaning that the application also interfaces with the world via an
endpoint.The port binding can be exported and configurable using the configuration principle above.
An application using HTTP as the protocol might run as http://localhost:5001 on a developer’s
workstation, and in QA it might run as http://164.132.1.10:5000, and in production as
http://service.company.com . An application developed with exported port binding in mind supports
this environment-specific port binding without having to change any code.



“In the twelve-factor app, processes are a first class citizen…The process model truly shines
when it comes time to scale out.”

Applications should scale out using the process model. Elastic scalability can be achieved by
scaling out horizontally. Rules can be setup to dynamically scale the number of instances of
the application/service based on load or other runtime telemetry. Stateless, share-nothing
processes are well positioned to take full advantage of horizontal scaling and running
multiple, concurrent instances.

Concurrency



“The twelve-factor app’s processes are disposable, meaning they can be started or stopped at
a moment’s notice.”

Processes are constantly created and killed on demand. An application’s processes should
be disposable, and allow it to be started or stopped rapidly. An application cannot scale,
deploy, release, or recover rapidly if it cannot start rapidly and shut down gracefully. Shutting
down gracefully implies saving the state if necessary, and releasing the allocated computing
resources. This is a key requirement due to the ephemeral nature of cloud native applications.

Disposability



Dev/Prod Parity

“The twelve-factor app is designed for
continuous deployment by keeping the gap
between development and production small.”

All environments should be maintained to be
as similar as possible. This ensures that any
environment specific issues are identified as
early as possible.



Logs

" A twelve-factor app never concerns itself with routing or storage of its output stream.”

Logs should be treated as event streams. Logs are a sequence of events emitted from an application
in time-ordered sequence. A cloud-native application writes all of its log entries to stdout and
stderr.You can use tools like the ELK stack (ElasticSearch, Logstash, and Kibana), Splunk etc to
capture and analyze your log emissions. Applications should be decoupled from the knowledge of log
storage, processing, and analysis. Logs can be directed anywhere. For example, they could be directed
to a database in NoSQL, to another service, to a file in a repository, to a log-indexing-and-analysis
system, or to a data-warehousing system.



“Run admin/management tasks as one-off processes.”

Maintenance tasks, such as script execution for data migration, initial data seeding and cache
warming should be automated and performed on time. These are executed in the run time
environment and should be shipped with the release for the specific code base and
configuration. This ensures that the maintenance tasks are performed on the same
environment that the application is running on. This principle is key to the ability to ship the
application with the maintenance tasks.

Admin Processes



I N I C I O

Multiple choice: quizizz game.
LINK: https://quizizz.com/admin/quiz/65b7c67f95c97582e0e49086?source=quiz_share

https://quizizz.com/admin/quiz/65b7c67f95c97582e0e49086?source=quiz_share

