
LESSON 2

Socialize keywords of the reading below "Unveiling
the Power of Cloud Design Patterns in Modern

Architecture"

Cloud Design Patterns

Circuit Breaker Pattern

Retry Pattern

Meaning:

Meaning:

Meaning

Best practices and reusable
solutions for designing scalable,
resilient, and maintainable systems
in cloud-based architectures.

A design pattern that prevents
continuous attempts to execute a
likely-to-fail operation by opening the
circuit after a defined number of
consecutive failures.

A design pattern that automatically
retries an operation that has failed
due to a transient error, enhancing

system resilience.



LESSON 2

Microservices Architecture

Saga Pattern

Event Sourcing Pattern

Ambassador Pattern

Meaning:

Meaning:

Meaning

Meaning

An architectural approach where a
monolithic application is
decomposed into small,
independent services, promoting
flexibility and agility.

A pattern for managing long-running
transactions in a distributed
environment by breaking down
transactions into smaller,
independent sagas.
-

Capturing and storing changes to
application state as a sequence of

events, enabling system state
reconstruction and providing a

comprehensive audit trail.

A pattern in microservices
architectures that offloads network

concerns to a separate service
(ambassador), simplifying

communication between services.



LESSON 2

Bulkhead Pattern

Strangler Pattern

Queue-Based Load Leveling

Meaning:

Meaning:

Meaning

A pattern that isolates components
into separate pools to prevent the
failure of one component from
affecting the entire system,
enhancing overall resilience.

A pattern facilitating the transition
from a monolithic to a microservices
architecture by gradually replacing
parts of the monolith with
microservices.

A pattern introducing a queue to
manage bursts of traffic, avoiding

overwhelming downstream
services and ensuring even

distribution of requests.



LESSON 2

Reading: "Unveiling the Power of Cloud Design Patterns in
Modern Architecture"

In the ever-evolving landscape of cloud computing, designing scalable,
resilient, and maintainable systems is paramount. Cloud design patterns
provide a set of best practices and reusable solutions to address
common challenges encountered in cloud-based architectures. This
technical blog post delves into some of the most influential cloud design
patterns and explores how they contribute to the creation of robust and
efficient systems.

Retry Pattern: Transient errors are inevitable in distributed systems. The
Retry Pattern offers a solution by automatically retrying an operation that
has failed due to a transient error. To enhance resilience, developers can
implement an exponential back-off strategy, allowing the system to
recover gracefully.

Circuit Breaker Pattern: Preventing an application from continuously
attempting to execute an operation that is likely to fail is crucial for
maintaining system stability. The Circuit Breaker Pattern achieves this by
opening the circuit after a defined number of consecutive failures,
preventing further attempts until the system has recovered.

Microservices Architecture: Microservices have revolutionized the way
we design and build scalable applications. By decomposing a monolithic
application into small, independent services, each with its own set of
responsibilities, development, deployment, and scaling become more
manageable. This pattern promotes flexibility and agility in modern
software development.

Event Sourcing: Capturing and storing changes to application state as a
sequence of events is the essence of the Event Sourcing Pattern. This
approach enables the reconstruction of the system state at any given
point, providing a comprehensive audit trail and facilitating scalability.

Saga Pattern: Managing long-running transactions in a distributed
environment poses challenges. The Saga Pattern addresses this by
breaking down a transaction into a series of smaller, independent
transactions, or sagas, ensuring consistency across the system.



LESSON 2

Ambassador Pattern: In microservices architectures, handling network
requests and responses can become complex. The Ambassador Pattern
offloads network concerns to a separate service, the ambassador,
simplifying communication between services and promoting modularity.

Bulkhead Pattern: Preventing the failure of one component from
affecting the entire system is the goal of the Bulkhead Pattern. By
isolating components into separate pools, this pattern limits the impact
of a failure, enhancing the overall resilience of the system.

Queue-Based Load Leveling: To manage bursts of traffic and avoid
overwhelming downstream services, the Queue-Based Load Leveling
Pattern introduces a queue. This decouples services, smoothing out
variations in traffic and ensuring a more even distribution of requests.

Strangler Pattern: Migrating from a monolithic to a microservices
architecture can be challenging. The Strangler Pattern facilitates this
transition by gradually replacing parts of the monolith with microservices
until the entire system is modernized.

Sidecar Pattern: Extending the functionality of a primary service without
modifying it is achieved through the Sidecar Pattern. By attaching a
secondary container (sidecar) to the primary service, additional
capabilities can be provided without impacting the core functionality.

Throttling Pattern: Handling bursts of traffic and preventing service
overload is a common challenge in cloud-based systems. The Throttling
Pattern tackles this by controlling the rate at which requests are
processed. This ensures that resources are used efficiently, preventing
service degradation during sudden spikes in demand.

Rate Limiting Pattern: Similar to throttling, the Rate Limiting Pattern
focuses on controlling the rate of incoming requests. By enforcing limits
on the number of requests a client can make within a specified
timeframe, this pattern protects against abuse, improves security, and
promotes fair resource usage.

Publisher-Subscriber Pattern: Decoupling components within a system is
a fundamental principle for achieving flexibility and scalability. The
Publisher-Subscriber Pattern, also known as the Observer Pattern,
enables this by allowing components to communicate without direct
dependencies. Publishers broadcast events, and subscribers receive and
react to these events autonomously.



LESSON 2

Materialized View Pattern: Efficiently querying and retrieving data is
essential for system performance. The Materialized View Pattern
addresses this by precomputing and storing the results of queries. This
accelerates read operations, especially in scenarios where complex
queries are frequent.

Command Query Responsibility Segregation (CQRS Pattern):
Distinguishing between read and write operations is the essence of the
CQRS Pattern. By maintaining separate models for read and write
operations, this pattern optimizes performance, scalability, and
maintenance. It’s particularly valuable in scenarios where reads and
writes have different scaling requirements.

Bulkhead Pattern: Preventing a failure in one component from cascading
and affecting the entire system is a core concern in distributed
architectures. The Bulkhead Pattern achieves this by isolating
components into separate pools, limiting the impact of failures and
enhancing overall system resilience.

Backends for Frontends Pattern: In the era of diverse client devices and
user interfaces, adapting backend services for specific frontends is
crucial. The Backends for Frontends Pattern tailors backend services to
the unique needs of different client interfaces, ensuring optimal user
experiences.

Immutable Infrastructure Pattern: The Immutable Infrastructure Pattern
is a paradigm shift in managing and deploying applications. Rather than
modifying existing servers, this pattern advocates for replacing them
entirely when updates or changes are required. This approach ensures
consistency, simplifies rollbacks, and enhances security by reducing
vulnerabilities associated with server drift. Immutable Infrastructure
aligns seamlessly with cloud-native principles and promotes reliability
and predictability in application deployments.



LESSON 2

Cache-Aside Pattern: Efficient data retrieval is a cornerstone of high-
performance applications. The Cache-Aside Pattern optimizes this
process by allowing applications to manage their own caches. Instead of
relying on the data store to handle caching, applications explicitly
request and update cached data. This pattern enhances flexibility,
providing fine-grained control over the caching strategy. By strategically
caching frequently accessed data, the Cache-Aside Pattern improves
response times and alleviates the load on data stores.

Blue-Green Deployment Pattern: Minimizing downtime and risk during
application updates is a constant challenge. The Blue-Green Deployment
Pattern addresses this by maintaining two identical environments: one
(Blue) serving production traffic and the other (Green) for deploying
updates. The transition between environments is seamless, achieved by
directing traffic from the old environment to the new one. This pattern
ensures minimal downtime, simplifies rollback procedures, and provides
a reliable mechanism for testing and validating updates before reaching
production.

Anti-Corruption Layer Pattern: In complex and evolving system
landscapes, integrating diverse services and components can lead to
challenges in maintaining consistency and preventing data corruption.
The Anti-Corruption Layer Pattern acts as a mediator, shielding different
parts of a system from each other’s complexities. By introducing an
abstraction layer, this pattern translates communication between
components, ensuring that changes in one component do not adversely
affect others. This promotes loose coupling, enhances maintainability,
and safeguards against unintended side effects.

Cloud design patterns play a pivotal role in shaping the landscape of
modern architecture. As cloud architectures become increasingly
sophisticated, embracing these design patterns is crucial for architects
and developers alike. From controlling traffic and optimizing data
retrieval to decoupling components and tailoring services for various
frontends, each pattern addresses specific challenges in building
resilient and scalable cloud-based systems. Whether addressing
transient errors, improving microservices communication, or facilitating
the migration to modern architectures, these patterns are essential tools
in the toolkit of cloud architects and engineers.

Taken from: https://medium.com/@developer.yasir.pk/unveiling-the-
power-of-cloud-design-patterns-in-modern-architecture-bb5eabae721

https://medium.com/@developer.yasir.pk/unveiling-the-power-of-cloud-design-patterns-in-modern-architecture-bb5eabae721d
https://medium.com/@developer.yasir.pk/unveiling-the-power-of-cloud-design-patterns-in-modern-architecture-bb5eabae721d

