(@R

SOCIALIZE
VOCABULARY ABOUT
THE READING TEXT
"REAL-WORLD
EXAMPLES OF
PATTERN-BASED

DESIGN."

ecls A7|EESEre: UTP

e

BUILDER PATTERN
Meaning:

A design pattern used when an object requires the construction of
multiple parameters, allowing the separation of mandatory and optional
fields. The construction logic is moved to a separate builder class,
enhancing flexibility and maintainability.

FACTORY METHOD
Meaning:

A design pattern that provides an interface for creating instances of a
superclass, with multiple subclasses implementing the interface. It
allows a method to be delegated to the subclasses, creating objects
based on certain conditions.

ABSTRACT FACTORY
Meaning:

A design pattern that defines a super-factory for creating families of
related or dependent objects without specifying their concrete classes. It
encapsulates the creation of multiple object types, providing a unified
interface.

PROTOTYPE PATTERN
Meaning:

A design pattern where objects are cloned rather than created with a
constructor, improving performance and minimizing complexity in object
creation. Useful when object creation is time-consuming.

(@R

FLYWEIGHT PATTERN
Meaning:

A design pattern that focuses on sharing objects to improve space
efficiency. Objects are shared for efficiency and consistency, particularly
when a large number of objects need to be created.

PROXY PATTERN
Meaning:

A design pattern that acts as a surrogate or placeholder for another
object, controlling access to it. It can be used for various purposes, such
as representing a large object that should be loaded on demand or
adding a layer of authorization.

DECORATOR PATTERN
Meaning:

A design pattern that allows behavior to be added to an individual object,
either statically or dynamically, without affecting the behavior of other
objects from the same class. It requires the decorator object's interface
to be identical to the decorated object.

povecTos (T2

FD']'._I-T I.-I qﬁ.ﬂ

(@R

READING: "REAL-
WORLD EXAMPLES OF
PATTERN-BASED
DESIGN."

From my experience as a Senior Software Engineer in a big software
company, many times developers concentrate mostly on design of
specific tasks and not enough effort is done on thinking about the
changes and additional features that may be added in the future. And
there are always changes and extensions of existing features in the
software industry! With the poor design, such code becomes very hard
for maintenance and each change may be time consuming and very
difficult for implementation. Good OO designs should be reusable,
extensible and maintainable and Design Patterns could be very helpful in
that.

On other hand, sometimes
developers overuse Design
Patterns which only adds
complexity to the code and it is
exactly the opposite of what is
needed!

In this article, I'll try to describe
in high level the most useful
Design Patterns by providing the
real day to day examples of
when they should be used. |
believe this will help developers
to use Design Patterns in the
right situations.

B ELCTOS

uTe?

ELHJCATIVOIS

e

L vipa

1. BUILDER

Did it happen to you, that you had to use a constructor with 5 or even
more parameters? For example, to create a Pizza object, you need to call
the following constructor:

Plzza(Size size, Boolean onton, Booleon cheese, Boolean olives,
Boolean tomoto, Boolean corn, Booleon mushroom, Souce souceType);

In addition to the fact that it's annoying, the parameters may be easily
mixed up by the developers. Usually, most of the parameters are not
even mandatory, but in this constructor, the user is forced to set value for
each of the parameters. What will happen when new ingredients are
added? Should this constructor be extended with even more parameters?

N/ | EBOdEREE WAL

Exactly for those cases, when a lot of parameters needed to build the
object — Builder design pattern is used! The main idea is to separate
required fields from an optional and to move the construction logic out
of the object class to a separate static inner class referred to as a builder
class. That Builder class has a constructor only for mandatory
parameters and setter methods for all the optional parameters. In
addition, there is a build() method which glues everything together and
returns an immutable complete object. All the builder setter methods
return the builder itself, so the invocations can be chained.

So, our Pizza object creation, after applying a builder pattern will look like
this:

PLzza prLzza = new
Pizza.Builder{Stize.medium).onton{true).olives(true).build();

Note, that Pizza class should not have any public constructor at all and
the objects will be created only using the Builder class.

Consider using this when Object contains a lot of attributes

(@R

USAGE EXAMPLES

Builder patterns may be very useful while writing Unit Tests. In order to
construct the object under the test, you need to pass a lot of parameters
to the constructor and some of these parameters are completely
irrelevant for the specific test. Builder class creation with separate
methods for each parameter that should be tested, which returns by the
end complete object under the test will help to write many UTs
effectively, without duplicating the code.

Building an XML document Building a smartphone object

with HTML elements (<html>, with attributes like RAM, size,

<h1><h2>, <body>,<p> and etc) resolution, OS, waterproof and
SO on.

2. FACTORY METHOD

Factory pattern is one of the most used design patterns and it's easy to
provide examples of cases in which it should be used. Consider building
a Logger Framework where the log messages may be written into the log
file (represented by FileLogger class) or displayed in the console
(represented by ConsoleLogger class). Depending on some logic (for
example the variable “logger.logToFile=true” stored in some properties
file), an appropriate Logger implementer needs to be used to log
messages . The Logger Framework may be used by many different
clients, therefore it would be a great idea to keep all the logic of creation
and instantiation of the objects away from the clients. In this way, the
client objects will not have to repeat the same logic again and again and
it will be totally isolated from the future changes (like extension of
Logger Framework by adding XmlLogger).

PROYECTOS

F|.-.||]|._I-|T I.-I qﬁ.ﬂ

(@R

The clients will be using the following lines in order to write to the log,
even without knowing if the log will be written to the file or to the
console:

Logger logger = LoggerFoctory.getlogger |

logger. log(™write some message to the log®);

All the logic will be encapsulated within the LoggerFactory class.

Consider using this when: A superclass has multiple sub-classes and
based on input, needs to return one of the sub-class.

USAGE EXAMPLES

Java JDK is widely using the
Factory pattern, for example
the valueOf() method in
wrapper classes like String,
Boolean and etc.

different databases maybe
supported: Oracle, SQLServer,
H2

Each time when we have family
of different kind of objects that
created according to some
logic:

different kind of employees:
developer, tester, manager

A7 |EEoxEsas UTA

e

3. ABSTRACT FACTORY

This pattern captures how to create families of related product objects,
without instantiating classes directly. It's a super-factory which creates
other factories.

Consider using this when: there is a family of factories and you need a
super factory for related factories

USAGE EXAMPLES

Application may have the
Abstract
DeviceProviderFactory which
will be able to detect if the
device is local or remote (from
Amazon Device Farm), and
return the corresponding
factory accordingly:
LocalDeviceProviderFactory or
RemoteDeviceProviderFactory
. Each such factory knows how
to create device provider per ,
0S type of device: ‘ Y{icfﬂtg:::it;?;rﬂbm
AndroidDeviceProvider, e -v,avfarﬂs‘}rip.‘i,rp‘jﬂa"’r
iOSDeviceProvider,

WindowsPhoneDeviceProvider

w" {0 .

AZ |EgiEcros UTR

—

4. PROTOTYPE

When using prototype patterns, the objects are cloned instead of
creating the new ones with a constructor, which improves the
performance. In addition, the prototype pattern helps to minimize
complexity in object creation.

Consider using this when: Creation of the object is very time consuming

USAGE EXAMPLES:

Cover letters: no need to create
the Cover letter for each
organization from scratch.
Instead, one cover letter will be
created in the most appealing
format and for others only a
copy will be created with a
personalized organization
name.

Chess game : may be used for
chess board creation, which
may be time consuming. Using
the Prototype pattern, the
board may be cloned, from the
already existing board object.

'R 1E_TI_.I" UIF
ELHJCATIVEIS

—

(@R

5. FLYWEIGHT

The Flyweight pattern defines a structure for sharing objects. Objects are
shared for at least two reasons: efficiency and consistency. Flyweight
focuses on sharing for space efficiency. But objects can be shared only
if they don't define context-dependent state. Flyweight objects have no
such state. Any additional information they need to perform their task is
passed to them when needed. With no context-dependent state,
Flyweight objects may be shared freely.

Consider using this when

The. number of The object The object should
Objects to be creation is heavy be immutable
created by on memory and it
application should can be time
be huge. consuming too.
USAGE EXAMPLES:

May be used to represent the keyboard characters: one object for ‘a’,
one for ‘b’ and so on.

When drawing a lot of shapes with different colors: one object for
the red circle, one object for the blue circle and so on. In case the red
circle was already created once, there is no need to create a hew
such object, since the same object may be reused.

’—._-EE!JI h? | PROYECTOS

= | ECJCATIVGIS

6. PROXY

A proxy can be used in many ways. It can act as a local representative
for an object in a remote address space. It can represent a large object
that should be loaded on demand and avoids duplication of the same
object. Without the concept of proxies, an application could be slow, and
appear non-responsive. The proxy might protect access to a sensitive

object.

USAGE EXAMPLES:

Image viewer program that
lists and displays high
resolution photos. The
program has to show a list of
all photos however it does not
need to display the actual
photo until the user selects an
image item from a list.

The protective proxy acts as an
authorization layer to verify if
the actual user has access to
appropriate content. An
example can be thought about
the proxy server which
provides restrictive internet
access in the office. Only the
websites and contents which
are valid will be allowed and
the remaining ones will be
blocked.

document

embed
graphical objects in a
document. It isn't necessary to
load all pictures when the
document is opened, because
not all of these objects will be
visible at the same time.

The same for
editors that can

Maybe used also for adding a
thread-safe feature to an
existing class without
changing the existing class’s
code.

B ELCTOS

ELHJCATIVOIS

uTe?

—

7. DECORATOR

Decorator pattern allows
behavior to be added to an
individual object, either statically
or dynamically, without affecting
the behavior of other objects
from the same class. Decorator
require the interface of the
Decorator object to be identical
to the decorated obiject.

USAGE EXAMPLES:

Very useful when | need to measure the time it takes to handle some
web service request. The class TimerDecorator with timer capabilities
should be created, which will start the timer when request received and
will stop the timer when response is sent back.

When needed to add to some shape component a border or a shadow
functionality.

When need to add zooming, or scrolling functionalities to a page.

A7 |ErovEcTos LUTA

DUCATIVOS amppigas

L€ vipa

FOTERCLE OE LA

VIDA

8. TEMPLATE METHOD

This pattern may be useful when we need to define an algorithm step by
step. The implementation of some of the steps may be different, but the
general flow and the order of the steps in the flow must remain
unchanged. For example, if we have different types of phone devices
(i0S and Android) which may be connected to the PC with USB, and we
have an application that when device is connected it should perform the
following steps: get device info, install an Agent on device and at the
end report that device connected. We know that this flow is constant
and want to be sure that it will stay the same also for the new device
types in case they will be supported in the future (for exp. Windows
Phone). Suppose we have an Abstract class — DeviceConnector and two
subclasses losDeviceConnector and AndroidDeviceConnector. We have
the methods: getDevicelnfo(), installAgent() and
reportDeviceConnected(). The first two methods will be implemented in
the two different ways for Android and iOS, because we are using device
specific libraries in order to do that. So, in Abstract Device class those
two methods will be abstract and the sub-classes will be forced to add
their specific implementation. The last method should have the same
implementation for all device types, so it may be implemented in the
Abstract Device class itself. But the main question here is, how will we
be sure that all device types (also added by other developers in the
future) will always implement those 3 methods in this specific order?
The answer is simple; we will add a method to our Abstract class that
will represent the steps of our flow (will include our three methods and
in correct order). It's also important to define this method as final so
that it could not be overridden and changed by its subclasses. In our
example, the Abstract class will look like this:

public abstract class DeviceConnector |

public final wvoid connectDevice() |
petDeviceInfol);
installagent();

reportDeviceConnectedd) ;

protected abstract void petDeviceInfo();
protected abstract void installAgent();
public void reportDeviceConnected() |

//Add implementation here

uTe?

N | EBSLaes

e

USAGE EXAMPLES:

When implementing some
general Parser, which loads the
data from different sources
(like CSV file, SQL Server
database, some 3rd party tool),
parses the data (data from
different sources will be
parsed in different ways and
then it may be saved to some
location. We will have template
methods for load(), parse() and
save() methods.

When implementing a credit
card validator. For different
kinds of credit cards (Visa,
MasterCard and etc) the
validation algorithm is the
same: need to check expiration
date, length of the credit card
number, account status etc.
But the actual implementation
for each credit card type may
be different.

9. OBSERVER
(ALSO MAY BE CALLED
PUBLISH/SUBSCRIBE
PATTERN)

The Observer pattern defines and maintains a dependency between
objects. The classic example of Observer is Model/View/Controller,
where all views are Observers of the model, which is called Observable.
All views are notified whenever the model’s state changes. The main
idea of the Observer pattern is that the Observable class will hold a list
of Observers and whenever it wants to broadcast something, it just calls
the method on all the observers, one after the other.

USAGE EXAMPLES:

Students and Board students should
be notified when new messages
appear on the board. Students are
Observers and the board is
Observable.

The chess game: the players are
observers and they get notified

when there is any change on the
board.

Pub-Sub messaging. When
messages are published on some
channel — the clients that are
listening on this channel will be
notified that there is a new
message.

A7 |EEqEcros UTA

—

10. STRATEGY

Strategy pattern helps to define a family of algorithms, to encapsulate
each one of them and make them interchangeable and independent from
the clients that use them. With this approach, our system becomes much
more flexible and even the algorithm may be changed at runtime. The
idea is to use an encapsulated family of algorithms as composition
within the client’s class instead of inheritance.

USAGE EXAMPLES:

Application which should be
able to choose a sorting
algorithm at runtime (Bubble
sort, QuickSort and so on).

In a game where we can have
different characters and each
character can have multiple
weapons to attack but at a
time can use only one weapon.
The method attack() will have
different implementations
depending on which weapon is
being used.

When implementing the
shopping site: the user adds
items to the basket and by the
end of checkout, the user can
choose the payment strategy
at runtime: PayPal, Credit Card
and so on.

Useful when a client may need
to apply a different
compression algorithm.

Adapted from: https://medium.com/@analempert/10-design-patterns-

with-day-to-day-examples-e4f256d8439

https://medium.com/@analempert/10-design-patterns-with-day-to-day-examples-e4f256d8439
https://medium.com/@analempert/10-design-patterns-with-day-to-day-examples-e4f256d8439

