
CLOUD
ARCHITECTURE

PATTERNS



A short essay about Software Architecture in the Cloud

This post contains a short summary of a few cloud architecture patterns.

Cloud architecture pattern is a tested architectural approach to solve a
set of problems (or only one) in cloud-based applications. Cloud patterns
applied to cloud-native applications. In plain English, a cloud-native
application is an application that is meant to run in a cloud (AWS, Azure,
private).

HORIZONTALLY SCALING COMPUTE PATTERN
This simple pattern implies that an application ready to handle auto-of-
the-box increases or decreases in compute capacity. The Horizontal
Scaling Compute Pattern architecturally aligns applications with the
most cloud-native approach for resource allocation. There are many
potential benefits for applications, including high scalability, high
availability, and cost optimisation, all while maintaining a robust user
experience. User state management should be handled without sticky
sessions in the web tier. Keeping nodes stateless makes them
interchangeable so that we can add nodes at any time without getting
the workloads out of balance and can lose nodes without losing
customer state.



QUEUE-CENTRIC WORKFLOW PATTERN. 
Please use queues/exchanges/streams to decouple components and
increase elasticity. You can have multiple queuer-s and de-queuer-s to
work with queues that don’t know anything about each other and can
horizontally scale. This pattern is for decoupling tiers of your application,
especially between the web (user interface) tier and a service tier that
does business processing. It is not useful for routine, read-only page
requests. Communication is in one direction, from the web tier to the
service tier, and is handled by adding messages onto a queue. Reliable
cloud queue services simplify implementation. A decoupled web tier can
be more responsive and reliable, providing a better user experience.
Concern-independent scaling also allows each tier to be provisioned with
the ideal level of resources for that tier.

CLOUD ARCHITECTURE PATTERN
Is a tested architectural approach to solve a set of problems (or only
one) in cloud-based applications. Cloud patterns applied to cloud-native
applications. In plain English, a cloud-native application is an application
that is meant to run in a cloud (AWS, Azure, private).



AUTO-SCALING PATTERN

EVENTUAL CONSISTENCY

The Auto-Scaling Pattern is an essential operations pattern for
automating cloud administration. By automating routine scaling
activities, cost optimization becomes more efficient with less effort.
Cloud-native applications gracefully handle the dynamic increases or
decreases in resource levels. The cloud makes it easy to plug into cloud
monitoring and scaling services, with self-hosted options also available.

The CAP Theorem provides the theoretical basis that explains why we
cannot guarantee both consistency and availability in a distributed
database. A useful compromise is to allow for eventual consistency in
favor of better scalability. Determining if your application data is a
suitable candidate for eventual consistency is a business decision. The
choice is between displaying stale data and scaling more efficiently.



MAP REDUCE PATTERN

DATABASE SHARDING

The MapReduce Pattern provides simple tools to efficiently process
arbitrary amounts of data. There are abundant examples of common use
that are not economically viable using traditional means. The Hadoop
ecosystem provides higher-level libraries that simplify creation and
execution of sophisticated maps and reduce functions. Hadoop also
makes it easy to integrate MapReduce output with other tools, such as
Excel and BI tools.

When using the Database Sharding Pattern, workloads can be distributed
over many database nodes rather than concentrated in one. This helps
overcome size, query performance, and transaction throughput limits of
the traditional single-node database. The economics of sharding a
database become favorable with managed sharding support, such as
found in some cloud database services. The data model must be able to
support sharding, a possible barrier for some applications not designed
with this in mind. Cross-shard operations can be more complex.



MULTI-TENANCY AND COMMODITY HARDWARE

BUSY SIGNAL PATTERN

Cloud platform vendors make choices around cost-efficiency that
directly impact the architecture of applications. Architecting to deal with
failure is part of what distinguishes a cloud-native application from a
traditional application. Rather than attempting to shield the application
from all failures, dealing with failure is a shared responsibility between
the cloud platform and the application.

Handling transient failures is essential for building reliable cloud-native
applications. Using the Busy Signal Pattern, your application can detect
and handle transient failures appropriately. Further, your approach can
be tuned for batch or interactive user scenarios. It may be difficult to test
your application’s response to transient failure conditions if running on
non-cloud hardware or with an unrealistically light load.



NODE FAILURE PATTERN

NETWORK LATENCY PATTERN

Basically, node failure will happen, so be ready ;) Failure in the cloud is
commonplace, though downtime is rare for cloud-native applications.
Using the Node Failure Pattern helps your application prepare for,
gracefully handle, and recover from occasional interruptions and failures
of compute nodes on which it is running. Many scenarios are handled
with the same implementation. Cloud applications that do not account
for node failure scenarios will be unreliable: user experience will suffer
and data can be lost.

A comprehensive strategy for dealing with network latency will use
multiple strategies. One set of strategies focuses on reducing the
perceived network latency. Another set of strategies focuses on actually
reducing network latency by shortening the distance between users and
the instances of our application.



COLOCATE PATTERN

VALET KEY PATTERN

The simplest way to get started in the cloud is to colocate nodes, usually
all in a single data center. This is appropriate for many applications, and
should be the usual configuration. Only deviate for good reason, and
avoid the mistake of accidental deployment across more than one data
center, including for storage of operational data.

Use of this pattern should be considered anywhere it can be safely
applied. The ability to manage temporary access for reading and writing
makes this a broadly usable pattern. The most common troublesome
use case will be an upload directly from a web browser, but reading is
well supported, and writing from more flexible clients such as mobile
apps is also well supported. When used with storage containers that
support this pattern, applications can avoid having a web page or web
service act as a security proxy to read or write data stored in a secure
container. This reduces load on the web tier because it is not acting as a
middleman for data transfer. Also, the code for implementing all the
variants of data passing through is replaced by the far simpler
generation and issuing of temporary access URLs, while the upload code
is offloaded to the client. The client code should utilize existing helper
libraries where available to minimize complexity. The end result is that
applications scale better and the user experience is improved.



CDN PATTERN

MULTISITE DEPLOYMENT PATTERN

Adding CDN support to a cloud application is a great example of a low-
friction adoption of a cloud service. Enabling a CDN can be
accomplished either programmatically or through a one-time manual
configuration via the cloud vendor’s web-hosted management tool. This
is substantially easier to get started with than traditional CDNs due to the
degree of convenience and integration. Once enabled, this is a great
technique for reducing the load on web servers, distributing load across
many servers (there are many more CDN locations than data centers),
while decreasing network latency. All this helps to both improve
scalability and improve user experience.

Using the Multisite Deployment Pattern primarily helps improve the user
experience for a geographically distributed user base. Users need not be
all over the world, but at least distributed such that more than one data
center provides sufficient value if the goal is to improve performance.
This pattern is also useful for applications requiring a failover strategy in
case one data center becomes unavailable. This is a complex subject,
but many of the components in this chapter will get you started. Because
the use of this pattern will result in a more complex and more expensive
application than a single data center solution, the business value needs
to be assessed and compared with the cost.



DYNAMIC DNS ROUTING PATTERN

AUTOMATED CONFIGURATION PATTERN OR
INFRASTRUCTURE AS CODE (IAC)

This pattern gives flexibility to faster reconfigure DNS Routing for all
above mentioned scenarios and more. F.e. load-balancing, direct access,
switch between resources etc.

This pattern implies fully automated, scripted and versioned cloud
architecture, which enables fast redeployment of the whole architecture
for many purposes of scalability and development. When your scripts are
versioned in a Git you can track history of your architecture, as well as,
fully automate cloud environment provisioning and configuration.
Example of this pattern is AWS CloudFormation.



AUTOMATED API MONITORING PATTERN

CONTINUES DEPLOYMENT INTO CLOUD
PATTERN

Using this pattern you can have a full understanding of the performance,
control, scalability, consumption patterns and monitoring. Examples are
3scale platform, CloudWatch.

This is an application of a standard software development practice
applied to cloud environments, when the code is pushed automatically to
many QA, Test, Staging/PreProd and other environments.
To sum up, Cloud gives us the possibility to develop highly scalable
applications much faster, easier and cheaper.


