
Understanding Part-of-Speech
Tagging in NLP: Techniques
and Applications

Reading Comprehension

Understanding Part-of-Speech
Tagging in NLP: Techniques
and Applications

Introduction to POS Tagging

Part-of-speech (POS) tagging is the process of labeling words in a text with their
corresponding parts of speech in natural language processing (NLP). It helps
algorithms understand the grammatical structure and meaning of a text.

Part-of-speech (POS) tagging is a process in natural language processing (NLP) where
each word in a text is labeled with its corresponding part of speech. This can include
nouns, verbs, adjectives, and other grammatical categories.

POS tagging is useful for a variety of NLP tasks, such as information extraction, named
entity recognition, and machine translation. It can also be used to identify the
grammatical structure of a sentence and to disambiguate words that have multiple
meanings.

POS tagging is typically performed using machine learning algorithms, which are trained on
a large annotated corpus of text. The algorithm learns to predict the correct POS tag for a
given word based on the context in which it appears.

There are various POS tagging schemes that have been developed, each with its own set of
tags and rules. Some common POS tagging schemes include the Penn Treebank tagset
and the Universal Dependencies tagset. Let’s take an example:

In this example, each word in the sentence has been labeled with its corresponding part of
speech. The determiner “the” is used to identify specific nouns, while the noun “cat” refers
to a specific animal. The verb “sat” describes an action, and the preposition “on” describes
the relationship between the cat and the mat.

POS tagging is a useful tool in natural language processing (NLP) as it allows algorithms to
understand the grammatical structure of a sentence and to disambiguate words that have
multiple meanings. It is typically performed using machine learning algorithms that are
trained on a large annotated corpus of text.

Identifying part of speech of word is not just mapping words to their respective POS tags.
Same word might have different part of speech tag based on different context. Thus it is
not possible to have common mapping for parts of speech tags.

When you have a huge corpus manually finding different part-of-speech for each word is a
scalable solution. As tagging itself might take days. This is why we rely on tool-based POS
tagging.

But why are we tagging these words with their parts of speech?

Text: “The cat sat on the mat.”

POS tags:
The: determiner
cat: noun
sat: verb
on: preposition
the: determiner
mat: noun

Use of Parts of Speech Tagging in NLP
There are several reasons why we might tag words with their parts of speech (POS) in
natural language processing (NLP):

By labeling each word with its POS, we can better understand the syntax and structure
of a sentence. This is useful for tasks such as machine translation and information
extraction, where it is important to know how words relate to each other in the
sentence.

To understand the grammatical structure of a sentence:

Some words, such as “bank,” can have multiple meanings depending on the context in
which they are used. By labeling each word with its POS, we can disambiguate these
words and better understand their intended meaning.

To disambiguate words with multiple meanings:

POS tagging can help improve the
performance of various NLP tasks, such
as named entity recognition and text
classification. By providing additional
context and information about the
words in a text, we can build more
accurate and sophisticated algorithms.

To improve the accuracy of
NLP tasks:

POS tagging can also be used to study
the patterns and characteristics of
language use and to gain insights into
the structure and function of different
parts of speech.

To facilitate research in
linguistics:

Steps Involved in the POS tagging
Here are the steps involved in a typical example of part-of-speech (POS) tagging in
natural language processing (NLP):

Use the trained model or rules to predict the POS tags of the words in the testing set.
Compare the predicted tags to the true tags and calculate metrics such as precision
and recall to evaluate the performance of the tagger.

Train the POS tagger:

If the performance of the tagger is not satisfactory, adjust the model or rules and
repeat the training and testing process until the desired level of accuracy is achieved.

Fine-tune the POS tagger:

Once the tagger is trained and tested, it can be used to perform POS tagging on new,
unseen text. This may involve preprocessing the text and inputting it into the trained
model or applying the rules to the text. The output will be the predicted POS tags for
each word in the text.

Use the POS tagger:

This dataset will be used to train and test the POS tagger. The text should be annotated
with the correct POS tags for each word.

Collect a dataset of annotated text:

This may include tasks such as tokenization (splitting the text into individual words),
lowercasing, and removing punctuation.

Preprocess the text:

This may involve building a statistical model, such as a hidden Markov model (HMM), or
defining a set of rules for a rule-based or transformation-based tagger. The model or
rules will be trained on the annotated text in the training set.

Divide the dataset into training and testing sets:

Application of POS Tagging
There are several real-life applications of part-of-speech (POS) tagging in natural
language processing (NLP):

POS tagging can be used to identify specific types of information in a text, such as
names, locations, and organizations. This is useful for tasks such as extracting data
from news articles or building knowledge bases for artificial intelligence systems.

Information extraction:

POS tagging can be used to identify and classify named entities in a text, such as people,
places, and organizations. This is useful for tasks such as building customer profiles or
identifying key figures in a news story.

Named entity recognition:

POS tagging can be used to help classify texts into different categories, such as spam
emails or sentiment analysis. By analyzing the POS tags of the words in a text,
algorithms can better understand the content and tone of the text.

Text classification:

POS tagging can be used to help translate texts from one language to another by
identifying the grammatical structure and relationships between words in the source
language and mapping them to the target language.

Machine translation:

POS tagging can be used to generate
natural-sounding text by selecting appropriate
words and constructing grammatically correct
sentences. This is useful for tasks such as
chatbots and virtual assistants.

Natural language generation:

Implement Parts-Of-Speech tags using Spacy in Python
To use the Python spacy library to implement part-of-speech (POS) tagging, you will
need to install the library and download a language model. Here is an example of how
to use spacy to perform POS tagging:

1.Install the spacy library and download a language model:

pip install spacy
python -m spacy download en_core_web_sm

2. Next, import the spacy library and load the language model:

import spacy

In case you are getting an error in importing the library, you need to install the spacy
library first. You can do ‘pip install spacy’ to install the spacy on your local machine. You
can download the specific version of spacy if you want or else you can avoid
mentioning the version and the pip install will get you the latest version of the library.

As a next step we will load the en_core_web_sm medium-sized English model trained
on written web text (blogs, news, comments), that includes a tagger, a dependency
parser, a lemmatizer, a named entity recognizer and a word vector table with 20k
unique vectors.

nlp = spacy.load("en_core_web_sm")

3. Once you are done loading the trained English model, as a next step you can directly
add a sentence to check the the POS tags assigned to it. Spacy will automatically add
the parts of speech tag to it.

To perform POS tagging on a text, you can use the

nlp
object to process the text and access the POS tags of the words:
doc = nlp("Apple is planning to buy Indian startup for $1 billion")
for token in doc:

 print(token, "|", token.pos_,"|", spacy.explain(token.pos_),"|",token.tag_,
spacy.explain(token.tag_))

token.pos_ will give the POS tag of the specific token. token.tag_ will give you a detailed
aspect of the POS tag assigned to the token. It output of them are abbreviated as AUX,
PROPN, PART, etc. If you want a detail of it you can use spacy.explain() to understand
the POS tag better.

Apple | PROPN | proper noun | NNP noun, proper singular
is | AUX | auxiliary | VBZ verb, 3rd person singular present
planning | VERB | verb | VBG verb, gerund or present participle
to | PART | particle | TO infinitival "to"
buy | VERB | verb | VB verb, base form
Indian | ADJ | adjective | JJ adjective (English), other noun-modifier (Chinese)
startup | NOUN | noun | NN noun, singular or mass
for | ADP | adposition | IN conjunction, subordinating or preposition
$ | SYM | symbol | $ symbol, currency
1 | NUM | numeral | CD cardinal number
billion | NUM | numeral | CD cardinal number
Here you can see that spacy has tokenized the sentence and added specific POS tags
to each of the words. Along with parts of speech tags spacy has also identified the
symbols and numerals.

Note: Spacy uses its own set of POS tags, which may be different from other POS
tagging schemes. You can find a list of Spacy’s POS tags here.

There are many other libraries and tools available in Python for performing POS
tagging, such as nltk and stanfordnlp. You can choose the one that best fits your needs
and use it to implement POS tagging in your Python applications.

Output

Rule-based part-of-speech (POS) tagging is
a method of labeling words with their
corresponding parts of speech using a set
of pre-defined rules. This is in contrast to
machine learning-based POS tagging, which
relies on training a model on a large
annotated corpus of text.

In a rule-based POS tagging system, words
are assigned POS tags based on their
characteristics and the context in which
they appear. For example, a rule-based POS
tagger might assign the tag “noun” to any
word that ends in “-tion” or “-ment,” as these
suffixes are often used to form nouns.

Rule-based POS taggers can be relatively simple to implement and are often used as a
starting point for more complex machine learning-based taggers. However, they can be
less accurate and less efficient than machine learning-based taggers, especially for
tasks with large or complex datasets.

Here is an example of how a rule-based POS tagger might work:

Define a set of rules for assigning POS tags to words. For example:
If the word ends in “-tion,” assign the tag “noun.”
If the word ends in “-ment,” assign the tag “noun.”
If the word is all uppercase, assign the tag “proper noun.”
If the word is a verb ending in “-ing,” assign the tag “verb.”
Iterate through the words in the text and apply the rules to each word in turn. For
example:
“Nation” would be tagged as “noun” based on the first rule.
“Investment” would be tagged as “noun” based on the second rule.
“UNITED” would be tagged as “proper noun” based on the third rule.
“Running” would be tagged as “verb” based on the fourth rule.
Output the POS tags for each word in the text.
This is a very basic example of a rule-based POS tagger, and more complex systems
can include additional rules and logic to handle more varied and nuanced text.

Types of POS Tagging in NLP
Rule Based POS Tagging

Statistical part-of-speech (POS) tagging is a
method of labeling words with their
corresponding parts of speech using
statistical techniques. This is in contrast to
rule-based POS tagging, which relies on
pre-defined rules, and to unsupervised
learning-based POS tagging, which does not
use any annotated training data.

In statistical POS tagging, a model is trained
on a large annotated corpus of text to learn
the patterns and characteristics of different
parts of speech. The model uses this
training data to predict the POS tag of a
given word based on the context in which it
appears and the probability of different POS
tags occurring in that context.

Statistical POS taggers can be more accurate and efficient than rule-based taggers,
especially for tasks with large or complex datasets. However, they require a large
amount of annotated training data and can be computationally intensive to train.

Here is an example of how a statistical POS tagger might work:

Collect a large annotated corpus of text and divide it into training and testing sets.
Train a statistical model on the training data, using techniques such as maximum
likelihood estimation or hidden Markov models.
Use the trained model to predict the POS tags of the words in the testing data.
Evaluate the performance of the model by comparing the predicted tags to the true
tags in the testing data and calculating metrics such as precision and recall.
Fine-tune the model and repeat the process until the desired level of accuracy is
achieved.
Use the trained model to perform POS tagging on new, unseen text.
There are various statistical techniques that can be used for POS tagging, and the
choice of technique will depend on the specific characteristics of the dataset and the
desired level of accuracy.

Statistical POS Tagging

Transformation-based tagging (TBT) is a
method of part-of-speech (POS) tagging
that uses a series of rules to transform the
tags of words in a text. This is in contrast to
rule-based POS tagging, which assigns tags
to words based on pre-defined rules, and to
statistical POS tagging, which relies on a
trained model to predict tags based on
probability.

In TBT, a set of rules is defined to transform
the tags of words in a text based on the
context in which they appear. For example,
a rule might change the tag of a verb to a
noun if it appears after a determiner such
as “the.” The rules are applied to the text in
a specific order, and the tags are updated
after each transformation.

TBT can be more accurate than rule-based tagging, especially for tasks with complex
grammatical structures. However, it can be more computationally intensive and
requires a larger set of rules to achieve good performance.

Here is an example of how a TBT system might work:

Define a set of rules for transforming the tags of words in the text. For example:
If the word is a verb and appears after a determiner, change the tag to “noun.”
If the word is a noun and appears after an adjective, change the tag to “adjective.”
Iterate through the words in the text and apply the rules in a specific order. For
example:
In the sentence “The cat sat on the mat,” the word “sat” would be changed from a verb
to a noun based on the first rule.
In the sentence “The red cat sat on the mat,” the word “red” would be changed from an
adjective to a noun based on the second rule.
Output the transformed tags for each word in the text.
This is a very basic example of a TBT system, and more complex systems can include
additional rules and logic to handle more varied and nuanced text.

Transformation-based tagging (TBT)

Hidden Markov models (HMMs) are a type
of statistical model that can be used for
part-of-speech (POS) tagging in natural
language processing (NLP). In an
HMM-based POS tagger, a model is trained
on a large annotated corpus of text to learn
the patterns and characteristics of different
parts of speech. The model uses this
training data to predict the POS tag of a
given word based on the probability of
different tags occurring in the context of the
word.

An HMM-based POS tagger consists of a
set of states, each corresponding to a
possible POS tag, and a set of transitions
between the states. The model is trained on
the training data to learn the probabilities of
transitioning from one state to another and
the probabilities of observing different
words given a particular state.

To perform POS tagging on a new text using
an HMM-based tagger, the model uses the
probabilities learned during training to
compute the most likely sequence of POS
tags for the words in the text. This is
typically done using the Viterbi algorithm,
which calculates the probability of each
possible sequence of tags and selects the
most likely one.

HMMs are widely used for POS tagging and other tasks in NLP due to their ability to
model complex sequential data and their efficiency in computation. However, they can
be sensitive to the quality of the training data and may require a large amount of
annotated data to achieve good performance.

Hidden Markov Model POS tagging

Challenges in POS Tagging
Some common challenges in part-of-speech (POS) tagging include:

Conclusion

Part-of-speech (POS) tagging is a crucial step in natural language processing (NLP), as
it allows algorithms to understand the grammatical structure and meaning of a text.
There are several methods for performing POS tagging, including rule-based,
statistical, transformation-based, and hidden Markov model (HMM) tagging.

Rule-based POS tagging relies on a set of pre-defined rules to assign tags to words,
while statistical POS tagging uses a trained model to predict tags based on probability.
Transformation-based tagging (TBT) uses a series of rules to transform the tags of
words based on context, and HMM tagging uses an HMM to learn the patterns and
characteristics of different parts of speech.

Each method has its own strengths and limitations, and the choice of method will
depend on the specific characteristics of the dataset and the desired level of accuracy.
Overall, POS tagging is an important tool in NLP that helps algorithms understand and
analyze the structure and meaning of text.

• Ambiguity: Some words can
have multiple POS tags
depending on the context in
which they appear, making it
difficult to determine their
correct tag. For example, the
word “bass” can be a noun (a
type of fish) or an adjective
(having a low frequency or pitch).

• Out-of-vocabulary (OOV) words:
Words that are not present in the
training data of a POS tagger can
be difficult to tag accurately,
especially if they are rare or
specific to a particular domain.

• Complex grammatical
structures: Languages with
complex grammatical structures,
such as languages with many
inflections or free word order,

can be more challenging to tag
accurately.

• Lack of annotated training data:
Some languages or domains
may have limited annotated
training data, making it difficult
to train a high-performing POS
tagger.

• Inconsistencies in annotated
data: Annotated data can
sometimes contain errors or
inconsistencies, which can
negatively impact the
performance of a POS tagger.

