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Introduction to POS Tagging

Part-of-speech (POS) tagging is the process of labeling words in a text with their 
corresponding parts of speech in natural language processing (NLP). It helps 
algorithms understand the grammatical structure and meaning of a text.

Part-of-speech (POS) tagging is a process in natural language processing (NLP) where 
each word in a text is labeled with its corresponding part of speech. This can include 
nouns, verbs, adjectives, and other grammatical categories.

POS tagging is useful for a variety of NLP tasks, such as information extraction, named 
entity recognition, and machine translation. It can also be used to identify the 
grammatical structure of a sentence and to disambiguate words that have multiple 
meanings.



POS tagging is typically performed using machine learning algorithms, which are trained on 
a large annotated corpus of text. The algorithm learns to predict the correct POS tag for a 
given word based on the context in which it appears.

There are various POS tagging schemes that have been developed, each with its own set of 
tags and rules. Some common POS tagging schemes include the Penn Treebank tagset 
and the Universal Dependencies tagset. Let’s take an example:

In this example, each word in the sentence has been labeled with its corresponding part of 
speech. The determiner “the” is used to identify specific nouns, while the noun “cat” refers 
to a specific animal. The verb “sat” describes an action, and the preposition “on” describes 
the relationship between the cat and the mat.

POS tagging is a useful tool in natural language processing (NLP) as it allows algorithms to 
understand the grammatical structure of a sentence and to disambiguate words that have 
multiple meanings. It is typically performed using machine learning algorithms that are 
trained on a large annotated corpus of text.

Identifying part of speech of word is not just mapping words to their respective POS tags. 
Same word might have different part of speech tag based on different context. Thus it is 
not possible to have common mapping for parts of speech tags.

When you have a huge corpus manually finding different part-of-speech for each word is a 
scalable solution. As tagging itself might take days. This is why we rely on tool-based POS 
tagging.

But why are we tagging these words with their parts of speech?

Text: “The cat sat on the mat.”

POS tags:
The: determiner
cat: noun
sat: verb
on: preposition
the: determiner
mat: noun



Use of Parts of Speech Tagging in NLP
There are several reasons why we might tag words with their parts of speech (POS) in 
natural language processing (NLP):

By labeling each word with its POS, we can better understand the syntax and structure 
of a sentence. This is useful for tasks such as machine translation and information 
extraction, where it is important to know how words relate to each other in the 
sentence.

To understand the grammatical structure of a sentence:

Some words, such as “bank,” can have multiple meanings depending on the context in 
which they are used. By labeling each word with its POS, we can disambiguate these 
words and better understand their intended meaning.

To disambiguate words with multiple meanings:

POS tagging can help improve the 
performance of various NLP tasks, such 
as named entity recognition and text 
classification. By providing additional 
context and information about the 
words in a text, we can build more 
accurate and sophisticated algorithms.

To improve the accuracy of 
NLP tasks:

POS tagging can also be used to study 
the patterns and characteristics of 
language use and to gain insights into 
the structure and function of different 
parts of speech.

To facilitate research in 
linguistics:



Steps Involved in the POS tagging
Here are the steps involved in a typical example of part-of-speech (POS) tagging in 
natural language processing (NLP):

Use the trained model or rules to predict the POS tags of the words in the testing set. 
Compare the predicted tags to the true tags and calculate metrics such as precision 
and recall to evaluate the performance of the tagger.

Train the POS tagger: 

If the performance of the tagger is not satisfactory, adjust the model or rules and 
repeat the training and testing process until the desired level of accuracy is achieved.

Fine-tune the POS tagger:

Once the tagger is trained and tested, it can be used to perform POS tagging on new, 
unseen text. This may involve preprocessing the text and inputting it into the trained 
model or applying the rules to the text. The output will be the predicted POS tags for 
each word in the text.

Use the POS tagger:

This dataset will be used to train and test the POS tagger. The text should be annotated 
with the correct POS tags for each word.

Collect a dataset of annotated text:

This may include tasks such as tokenization (splitting the text into individual words), 
lowercasing, and removing punctuation.

Preprocess the text:

This may involve building a statistical model, such as a hidden Markov model (HMM), or 
defining a set of rules for a rule-based or transformation-based tagger. The model or 
rules will be trained on the annotated text in the training set.

Divide the dataset into training and testing sets:



Application of POS Tagging
There are several real-life applications of part-of-speech (POS) tagging in natural 
language processing (NLP):

POS tagging can be used to identify specific types of information in a text, such as 
names, locations, and organizations. This is useful for tasks such as extracting data 
from news articles or building knowledge bases for artificial intelligence systems.

Information extraction: 

POS tagging can be used to identify and classify named entities in a text, such as people, 
places, and organizations. This is useful for tasks such as building customer profiles or 
identifying key figures in a news story.

Named entity recognition: 

POS tagging can be used to help classify texts into different categories, such as spam 
emails or sentiment analysis. By analyzing the POS tags of the words in a text, 
algorithms can better understand the content and tone of the text.

Text classification:

POS tagging can be used to help translate texts from one language to another by 
identifying the grammatical structure and relationships between words in the source 
language and mapping them to the target language.

Machine translation: 

POS tagging can be used to generate 
natural-sounding text by selecting appropriate 
words and constructing grammatically correct 
sentences. This is useful for tasks such as 
chatbots and virtual assistants.

Natural language generation: 



Implement Parts-Of-Speech tags using Spacy in Python
To use the Python spacy library to implement part-of-speech (POS) tagging, you will 
need to install the library and download a language model. Here is an example of how 
to use spacy to perform POS tagging:

1.Install the spacy library and download a language model:

pip install spacy
python -m spacy download en_core_web_sm

2. Next, import the spacy library and load the language model:

import spacy

In case you are getting an error in importing the library, you need to install the spacy 
library first. You can do ‘pip install spacy’ to install the spacy on your local machine. You 
can download the specific version of spacy if you want or else you can avoid 
mentioning the version and the pip install will get you the latest version of the library.

As a next step we will load the en_core_web_sm medium-sized English model trained 
on written web text (blogs, news, comments), that includes a tagger, a dependency 
parser, a lemmatizer, a named entity recognizer and a word vector table with 20k 
unique vectors.

nlp = spacy.load("en_core_web_sm")

3. Once you are done loading the trained English model, as a next step you can directly 
add a sentence to check the the POS tags assigned to it. Spacy will automatically add 
the parts of speech tag to it.

To perform POS tagging on a text, you can use the

<em>nlp</em>
object to process the text and access the POS tags of the words:
doc = nlp("Apple is planning to buy Indian startup for $1 billion")
for token in doc:

  print(token, "|", token.pos_,"|", spacy.explain(token.pos_),"|",token.tag_, 
spacy.explain(token.tag_))

token.pos_ will give the POS tag of the specific token. token.tag_ will give you a detailed 
aspect of the POS tag assigned to the token. It output of them are abbreviated as AUX, 
PROPN, PART, etc. If you want a detail of it you can use spacy.explain( ) to understand 
the POS tag better.



Apple | PROPN | proper noun | NNP noun, proper singular
is | AUX | auxiliary | VBZ verb, 3rd person singular present
planning | VERB | verb | VBG verb, gerund or present participle
to | PART | particle | TO infinitival "to"
buy | VERB | verb | VB verb, base form
Indian | ADJ | adjective | JJ adjective (English), other noun-modifier (Chinese)
startup | NOUN | noun | NN noun, singular or mass
for | ADP | adposition | IN conjunction, subordinating or preposition
$ | SYM | symbol | $ symbol, currency
1 | NUM | numeral | CD cardinal number
billion | NUM | numeral | CD cardinal number
Here you can see that spacy has tokenized the sentence and added specific POS tags 
to each of the words. Along with parts of speech tags spacy has also identified the 
symbols and numerals.

Note: Spacy uses its own set of POS tags, which may be different from other POS 
tagging schemes. You can find a list of Spacy’s POS tags here.

There are many other libraries and tools available in Python for performing POS 
tagging, such as nltk and stanfordnlp. You can choose the one that best fits your needs 
and use it to implement POS tagging in your Python applications.

Output



Rule-based part-of-speech (POS) tagging is 
a method of labeling words with their 
corresponding parts of speech using a set 
of pre-defined rules. This is in contrast to 
machine learning-based POS tagging, which 
relies on training a model on a large 
annotated corpus of text.

In a rule-based POS tagging system, words 
are assigned POS tags based on their 
characteristics and the context in which 
they appear. For example, a rule-based POS 
tagger might assign the tag “noun” to any 
word that ends in “-tion” or “-ment,” as these 
suffixes are often used to form nouns.

Rule-based POS taggers can be relatively simple to implement and are often used as a 
starting point for more complex machine learning-based taggers. However, they can be 
less accurate and less efficient than machine learning-based taggers, especially for 
tasks with large or complex datasets.

Here is an example of how a rule-based POS tagger might work:

Define a set of rules for assigning POS tags to words. For example:
If the word ends in “-tion,” assign the tag “noun.”
If the word ends in “-ment,” assign the tag “noun.”
If the word is all uppercase, assign the tag “proper noun.”
If the word is a verb ending in “-ing,” assign the tag “verb.”
Iterate through the words in the text and apply the rules to each word in turn. For 
example:
“Nation” would be tagged as “noun” based on the first rule.
“Investment” would be tagged as “noun” based on the second rule.
“UNITED” would be tagged as “proper noun” based on the third rule.
“Running” would be tagged as “verb” based on the fourth rule.
Output the POS tags for each word in the text.
This is a very basic example of a rule-based POS tagger, and more complex systems 
can include additional rules and logic to handle more varied and nuanced text.

Types of POS Tagging in NLP
Rule Based POS Tagging



Statistical part-of-speech (POS) tagging is a 
method of labeling words with their 
corresponding parts of speech using 
statistical techniques. This is in contrast to 
rule-based POS tagging, which relies on 
pre-defined rules, and to unsupervised 
learning-based POS tagging, which does not 
use any annotated training data.

In statistical POS tagging, a model is trained 
on a large annotated corpus of text to learn 
the patterns and characteristics of different 
parts of speech. The model uses this 
training data to predict the POS tag of a 
given word based on the context in which it 
appears and the probability of different POS 
tags occurring in that context.

Statistical POS taggers can be more accurate and efficient than rule-based taggers, 
especially for tasks with large or complex datasets. However, they require a large 
amount of annotated training data and can be computationally intensive to train.

Here is an example of how a statistical POS tagger might work:

Collect a large annotated corpus of text and divide it into training and testing sets.
Train a statistical model on the training data, using techniques such as maximum 
likelihood estimation or hidden Markov models.
Use the trained model to predict the POS tags of the words in the testing data.
Evaluate the performance of the model by comparing the predicted tags to the true 
tags in the testing data and calculating metrics such as precision and recall.
Fine-tune the model and repeat the process until the desired level of accuracy is 
achieved.
Use the trained model to perform POS tagging on new, unseen text.
There are various statistical techniques that can be used for POS tagging, and the 
choice of technique will depend on the specific characteristics of the dataset and the 
desired level of accuracy.

Statistical POS Tagging



Transformation-based tagging (TBT) is a 
method of part-of-speech (POS) tagging 
that uses a series of rules to transform the 
tags of words in a text. This is in contrast to 
rule-based POS tagging, which assigns tags 
to words based on pre-defined rules, and to 
statistical POS tagging, which relies on a 
trained model to predict tags based on 
probability.

In TBT, a set of rules is defined to transform 
the tags of words in a text based on the 
context in which they appear. For example, 
a rule might change the tag of a verb to a 
noun if it appears after a determiner such 
as “the.” The rules are applied to the text in 
a specific order, and the tags are updated 
after each transformation.

TBT can be more accurate than rule-based tagging, especially for tasks with complex 
grammatical structures. However, it can be more computationally intensive and 
requires a larger set of rules to achieve good performance.

Here is an example of how a TBT system might work:

Define a set of rules for transforming the tags of words in the text. For example:
If the word is a verb and appears after a determiner, change the tag to “noun.”
If the word is a noun and appears after an adjective, change the tag to “adjective.”
Iterate through the words in the text and apply the rules in a specific order. For 
example:
In the sentence “The cat sat on the mat,” the word “sat” would be changed from a verb 
to a noun based on the first rule.
In the sentence “The red cat sat on the mat,” the word “red” would be changed from an 
adjective to a noun based on the second rule.
Output the transformed tags for each word in the text.
This is a very basic example of a TBT system, and more complex systems can include 
additional rules and logic to handle more varied and nuanced text.

Transformation-based tagging (TBT)



Hidden Markov models (HMMs) are a type 
of statistical model that can be used for 
part-of-speech (POS) tagging in natural 
language processing (NLP). In an 
HMM-based POS tagger, a model is trained 
on a large annotated corpus of text to learn 
the patterns and characteristics of different 
parts of speech. The model uses this 
training data to predict the POS tag of a 
given word based on the probability of 
different tags occurring in the context of the 
word.

An HMM-based POS tagger consists of a 
set of states, each corresponding to a 
possible POS tag, and a set of transitions 
between the states. The model is trained on 
the training data to learn the probabilities of 
transitioning from one state to another and 
the probabilities of observing different 
words given a particular state.

To perform POS tagging on a new text using 
an HMM-based tagger, the model uses the 
probabilities learned during training to 
compute the most likely sequence of POS 
tags for the words in the text. This is 
typically done using the Viterbi algorithm, 
which calculates the probability of each 
possible sequence of tags and selects the 
most likely one.

HMMs are widely used for POS tagging and other tasks in NLP due to their ability to 
model complex sequential data and their efficiency in computation. However, they can 
be sensitive to the quality of the training data and may require a large amount of 
annotated data to achieve good performance.

Hidden Markov Model POS tagging



Challenges in POS Tagging
Some common challenges in part-of-speech (POS) tagging include:

Conclusion

Part-of-speech (POS) tagging is a crucial step in natural language processing (NLP), as 
it allows algorithms to understand the grammatical structure and meaning of a text. 
There are several methods for performing POS tagging, including rule-based, 
statistical, transformation-based, and hidden Markov model (HMM) tagging.

Rule-based POS tagging relies on a set of pre-defined rules to assign tags to words, 
while statistical POS tagging uses a trained model to predict tags based on probability. 
Transformation-based tagging (TBT) uses a series of rules to transform the tags of 
words based on context, and HMM tagging uses an HMM to learn the patterns and 
characteristics of different parts of speech.

Each method has its own strengths and limitations, and the choice of method will 
depend on the specific characteristics of the dataset and the desired level of accuracy. 
Overall, POS tagging is an important tool in NLP that helps algorithms understand and 
analyze the structure and meaning of text.

• Ambiguity: Some words can 
have multiple POS tags 
depending on the context in 
which they appear, making it 
difficult to determine their 
correct tag. For example, the 
word “bass” can be a noun (a 
type of fish) or an adjective 
(having a low frequency or pitch).

• Out-of-vocabulary (OOV) words: 
Words that are not present in the 
training data of a POS tagger can 
be difficult to tag accurately, 
especially if they are rare or 
specific to a particular domain.

• Complex grammatical 
structures: Languages with 
complex grammatical structures, 
such as languages with many 
inflections or free word order, 

can be more challenging to tag 
accurately.

• Lack of annotated training data: 
Some languages or domains 
may have limited annotated 
training data, making it difficult 
to train a high-performing POS 
tagger.

• Inconsistencies in annotated 
data: Annotated data can 
sometimes contain errors or 
inconsistencies, which can 
negatively impact the 
performance of a POS tagger.


