
A Guide on Word
Embeddings in NLP
Taken from: https://www.turing.com/kb/guide-on-word-embeddings-in-nlp

A Guide on Word
Embeddings in NLP

Word embedding in NLP is an important term that is
used for representing words for text analysis in the
form of real-valued vectors. It is an advancement in
NLP that has improved the ability of computers to
understand text-based content in a better way. It is
considered one of the most significant breakthroughs
of deep learning for solving challenging natural
language processing problems.

In this approach, words and documents are represented in the form of
numeric vectors allowing similar words to have similar vector representations.
The extracted features are fed into a machine learning model so as to work
with text data and preserve the semantic and syntactic information. This
information once received in its converted form is used by NLP algorithms
that easily digest these learned representations and process textual
information.

Due to the perks this technology brings on the table, the
popularity of ML NLP is surging making it one of the
most chosen fields by the developers.

Now that you have a basic understanding of the topic, let
us start from scratch by introducing you to word
embeddings, its techniques, and applications.

1. What is word embedding?
Word embedding or word vector is an approach with
which we represent documents and words. It is defined
as a numeric vector input that allows words with similar
meanings to have the same representation. It can
approximate meaning and represent a word in a lower
dimensional space.

These can be trained much faster than the hand-built models that use graph
embeddings like WordNet.

For instance, a word embedding with 50 values holds the capability of
representing 50 unique features. Many people choose pre-trained word
embedding models like Flair, fastText, SpaCy, and others.

We will discuss it further in the article. Let’s move on to learn it briefly with
an example of the same.

Given a supervised learning task to predict which tweets
are about real disasters and which ones are not
(classification). Here the independent variable would be
the tweets (text) and the target variable would be the
binary values (1: Real Disaster, 0: Not real Disaster).

Now, Machine Learning and Deep Learning algorithms
only take numeric input. So, how do we convert tweets to
their numeric values? We will dive deep into the
techniques to solve such problems, but first let’s look at
the solution provided by word embedding.

Word Embeddings in NLP is a technique where individual
words are represented as real-valued vectors in a lower-
dimensional space and captures inter-word semantics.
Each word is represented by a real-valued vector with tens
or hundreds of dimensions.

2. Applications Of Artificial Intelligence in Education1.1. The problem

1.2. The solution

Term frequency-inverse document frequency
is the machine learning algorithm that is used
for word embedding for text. It comprises two
metrics, namely term frequency (TF) and
inverse document frequency (IDF).

This algorithm works on a statistical measure
of finding word relevance in the text that can
be in the form of a single document or various
documents that are referred to as corpus.

The term frequency (TF) score measures the frequency of words in a
particular document. In simple words, it means that the occurrence of words
is counted in the documents.

The inverse document frequency or the IDF score measures the rarity of the
words in the text. It is given more importance over the term frequency score
because even though the TF score gives more weightage to frequently
occurring words, the IDF score focuses on rarely used words in the corpus
that may hold significant information.

TF-IDF algorithm finds application in
solving simpler natural language
processing and machine learning
problems for tasks like information
retrieval, stop words removal, keyword
extraction, and basic text analysis.
However, it does not capture the
semantic meaning of words efficiently
in a sequence.

2. Term frequency-inverse
document frequency (TF-IDF)

To create TF-IDF vectors, we use Scikit-learn’s TF-IDF Vectorizer. After
applying it to the previous 4 sample tweets, we obtain -

Now let’s understand it further with an example. We will see how
vectorization is done in TF-IDF.

The rows represent each document, the
columns represent the vocabulary, and the
values of tf-idf(i,j) are obtained through the
above formula. This matrix obtained can be
used along with the target variable to train a
machine learning/deep learning model.

Let us now discuss two different approaches
to word embeddings. We’ll also look at the
hands-on part!

2.1. Output of TfidfVectorizer

The Word2Vec method was developed by Google in 2013.
Presently, we use this technique for all advanced natural
language processing (NLP) problems. It was invented for
training word embeddings and is based on a distributional
hypothesis.

A bag of words is one of the popular word embedding techniques of text
where each value in the vector would represent the count of words in a
document/sentence. In other words, it extracts features from the text. We
also refer to it as vectorization.

To get you started, here’s how you can proceed to create BOW.

3. Bag of words (BOW)

In the first step, you have to tokenize the text into sentences.

Next, the sentences tokenized in the first step have further
tokenized words.

Eliminate any stop words or punctuation.

Then, convert all the words to lowercase.

Finally, move to create a frequency distribution chart of the
words.

We will discuss BOW with proper examples in the continuous
bag of word selection below.

4. Word2Vec

In this hypothesis, it uses skip-grams or a continuous bag of words (CBOW).

These are basically shallow neural networks that have an input layer, an
output layer, and a projection layer. It reconstructs the linguistic context of
words by considering both the order of words in history as well as the future.

The method involves iteration over a corpus of text to learn the association
between the words. It relies on a hypothesis that the neighboring words in a
text have semantic similarities with each other. It assists in mapping
semantically similar words to geometrically close embedding vectors.

It uses the cosine similarity metric to measure semantic similarity. Cosine
similarity is equal to Cos(angle) where the angle is measured between the
vector representation of two words/documents.

So if the cosine angle is one, it means that the
words are overlapping.
And if the cosine angle is a right angle or 90°, It
means words hold no cntextual similarity and are
independent of each other.

To summarize, we can say that this metric
assigns similar vector representations to the
same boards.

4.1. Two variants of Word2Vec
Word2Vec has two neural network-based variants: Continuous Bag of Words
(CBOW) and Skip-gram.

The continuous bag of words variant includes various inputs that are taken
by the neural network model. Out of this, it predicts the targeted word that
closely relates to the context of different words fed as input.

1. CBOW -

 It is fast and a great way to find better numerical representation for
frequently occurring words. Let us understand the concept of context and
the current word for CBOW.

In CBOW, we define a window size. The middle word is the current word and
the surrounding words (past and future words) are the context. CBOW
utilizes the context to predict the current words. Each word is encoded using
One Hot Encoding in the defined vocabulary and sent to the CBOW neural
network.

The hidden layer is a standard fully-connected dense
layer. The output layer generates probabilities for the
target word from the vocabulary.

As we have discussed earlier about the bag of words
(BOW) and it being also termed as vectorizer, we will
take an example here to clarify it further.

Let's take a small part of disaster tweets, 4 tweets, to
understand how BOW works:-

‘kind true sadly’,

‘swear jam set world ablaze’,

‘swear true car accident’,

‘car sadly car caught up fire’

To create BOW, we use Scikit-learn’s CountVectorizer, which tokenizes a
collection of text documents, builds a vocabulary of known words, and
encodes new documents using that vocabulary.

Here the rows represent each document (4 in our
case), the columns represent the vocabulary
(unique words in all the documents) and the
values represent the count of the words of the
respective rows.

In the same way, we can apply CountVectorizer to
the complete training data tweets (11,370
documents) and obtain a matrix that can be used
along with the target variable to train a machine
learning/deep learning model.

is a slightly different word
embedding technique in
comparison to CBOW as it does
not predict the current word based
on the context. Instead, each
current word is used as an input to
a log-linear classifier along with a
continuous projection layer. This
way, it predicts words in a certain
range before and after the current
word.

This variant takes only one word
as an input and then predicts the
closely related context words.
That is the reason it can efficiently
represent rare words.

Output of Count Vectorizer

2. Skip-gram —

The end goal of Word2Vec (both variants) is to learn
the weights of the hidden layer. The hidden
consequences will be used as our word embeddings!!
Let's now see the code for creating custom word
embeddings using Word2Vec-

#Word2Vec inputs a corpus of documents split into
constituent words.
corpus = []
for i in range(0,len(X)):
 tweet = re.sub(“[^a-zA-Z]”,” “,X[i])
 tweet = tweet.lower()
 tweet = tweet.split()
 corpus.append(tweet)
Here is the exciting part! Let's try to see the most
similar words (vector representations) of some
random words from the tweets -
model.wv.most_similar(‘disaster’)

Import Libraries
from gensim.models import Word2Vec
import nltk
import re
from nltk.corpus import stopwords

Preprocess the Text

Output -

List of tuples of words and their predicted probability. The embedding vector
of ‘disaster’ -

List of tuples of words and their predicted probability. The embedding vector
of ‘disaster’ -

dimensionality = 100

Now let’s discuss the challenges with the two text vectorization techniques
we have discussed till now.

In BOW, the size of the vector is equal to the number of elements in the
vocabulary. If most of the values in the vector are zero then the bag of words
will be a sparse matrix. Sparse representations are harder to model both for
computational reasons and also for informational reasons.

Also, in BOW there is a lack of meaningful relations and no consideration for
the order of words. Here’s more that adds to the challenge with this word
embedding technique.

Massive amount of weights: Large amounts of input vectors invite massive
amounts of weight for a neural network.
No meaningful relations or consideration for word order: The bag of words
does not consider the order in which the words appear in the sentences or a
text.

Computationally intensive: With more weight comes the need for more
computation to train and predict. While the TF-IDF model contains the
information on the more important words and the less important ones, it
does not solve the challenge of high dimensionality and sparsity, and unlike
BOW it also makes no use of semantic similarities between words.

5. Challenges with the bag of
words and TF-IDF

This technique reduces the computational cost of training the model
because of a simpler least square cost or error function that further results
in different and improved word embeddings. It leverages local context
window methods like the skip-gram model of Mikolov and Global Matrix
factorization methods for generating low dimensional word representations.

Latent semantic analysis (LSA) is a Global Matrix factorization method that
does not do well on world analogy but leverages statistical information
indicating a sub-optimal vector space structure.

The GloVe method of word embedding
in NLP was developed at Stanford by
Pennington, et al. It is referred to as
global vectors because the global
corpus statistics were captured directly
by the model. It finds great
performance in world analogy and
named entity recognition problems.

On the contrary, the skip-gram method performs
better on the analogy task. However, it does not
utilize the statistics of the corpus properly because
of no training on global co-occurrence counts.

So, unlike Word2Vec, which creates word
embeddings using local context, GloVe focuses on
global context to create word embeddings which
gives it an edge over Word2Vec. In GloVe, the
semantic relationship between the words is obtained
using a co-occurrence matrix.

6. GloVe: Global Vector for word
representation

Consider two sentences -

I am a data science enthusiast

I am looking for a data science job

The co-occurrence matrix involved in GloVe would look like this for the
above sentences -

Window Size = 1

Each value in this matrix represents the count of co-occurrence with the
corresponding word in row/column. Observe here - this co-occurrence
matrix is created using global word co-occurrence count (no. of times the
words appeared consecutively; for window size=1). If a text corpus has
1m unique words, the co-occurrence matrix would be 1m x 1m in shape.
The core idea behind GloVe is that the word co-occurrence is the most
important statistical information available for the model to ‘learn’ the word
representation.

Let's now see an example from Stanford’s GloVe paper of how the co-
occurrence probability rations work in GloVe. “For example, consider the co-
occurrence probabilities for target words ice and steam with various probe
words from the vocabulary. Here are some actual probabilities from a
corpus of 6 billion words:”

Let's take k = solid i.e, words related
to ice but unrelated to steam. The
expected Pik /Pjk ratio will be large.
Similarly, for words k which are
related to steam but not to ice, say k =
gas, the ratio will be small. For words
like water or fashion, which are either
related to both ice and steam or
neither to both respectively, the ratio
should be approximately one.

Here,

Import Libraries
import nltk
import re
from nltk.corpus import stopwords
from glove import Corpus, Glove
Text Preprocessing
#GloVe inputs a corpus of documents splitted
into constituent words
corpus = []
for i in range(0,len(X)):
 tweet = re.sub(“[^a-zA-Z]”,” “,X[i])
tweet = tweet.lower()
 tweet = tweet.split()
 corpus.append(tweet)

The probability ratio is able tn the raw probability. It is also able to better
discriminate between two relevant words. Hence in GloVe, the starting point
for word vector learning is ratios of co-occurrence probabilities rather than
the probabilities themselves.

Enough of the theory. Time for the code!

List of tuples of words and their predicted probability

Train the word Embeddings

corpus = Corpus()
corpus.fit(text_corpus,window = 5)
glove = Glove(no_components=100,
learning_rate=0.05)
#no_components = dimensionality of word
embeddings = 100
glove.fit(corpus.matrix, epochs=100,
no_threads=4, verbose=True)
glove.add_dictionary(corpus.dictionary)
Find most similar -
glove.most_similar(“storm”,number=10)

Output -

It relies on an attention mechanism for generating high-
quality world embeddings that are contextualized. So when
the embedding goes through the training process, they are
passed through each BERT layer so that its attention
mechanism can capture the word associations based on the
words on the left and those on the right.

It is an advanced technique in comparison to the discussed
above as it creates better word embedding. The credit goes
to the pre-trend model on Wikipedia data sets and massive
word corpus. This technique can be further improved for
task-specific data sets by fine-tuning the embeddings.

This natural language processing (NLP)
based language algorithm belongs to a
class known as transformers. It comes
in two variants namely BERT-Base,
which includes 110 million parameters,
and BERT-Large, which has 340 million
parameters.

7. BERT (Bidirectional encoder
representations from transformers)

It finds great application in language translation tasks.

Word embeddings can train deep learning models like GRU, LSTM, and
Transformers, which have been successful in NLP tasks such as sentiment
classification, name entity recognition, speech recognition, etc.

Here’s a final checklist for a recap.

Bag of words: Extracts features from the text
TF-IDF: Information retrieval, keyword extraction
Word2Vec: Semantic analysis task
GloVe: Word analogy, named entity recognition tasks
BERT: language translation, question answering system

8. Conclusion

