
CLOUD NATIVE:
PRINCIPLES,

APPLICATIONS, AND
CHALLENGES



PRINCIPLES FOR CLOUD-NATIVE
ARCHITECTURE

A cloud-native application is specifically designed from the ground up to
take advantage of the elasticity and distributed nature of the cloud. To
better understand what a cloud-native application is, it’s best to start
with what it’s not—a traditional, monolithic application. Monolithic
applications function as a single unit, often with custom-built operation
systems, middleware, and language stacks for each application. Most
scripts and processes are also purpose-built for the build, test, and
deployment. Overall, this application architecture creates close
dependencies, making it more difficult to change, test, deploy, and
operate systems as they grow over time. What starts out as simple to
design and deploy soon becomes complex, hard to evolve, and
challenging to operate. By comparison, cloud-native applications make
the most of modern infrastructure's dynamic, distributed nature to
achieve greater speed, agility, scalability, reliability, and cost efficiency.

Automation has always been a best practice for software systems, but
cloud makes it easier than ever to automate the infrastructure as well as
components that sit above it. Although the upfront investment is often
higher, favouring an automated solution will almost always pay off in the
medium term in terms of effort, but also in terms of the resilience and
performance of your system. Automated processes can repair, scale,
deploy your system far faster than people can. As we discuss later on,
architecture in the cloud is not a one-shot deal, and automation is no
exception—as you find new ways that your system needs to take action,
so you will find new things to automate.

Some common areas for automating cloud-native systems are:

PRINCIPLE 1: DESIGN FOR AUTOMATION



Infrastructure:

Continuous Integration/Continuous
Delivery: 

Scale up and scale down: 

Monitoring and automated recovery:

Automate the creation of the infrastructure, together with updates to it,
using tools like Google Cloud Deployment Manager or Terraform.

Automate the build, testing, and deployment of the packages that make
up the system by using tools like Google Cloud Build, Jenkins and
Spinnaker. Not only should you automate the deployment, you should
strive to automate processes like canary testing and rollback.

Unless your system load almost never changes, you should automate the
scale up of the system in response to increases in load, and scale down
in response to sustained drops in load. By scaling up, you ensure your
service remains available, and by scaling down you reduce costs. This
makes clear sense for high-scale applications, like public websites, but
also for smaller applications with irregular load, for instance internal
applications that are very busy at certain periods, but barely used at
others. For applications that sometimes receive almost no traffic, and for
which you can tolerate some initial latency, you should even consider
scaling to zero (removing all running instances, and restarting the
application when it's next needed).

You should bake monitoring and logging into your cloud-native systems
from inception. Logging and monitoring data streams can naturally be
used for monitoring the health of the system, but can have many uses
beyond this. For instance, they can give valuable insights into system
usage and user behaviour (how many people are using the system, what
parts they’re using, what their average latency is, etc). Secondly, they can
be used in aggregate to give a measure of overall system health (e.g., a
disk is nearly full again, but is it filling faster than usual? What is the
relationship between disk usage and service uptake? etc). Lastly, they
are an ideal point for attaching automation. Now when that disk fills up,
instead of just logging an error, you can also automatically resize the
disk to allow the system to keep functioning.



Scale: 

Repair: 

Roll-back: 

To scale up, just add more copies. To scale down, instruct instances to
terminate once they have completed their current task.

To 'repair' a failed instance of a component, simply terminate it as
gracefully as possible and spin up a replacement.

If you have a bad deployment, stateless components are much easier to
roll back, since you can terminate them and launch instances of the old
version instead.

Storing of 'state', be that user
data (e.g., the items in the users
shopping cart, or their employee
number) or system state (e.g.,
how many instances of a job are
running, what version of code is
running in production), is the
hardest aspect of architecting a
distributed, cloud-native
architecture. You should
therefore architect your system
to be intentional about when, and
how, you store state, and design
components to be stateless
wherever you can.
Stateless components are easy
to:

PRINCIPLE 2: BE SMART WITH STATE



Load-Balance across:
When components are stateless, load balancing is much simpler since
any instance can handle any request. Load balancing across stateful
components is much harder, since the state of the user's session
typically resides on the instance, forcing that instance to handle all
requests from a given user.

PRINCIPLE 3: FAVOR MANAGED SERVICES

Cloud is more than just
infrastructure. Most cloud
providers offer a rich set of
managed services, providing all
sorts of functionality that relieve
you of the headache of
managing the backend software
or infrastructure. However, many
organizations are cautious about
taking advantage of these
services because they are
concerned about being 'locked in'
to a given provider. This is a valid
concern, but managed services
can often save the organization
hugely in time and operational
overhead.
Broadly speaking, the decision of
whether or not to adopt managed
services comes down to
portability vs. operational
overhead, in terms of both
money, but also skills. Crudely,
the managed services that you
might consider today fall into
three broad categories:



Managed open source or open source-
compatible services:

Managed services with high operational
savings

Everything else:

Services that are managed open source (for instance Cloud SQL) or offer
an open-source compatible interface (for instance Cloud Bigtable). This
should be an easy choice since there are a lot of benefits in using the
managed service, and little risk.

Some services are not immediately compatible with open source, or have
no immediate open source alternative, but are so much easier to
consume than the alternatives, they are worth the risk. For instance,
BigQuery is often adopted by organizations because it is so easy to
operate.

Then there are the hard cases, where there is no easy migration path off
of the service, and it presents a less obvious operational benefit. You’ll
need to examine these on a case-by-case basis, considering things like
the strategic significance of the service, the operational overhead of
running it yourself, and the effort required to migrate away.

However, practical experience has shown that most cloud-native
architectures favor managed services; the potential risk of having to
migrate off of them rarely outweighs the huge savings in time, effort, and
operational risk of having the cloud provider manage the service, at
scale, on your behalf.



PRINCIPLE 4: PRACTICE DEFENSE IN
DEPTH

PRINCIPLE 5: ALWAYS BE ARCHITECTING

Traditional architectures place a lot of faith in perimeter security, crudely
a hardened network perimeter with 'trusted things' inside and 'untrusted
things' outside. Unfortunately, this approach has always been vulnerable
to insider attacks, as well as external threats such as spear phishing.
Moreover, the increasing pressure to provide flexible and mobile working
has further undermined the network perimeter.
Cloud-native architectures have their origins in internet-facing services,
and so have always needed to deal with external attacks. Therefore they
adopt an approach of defense-in-depth by applying authentication
between each component, and by minimizing the trust between those
components (even if they are 'internal'). As a result, there is no 'inside'
and 'outside'.
Cloud-native architectures should extend this idea beyond authentication
to include things like rate limiting and script injection. Each component in
a design should seek to protect itself from the other components. This
not only makes the architecture very resilient, it also makes the resulting
services easier to deploy in a cloud environment, where there may not be
a trusted network between the service and its users.

One of the core characteristics of a cloud-native system is that it’s
always evolving, and that's equally true of the architecture. As a cloud-
native architect, you should always seek to refine, simplify and improve
the architecture of the system, as the needs of the organization change,
the landscape of your IT systems change, and the capabilities of your
cloud provider itself change. While this undoubtedly requires constant
investment, the lessons of the past are clear: to evolve, grow, and
respond, IT systems need to live and breathe and change. Dead,
ossifying IT systems rapidly bring the organization to a standstill, unable
to respond to new threats and opportunities.



THE ONLY CONSTANT IS CHANGE

In the animal kingdom, survival
favors those individuals who
adapt to their environment.
This is not a linear journey
from 'bad' to 'best' or from
'primitive' to 'evolved', rather
everything is in constant flux.
As the environment changes,
pressure is applied to species
to evolve and adapt. Similarly,
cloud-native architectures do
not replace traditional
architectures, but they are
better adapted to the very
different environment of cloud.
Cloud is increasingly the
environment in which most of
us find ourselves working, and
failure to evolve and adapt, as
many species can attest, is not
a long term option.

The principles described above
are not a magic formula for
creating a cloud-native
architecture, but hopefully
provide strong guidelines on
how to get the most out of the
cloud. As an added benefit,
moving and adapting
architectures for cloud gives
you the opportunity to improve
and adapt them in other ways,
and make them better able to
adapt to the next
environmental shift. Change
can be hard, but as evolution
has shown for billions of years,
you don't have to be the best to
survive—you just need to be
able to adapt.

Adapted from: https://cloud.google.com/blog/products/application-
development/5-principles-for-cloud-native-architecture-what-it-is-and-
how-to-master-it 

https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it

