L@ (L

LA

WHAT IS CLOUD-
NATIVE?

il
s

I g

A7 |EEqEcros UTA

e

Becoming “cloud native” is often cited as the end goal for migrating or
building applications today. But depending on who you ask, you'll
probably get a lot of different definitions of what exactly it means.
Overall, the majority boils down to this: Cloud native is an approach to
building and running scalable applications to take full advantage of
cloud-based services and delivery models.

WHAT IS A CLOUD-NATIVE APPLICATION?

A cloud-native application is specifically designed from the ground up to
take advantage of the elasticity and distributed nature of the cloud. To
better understand what a cloud-native application is, it's best to start
with what it's not—a traditional, monolithic application.

Monolithic applications function as a single unit, often with custom-built
operation systems, middleware, and language stacks for each
application. Most scripts and processes are also purpose-built for the
build, test, and deployment. Overall, this application architecture creates
close dependencies, making it more difficult to change, test, deploy, and
operate systems as they grow over time. What starts out as simple to
design and deploy soon becomes complex, hard to evolve, and
challenging to operate.

By comparison, cloud-native applications make the most of modern
infrastructure's dynamic, distributed nature to achieve greater speed,
agility, scalability, reliability, and cost efficiency.

Cloud-native applications are
typically broken down into
multiple, self-contained services
through the use of technologies
and methodologies, namely
DevOps, continuous delivery and
continuous integration,
containers, microservices, and
declarative APIs. This enables
teams to deploy and scale
components independently, so
they can make updates, fix
issues, and deliver new features
without any service interruption.

.EEI-'I| N | EBSEERE2 ure

._'-lT -_T:.H

(@R

CLOUD-NATIVE PILLARS

There are various ways to create a cloud-native architecture, but the goal
is always to increase software delivery velocity and service reliability and
to develop shared ownership among software stakeholders.

Still, the fundamentals of cloud-native architectures are based on five
core pillars:

Microservices:

Almost all cloud architectures are based on microservices, but the key
benefit they deliver is composability—breaking down an application into
a collection of smaller, lightweight services that can easily be composed
and connected to each other via application programming interfaces
(APIs). For example, an ecommerce application might be composed of a
specific service for the shopping cart, another for payment, and another
one that communicates with the back end about inventory management.
Composability also enables teams to swap and re-compose components
to meet new business requirements without disrupting another part of
the application.

Containers and orchestration:

Containers are lightweight, executable components that contain all the
elements needed—including app source code and dependencies—to run
the code in any environment. Containers deliver workload portability that
supports “build once, run anywhere” code, making development and
deployment significantly easier. They also help to reduce the chance of
friction between languages, libraries, and frameworks since they can be
deployed independently. This portability and flexibility makes containers
ideal for building microservices architectures.

Container orchestration is also essential as the number of microservices
grows to help manage containers so they can run smoothly as an
application. A container orchestration platform like Kubernetes provides
oversight and control of where and how containers run, repair any
failures, and balance load between containers.

B ELCTOS UIF
ELHJCATIVOIS

e

(@R

DevOps:

Cloud-native application development requires shifting to an agile
delivery methodology like DevOps, where developers and IT operations
teams collaborate to automate infrastructure and software delivery
processes. DevOps allows development and operations teams to
communicate more closely and come together around a shared purpose,
creating a culture and environment where applications can be built,
tested, and released faster.

Continuous integration and continuous delivery (Cl/CD): Automation can
repair, scale, and deploy systems much faster than people. CI/CD
pipelines help automate the build, testing, and deployment of application
changes without the need to schedule downtime or wait for a
maintenance window. Continuous delivery ensures that software
releases are more reliable and less risky, allowing teams to deliver new
services and features more rapidly and frequently.

Cloud-native services:

Cloud-native services and technologies help you build, run, and deploy
scalable applications in any environment. While your customers and
business users benefit from a regular application, cloud-native services
operate behind the scenes to keep things running smoothly.

For example, cloud-native services might describe the as-a-service
offerings from cloud service providers (for example, laas, PaaS, and
SaaS service models), the microservices of an application, and the APIs
that connect and enable communication between services.

B ELCTOS UIF
ELHJCATIVOIS

e

(@R

WHAT IS THE DIFFERENCE BETWEEN
CLOUD AND CLOUD NATIVE?

There is actually a difference between cloud and cloud native. Cloud
refers to cloud computing, where companies or individuals pay to access
computing resources as an on-demand service.

While it is often used as a catch-all description for the tools and
techniques used to develop software in the cloud, the term “cloud native”
isn't solely about cloud adoption. Instead, it refers to how applications
are built and delivered, rather than just where they are deployed. In some
cases, an application may not even run in the cloud. It's possible to build
applications with cloud-native principles and run it on-premises or in
hybrid environments.

Cloud-native challenges

Despite the many cloud-native benefits, this model does come with some
trade-offs that should be considered. Cloud-native computing is not
always straightforward to implement as beyond adopting new tools and
technologies, it also requires cultural shifts to make its use successful.

Some common cloud-native
challenges include:

Dealing with distributed

Increased operational and

systems and many moving
parts can be overwhelming
if you don't have tools or
processes in place to
manage development,
testing, and deployment

technology costs without
the right cost optimization
and oversight in place to
control the use of resources
in cloud environments

Lack of existing technology Resistance to the cultural
skills to work with and shifts needed to implement
integrate a more complex cloud-native technologies
technology stack and DevOps best practices

Difficulty = communicating
cloud-native concepts to
gain support and buy-in
from non-technical
executives

However, none of the above is unmanageable with the right expertise
and strategy. For example, adopting a simple “lift and shift” approach to
migrating to the cloud is a good place to start, but it won't provide many
of the cloud-native benefits listed above. Many organizations end up
stalling out at this stage because they haven't anticipated the expense
and complexity of re-architecting to a cloud-native architecture.

We recommend not treating cloud native as a multi-year, big-bang
project. Instead, it should be considered an ongoing journey of constant
iteration to learn and improve as you go.

Taken from: https://cloud.google.com/learn/what-is-cloud-native

.EEI-'I| N | EBSEERE2 ure

._'-lT -_T:.H

https://cloud.google.com/learn/what-is-cloud-native

