
5 CLOUD NATIVE
ARCHITECTURE

PATTERNS FOR 2024



Becoming “cloud native” is often cited as the end goal for migrating or
building applications today. But depending on who you ask, you’ll
probably get a lot of different definitions of what exactly it means.
Overall, the majority boils down to this: Cloud native is an approach to
building and running scalable applications to take full advantage of
cloud-based services and delivery models.

WHAT IS A CLOUD-NATIVE APPLICATION?

The cloud native landscape is rapidly evolving, demanding architectures
that are both scalable and agile. These architectures need to be
designed for distributed environments, embracing microservices and
containerization. To meet these demands, cloud native architecture
patterns offer proven approaches for building resilient and efficient
applications.

In this article, we’ll explore the
top 5 cloud native architecture
patterns you should know to
prepare yourselves for 2024:



Example:

Sidecar/Sidekick Pattern

Imagine a tiny companion riding alongside your motorcycle. That’s the
essence of the Sidecar/Sidekick pattern. This pattern involves deploying
a small container alongside the main application container. Think of it as
a “sidecar” providing essential functionality like logging, monitoring,
security, or even an API gateway.

Benefits:
Decoupling: Separates core
application logic from
auxiliary functions, improving
modularity and resilience.

Flexibility: Different sidecars
can be deployed with different
applications, offering a
modular approach.

Scalability: Sidecars can be
scaled independently
according to their specific
needs.

Imagine an e-commerce application
with a sidecar container handling
payment processing. This sidecar
could handle encryption,
communication with payment
gateways, and fraud detection,
keeping the core application
focused on order management and
product listings.



Example:

Ambassador Pattern

Think of an ambassador as a diplomat representing your interests.
Similarly, the Ambassador pattern uses a container to handle external
traffic before it reaches the main application. This ambassador can
handle tasks like authentication, authorization, rate limiting, and load
balancing.

Benefits:
Security: Acts as a central
point for enforcing security
policies and protecting the
application.

Load Balancing: Distributes
traffic across multiple
application instances for
improved performance.

Scalability: Enables scaling
the ambassador
independently to handle
increased traffic.

Consider a social media platform
with an ambassador container
handling user logins. This
ambassador could validate
credentials, assign user roles, and
perform rate limiting to prevent
security breaches and ensure
smooth operation.



Example:

Scatter/Gather Pattern

Imagine dividing a large task into smaller, manageable chunks and
distributing them among workers. That’s the essence of the
Scatter/Gather pattern. This pattern involves a “scatter” process that
distributes tasks across multiple worker processes and a “gather”
process that collects the results and returns them to the client.

Benefits:
Parallelization: Enables
concurrent execution of tasks,
significantly improving
performance.

Fault Tolerance: If a worker
fails, others can pick up the
slack, ensuring resilience.

Scalability: Workers can be
scaled horizontally to handle
increasing workloads.

Consider a video streaming platform
that utilizes the Scatter/Gather
pattern for video transcoding. The
scatter process would divide the
video into segments and distribute
them to worker processes for
transcoding. The gather process
would then collect the transcoded
segments and assemble them into a
single video file.



Example:

Decoupling: Isolates the main
application from client-
specific concerns.

Backend for Frontends
(BFF) Pattern

Ever felt frustrated with a website designed for a different device? The
BFF pattern addresses this issue. It introduces a dedicated API service
for each type of client application (mobile, web, etc.). This API service
tailors its responses to the specific needs of each client, providing a
more optimal user experience.

Benefits:
Client-Specific Optimization:
Tailors data and functionality
to each client’s unique needs.

Improved Performance:
Reduces data transfer by only
providing relevant information
to each client.

Imagine a news website with a BFF
for mobile and web clients. The
mobile BFF could deliver optimized
content and images for smaller
screens, while the web BFF could
provide a richer experience with
additional features and information.



Example:

Simplified Development:
Separates read and write
operations, making the code
easier to understand and
maintain.

CQRS (Command Query
Responsibility Segregation)

Imagine having separate teams responsible for managing data reads
and writes. That’s the essence of CQRS. This pattern separates read and
write operations into different models and databases. This allows for
concurrent read and write operations without conflicts, improving
scalability and performance.

Taken from: https://danielfoo.medium.com/5-cloud-native-architecture-
patterns-for-2024-5bf6dc34e204 
 

Benefits:
Improved Scalability: Reads
and writes can be scaled
independently according to
their specific needs.

Increased Availability: Reads
can continue even if the write
model is unavailable.

Consider an online store with a
CQRS architecture. The write model
would be responsible for managing
product inventory and order
creation. The read model would be
responsible for generating product
listings and order status updates.
This separation allows for handling
high read traffic without impacting
write availability.

https://danielfoo.medium.com/5-cloud-native-architecture-patterns-for-2024-5bf6dc34e204
https://danielfoo.medium.com/5-cloud-native-architecture-patterns-for-2024-5bf6dc34e204

