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Introduction to Reinforcement
Learning: A Robotics Perspective

Reinforcement Learning (RL) is known as a branch of Machine Learning where
an intelligent agent takes decisions in an environment to maximize a
cumulative reward. In contrast to other machine learning paradigms, the
training data thus is generated in an interactive process of exploration and
exploitation. This blog post explores the general idea of applying RL to the
fast-growing domain of robotics, as well as potential applications, and
outstanding challenges that arise. 

Robotic Workflow – How Robots Learn to Act 
The overall RL workflow can be seen as an iterative learning process due to
sensorimotor activity of an agent with an environment (compare Fig. 1) – a
natural and very similar perspective of how we humans learn too! 

Fig. 1: The workflow of Reinforcement Learning in the context of robotics. An
iterative learning process of an agent with the environment as result of

sensorimotor activity and reward signals. © Fraunhofer IML/ Julian Eßer



The first step lies in setting up the training
environment, often a simulation environment,
with specifications for actions, observations,
and rewards. In the context of robotics, the
observation space typically refers to the
available sensor sources on the real robotic
system and desired control inputs. While
discrete action spaces are often found in other
RL applications, in robotics typically continuous
actions are preferred, covering e.g., position or
velocity joint targets. Since robotic tasks often
involve constraints either of the physical
system (e.g., joint limits) or some desired
behavior style, usually dense reward functions
are used to explicitly encode some goal
specifications. 

Environment

Training

The second step of RL in robotics then includes
specifying the actual training scheme of the agent.
Although different ways exist for representing the final
policy, nowadays typically deep neural networks are
adopted for the state-action mapping because of their
capabilities to handle nonlinearities. Moreover, a wide
range of potential algorithms have been proposed over
the last years. For robotic control, typically model-free
RL algorithms are adopted since they do not require a
ground-truth model of the environment that often is not
available for the robot. 



Lastly, after successfully evaluating the trained
policies in the virtual training environments, it’s
time to deploy it to the real robotic system! In
the end, the success of the transfer depends on
many factors, such as the gap between the
virtual and real world, the difficulty of the
learning task ahead, or the complexity of the
robot platform itself.  

Deployment

Reinforcement Learning is being applied to a wide variety of robotic
platforms and tasks right now. In particular, learning-based control
approaches are especially promising when solving hard-to-engineer
behaviors with a high degree of uncertainty – as we typically find in the real
world. So, let’s take a look at three very different applications of applying RL
to different real-world robotic tasks:

Robotic Applications – Bringing RL to the Real World

Learning Quadrupedal Locomotion over
Challenging Terrain
2a: Locomotion

Autonomous Drone Racing with Deep
Reinforcement Learning (IROS 2021)
2b: Navigation

Robots learn Grasping by sharing their hand-
eye coordination experience with each other |
QPT
2c: Manipulation

https://youtu.be/9j2a1oAHDL8?si=5o3mK5oLpeVU76gO
https://youtu.be/9j2a1oAHDL8?si=5o3mK5oLpeVU76gO
https://youtu.be/Hebpmadjqn8?si=BjBcDeoAdoO7ceu9
https://youtu.be/Hebpmadjqn8?si=BjBcDeoAdoO7ceu9
https://youtu.be/V05SuCSRAtg?si=hV7R6to0W-no_vHU
https://youtu.be/V05SuCSRAtg?si=hV7R6to0W-no_vHU
https://youtu.be/V05SuCSRAtg?si=hV7R6to0W-no_vHU


 One of the ongoing research areas in RL for robotics lies in learning
dynamic locomotion. In this case, the complexity of this task rises not only
with the type of robotic platform, but also with terrain to be traversed. For
instance, locomotion of a four-wheeled robot on flat terrain generally can be
considered a rather simple task, while locomotion of a quadrupedal robot
over rough terrain already involves higher degrees of freedom and
uncertainties (see Fig. 2a). However, even for simple robotic platforms (such
as a four-wheeled robot) in simple environments (e.g. flat floor) as seen in
the first example, the complexity potentially further increases when
considering highly-dynamic motions with drifts, making it again hard to
model due to the larger Sim-to-Real gap. 

Locomotion

Likewise, also the field of robotic
manipulation can benefit from learning-
based control approaches such as RL.
Although the task of grasping a specific
object with a certain robot platform certainly
is not easy, it can be considered solvable if
it is deployed in a controlled environment.
However, if the objective is to grasp and
manipulate objects that are not known
beforehand and located in environments
that may involve many other (dynamic)
objects (see Fig. 2c), learning-based
approaches can offer unique capabilities.
For instance, vision data could be used to
train RL agents that can understand the
scene in a humanlike way to make
appropriate decisions. 

Manipulation



Another application of RL in robotics is the field of
navigation, which involves not only sensory
perception of the environment but also higher-level
reasoning about the decisions to make. Again, RL
here can play to its strengths, as the environments
turn out to be difficult to model. For instance, the
task of navigating a static environment that is
known a priori can be considered as relatively
straightforward. However, if the goal would be
quickly navigating a drone in an unknown
environment (see Fig. 2b) that may even involve
dynamic obstacles (such as other robots), the level
of uncertainty rises to a large extent – making it a
perfect field application for RL again. 

Navigation

Although already promising applications have shown the potential of
Reinforcement Learning for robot control, particular challenges are related to
the training of robots for real-world tasks. 

Robotic Challenges – The Road Ahead 

1. Performance (Effectiveness):

One of the current challenges of applying RL to robotics lies in achieving the
desired level of performance of the trained agents. One of the reasons this
may be challenging is that RL as a data-driven approach is sensitive to a
specific selection of hyperparameters. But even for the exact same selection
of hyperparameters, the overall return in the training can be different due to
changing random seed in the environment. Another part of the challenge lies
in the fact that RL tends to tap into local minima, depending on the reward
formulation. For instance, local minima could be achieved by exploiting
wrongly specified dense rewards, while in the case of sparse rewards the
convergence to performant policies can be even more difficult. 



Another key challenge when applying RL to
robotics comes from the fact that RL typically
needs millions of interactions with the
environment in order to converge, which is
impractical for the real world. Although different
kinds of RL algorithms have been proposed over
the last years, such as various off- and on-policy
algorithms or even model-based algorithms, the
problem of high sample cost and computational
exploitation is far from being solved. To mitigate
this gap, simulation environments are adopted
for providing virtual training environments for the
RL agents. 

2. Amount of Data (Efficiency):

Simulation environments often are adopted in RL
for robotics to generate training samples for
robotic tasks in a fast, safe, and scalable way.
However, since simulations are abstractions
from the real robot and the real world, there will
always remain a difference between these two
worlds – also known as the sim-to-real gap. For
instance, the physical behavior of the robot in
simulation strongly relies on the quality of the
modeling of the kinematics, dynamics, actuators,
and so on. Moreover, also perceiving the
environment in simulation is part of the sim-to-
real gap since the realism strongly depends on
the underlying sensor models that are used.
Lastly, delays in communication as well as
hardware failures are typically found on real
robotic systems and contribute to the sim-to-real
gap when applying RL to the domain of robotics. 

3. Sim-to-Real Gap:



In this blog post we’ve explored the
potential of RL for the purpose of robotic
control. In particular, we’ve seen how a
typical workflow for applying RL to a
robotic task looks like and that it can be
applied to a wide range of potential
robotic applications. However, we’ve also
seen that robotics brings its own
challenges and complexities to this field.
How can we train policies for robotic
control in an efficient and effective way
so that they successfully transfer to the
real robotic system? We will explore one
potential path towards this goal in the
next blog post – stay tuned …

Summary


